Novel Psychoactive Substances: The Razor’s Edge between Therapeutical Potential and Psychoactive Recreational Misuse
Abstract
:1. Introduction
2. Materials and Methods
3. Most-Consumed NPS
3.1. Synthetic Cathinones
3.2. Synthetic Cannabinoids
4. Therapeutic Potential of Synthetic Cathinones and Synthetic Cannabinoids
4.1. Synthetic Cathinones
4.1.1. Depression
4.1.2. Chronic Fatigue
4.1.3. Obesity
4.1.4. Attention-Deficit/Hyperactivity Disorder
4.2. Synthetic Cannabinoids
4.2.1. Inflammatory Pathologies
Arthritis
Colitis
4.2.2. Neurodegenerative Pathologies
Parkinson’s’ Disease
Alzheimer’s Disease
Neurocognitive Disorders Associated with HIV-I
4.2.3. Oncologic Pathologies
Multiple Myeloma
Osteosarcoma
Glioblastoma Multiforme
Triple Negative Breast Cancer
4.2.4. Other Pathologies and Conditions
Trigeminal Neuralgia
Cognitive Dysfunctions—Recognition Memory
Accelerated Gastrointestinal Motility
Peripheral Inflammation and Tissue Repair
Pulmonary Fibrosis
Seizures and Epilepsy
Intestinal Ischemia and Reperfusion
Traumatic Brain Injury
Brain Injury
Type 1 Diabetes
5. Toxicity of Synthetic Cathinones and Synthetic Cannabinoids
5.1. Synthetic Cathinones
5.1.1. Molecular and Cellular Studies
5.1.2. Animal Studies
5.1.3. Case Reports from Emergency Rooms
5.2. Synthetic Cannabinoids
5.2.1. Molecular and Cellular Studies
Neuronal Human Cells
Mice Neural Cells
5.2.2. Case Reports from Emergency Rooms
6. Synthesis of the Available Data
6.1. Synthetic Cathinone
6.2. Synthetic Cannabinoids
6.3. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Specka, M.; Kuhlmann, T.; Sawazki, J.; Bonnet, U.; Steinert, R.; Cybulska-Rycicki, M.; Eich, H.; Zeiske, B.; Niedersteberg, A.; Schaaf, L.; et al. Prevalence of Novel Psychoactive Substance (NPS) Use in Patients Admitted to Drug Detoxification Treatment. Front. Psychiatry 2020, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office on Drugs and Crime. Available online: https://www.unodc.org/documents/scientific/NPS_leaflet_2018_EN.PDF (accessed on 30 December 2021).
- King, L.A.; Kicman, A.T. A brief history of “new psychoactive substances”. Drug Test. Anal. 2011, 3, 401–403. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office on Drugs and Crime. Available online: https://www.unodc.org/LSS/Page/NPS (accessed on 31 December 2021).
- European Monitoring Centre for Drugs and Drug Addiction. Available online: https://op.europa.eu/en/publication-detail/-/publication/7bd409b6-44cd-11eb-b59f-01aa75ed71a1/language-en (accessed on 31 December 2021).
- Hosztafi, S. The history of heroin. Acta Pharm. Hung. 2001, 71, 233–242. [Google Scholar] [PubMed]
- International Narcotic Control Board. Available online: https://www.incb.org/documents/Narcotic-Drugs/1961-Convention/convention_1961_en.pdf (accessed on 30 December 2021).
- Edeleano, L. Ueber einige Derivate der Phenylmethacrylsäure und der Phenylisobuttersäure. Berichte Dtsch. Chem. Ges. 1887, 20, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.W. Further observations on benzedrine. Br. Med. J. 1938, 2, 60. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, N. America’s first amphetamine epidemic 1929–1971: A quantitative and qualitative retrospective with implications for the present. Am. J. Public Health 2008, 98, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.C.; Ivy, A.C.; Searle, L.M. The mechanism of amphetamine-induced loss of weight. J. Am. Med. Assoc. 1947, 134, 1468. [Google Scholar] [CrossRef]
- International Narcotic Control Board. Available online: https://www.incb.org/documents/Psychotropics/conventions/convention_1971_fr.pdf (accessed on 30 December 2021).
- Passie, T. The early use of MDMA (‘Ecstasy’) in psychotherapy (1977–1985). Drug Sci. Policy Law 2018, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Grinspoon, L.; Bakalar, J.B. Can Drugs Be Used to Enhance the Psychotherapeutic Process? Am. J. Psychother. 1986, 40, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Mithoefer, M.C.; Grob, C.S.; Brewerton, T.D. Novel psychopharmacological therapies for psychiatric disorders: Psilocybin and MDMA. Lancet Psychiatry 2016, 3, 481–488. [Google Scholar] [CrossRef]
- Mithoefer, M.C.; Feduccia, A.A.; Jerome, L.; Mithoefer, A.; Wagner, M.; Walsh, Z.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted psychotherapy for treatment of PTSD: Study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials. Psychopharmacology 2019, 236, 2735–2745. [Google Scholar] [CrossRef] [Green Version]
- United Nations Office on Drugs and Crime. Available online: www.unodc.org/documents/scientific/Global_SMART_Update_11_web.pdf (accessed on 30 December 2021).
- Brunt, T.M.; Poortman, A.; Niesink, R.J.M.; Van Den Brink, W. Instability of the ecstasy market and a new kid on the block: Mephedrone. J. Psychopharmacol. 2011, 25, 1543–1547. [Google Scholar] [CrossRef]
- Ramsey, J.; Dargan, P.I.; Smyllie, M.; Davies, S.; Button, J.; Holt, D.W.; Wood, D.M. Buying “legal” recreational drugs does not mean that you are not breaking the law. QJM Int. J. Med. 2010, 103, 777–783. [Google Scholar] [CrossRef] [Green Version]
- European Monitoring Centre for Drugs and Drug Addiction. Available online: https://www.emcdda.europa.eu/system/files/publications/13236/TDAT20001ENN_web.pdf (accessed on 30 December 2021).
- Guirguis, A. New psychoactive substances: A public health issue. Int. J. Pharm. Pract. 2017, 25, 323–325. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.L.; Alves, V.L.; Aguiar, J.; Teixeira, H.M.; Câmara, J.S. Synthetic cathinones: An evolving class of new psychoactive substances. Crit. Rev. Toxicol. 2019, 49, 549–566. [Google Scholar] [CrossRef]
- THC Pharm GmbH. Available online: http://usualredant.de/downloads/analyse-thc-pharm-spice-jwh-018.pdf (accessed on 30 December 2021).
- Gunderson, E.W.; Haughey, H.M.; Ait-Daoud, N.; Joshi, A.S.; Hart, C.L. “Spice” and “K2” Herbal Highs: A Case Series and Systematic Review of the Clinical Effects and Biopsychosocial Implications of Synthetic Cannabinoid Use in Humans. Am. J. Addict. 2012, 21, 320–326. [Google Scholar] [CrossRef]
- Simolka, K.; Lindigkeit, R.; Schiebel, H.-M.; Papke, U.; Ernst, L.; Beuerle, T. Analysis of synthetic cannabinoids in “spice-like” herbal highs: Snapshot of the German market in summer 2011. Anal. Bioanal. Chem. 2012, 404, 157–171. [Google Scholar] [CrossRef]
- McCarthy, L.E.; Borison, H.L. Antiemetic Activity of N-Methyllevonantradol and Nabilone in Cisplatin-Treated Cats. J. Clin. Pharmacol. 1981, 21, 30S–37S. [Google Scholar] [CrossRef]
- Barbado, M.V.; Medrano, M.; Caballero-Velázquez, T.; Álvarez-Laderas, I.; Sánchez-Abarca, L.I.; García-Guerrero, E.; Martín-Sánchez, J.; Rosado, I.V.; Piruat, J.I.; Gonzalez-Naranjo, P.; et al. Cannabinoid derivatives exert a potent anti-myeloma activity both in vitro and in vivo. Int. J. Cancer 2017, 140, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, M.J.; Velez-Pardo, C. Paraquat induces apoptosis in human lymphocytes: Protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1. Growth Factors 2008, 26, 49–60. [Google Scholar] [CrossRef]
- Fichna, J.; Bawa, M.; Thakur, G.A.; Tichkule, R.; Makriyannis, A.; McCafferty, D.-M.; Sharkey, K.A.; Storr, M. Cannabinoids Alleviate Experimentally Induced Intestinal Inflammation by Acting at Central and Peripheral Receptors. PLoS ONE 2014, 9, e109115. [Google Scholar] [CrossRef] [Green Version]
- Gurley, S.N.; Abidi, A.H.; Allison, P.; Guan, P.; Duntsch, C.; Robertson, J.H.; Kosanke, S.D.; Keir, S.T.; Bigner, D.D.; Elberger, A.J.; et al. Mechanism of anti-glioma activity and in vivo efficacy of the cannabinoid ligand KM-233. J. Neurooncol. 2012, 110, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Howlett, A.C. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef] [PubMed]
- Mbvundula, E.C.; Bunning, R.A.D.; Rainsford, K.D. Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage. Biochem. Pharmacol. 2005, 69, 635–640. [Google Scholar] [CrossRef]
- Tolón, R.M.; Núñez, E.; Pazos, M.R.; Benito, C.; Castillo, A.I.; Martínez-Orgado, J.A.; Romero, J. The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Res. 2009, 1283, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Velez-Pardo, C.; Jimenez-Del-Rio, M.; Lores-Arnaiz, S.; Bustamante, J. Protective Effects of the Synthetic Cannabinoids CP55,940 and JWH-015 on Rat Brain Mitochondria upon Paraquat Exposure. Neurochem. Res. 2010, 35, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Urits, I.; Borchart, M.; Hasegawa, M.; Kochanski, J.; Orhurhu, V.; Viswanath, O. An Update of Current Cannabis-Based Pharmaceuticals in Pain Medicine. Pain Ther. 2019, 8, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Monitoring Centre for Drugs and Drug Addiction. Available online: https://www.emcdda.europa.eu/system/files/publications/13838/TDAT21001ENN.pdf (accessed on 30 December 2021).
- Scourfield, A.; Flick, C.; Ross, J.; Wood, D.M.; Thurtle, N.; Stellmach, D.; Dargan, P.I. Synthetic cannabinoid availability on darknet drug markets—Changes during 2016–2017. Toxicol. Commun. 2019, 3, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Le Boisselier, R.; Alexandre, J.; Lelong-Boulouard, V.; Debruyne, D. Focus on cannabinoids and synthetic cannabinoids. Clin. Pharmacol. Ther. 2017, 101, 220–229. [Google Scholar] [CrossRef]
- Brunt, T.M.; Atkinson, A.M.; Nefau, T.; Martinez, M.; Lahaie, E.; Malzcewski, A.; Pazitny, M.; Belackova, V.; Brandt, S.D. Online test purchased new psychoactive substances in 5 different European countries: A snapshot study of chemical composition and price. Int. J. Drug Policy 2017, 44, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Johanson, C.E.; Uhlenhuth, E.H. Drug preference and mood in humans: Repeated assessment of d-amphetamine. Pharmacol. Biochem. Behav. 1981, 14, 159–163. [Google Scholar] [CrossRef]
- Valente, M.J.; de Pinho, P.G.; de Lourdes Bastos, M.; Carvalho, F.; Carvalho, M. Khat and synthetic cathinones: A review. Arch. Toxicol. 2014, 88, 15–45. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime. Available online: https://www.unodc.org/documents/scientific/NPS_Report.pdf (accessed on 30 December 2021).
- German, C.L.; Fleckenstein, A.E.; Hanson, G.R. Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sci. 2014, 97, 2–8. [Google Scholar] [CrossRef] [Green Version]
- National Institute on Drug Abuse. Available online: https://www.drugabuse.gov/publications/drugfacts/synthetic-cathinones-bath-salts (accessed on 31 December 2021).
- Pieprzyca, E.; Skowronek, R.; Nižnanský, Ľ.; Czekaj, P. Synthetic cathinones—From natural plant stimulant to new drug of abuse. Eur. J. Pharmacol. 2020, 875, 173012. [Google Scholar] [CrossRef]
- Calinski, D.M.; Kisor, D.F.; Sprague, J.E. A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacology 2019, 236, 881–890. [Google Scholar] [CrossRef]
- Alcohol and Drug Foundation. Available online: https://adf.org.au/drug-facts/synthetic-cathinones/ (accessed on 31 December 2021).
- Marusich, J.A.; Lefever, T.W.; Blough, B.E.; Thomas, B.F.; Wiley, J.L. Pharmacological effects of methamphetamine and alpha-PVP vapor and injection. Neurotoxicology 2016, 55, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Taschwer, M.; Weiß, J.A.; Kunert, O.; Schmid, M.G. Analysis and characterization of the novel psychoactive drug 4-chloromethcathinone (clephedrone). Forensic Sci. Int. 2014, 244, e56–e59. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction. Available online: https://www.emcdda.europa.eu/system/files/publications/14341/EMCDDA-initial-report-3-MMC-advanced-release.pdf (accessed on 31 December 2021).
- Martinotti, G.; Santacroce, R.; Papanti, D.; Elgharably, Y.; Prilutskaya, M.; Corazza, O. Synthetic Cannabinoids: Psychopharmacology, clinical aspects, and psychotic onset. CNS Neurol. Disord. -Drug Targets 2017, 16, 567–575. [Google Scholar] [CrossRef]
- Altintas, M.; Inanc, L.; Akcay Oruc, G.; Arpacioglu, S.; Gulec, H. Clinical characteristics of synthetic cannabinoid-induced psychosis in relation to schizophrenia: A single-center cross-sectional analysis of concurrently hospitalized patients. Neuropsychiatr. Dis. Treat. 2016, 12, 1893–1900. [Google Scholar] [CrossRef] [Green Version]
- Gurney, S.M.R.; Scott, K.S.; Kacinko, S.L.; Presley, B.C.; Logan, B.K.; Gurney, S.M.R.; Scott, K.S.; Kacinko, S.L.; Presley, B.C.; Logan, B.K. Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs. Forensic Sci. Rev. 2014, 26, 53–78. [Google Scholar]
- Radhakrishnan, R.; Wilkinson, S.T.; D’Souza, D.C. Gone to Pot—A review of the association between cannabis and psychosis. Front. Psychiatry 2014, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Spaderna, M.; Addy, P.H.; D’Souza, D.C. Spicing things up: Synthetic cannabinoids. Psychopharmacology 2013, 228, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Winstock, A.R.; Barratt, M.J. Synthetic cannabis: A comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend. 2013, 131, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Pantano, F.; Graziano, S.; Pacifici, R.; Busardò, F.P.; Pichini, S. New Psychoactive Substances: A Matter of Time. Curr. Neuropharmacol. 2019, 17, 818–822. [Google Scholar] [CrossRef]
- Badowski, M.; Yanful, P.K. Dronabinol oral solution in the management of anorexia and weight loss in AIDS and cancer. Ther. Clin. Risk Manag. 2018, 14, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Schimrigk, S.; Marziniak, M.; Neubauer, C.; Kugler, E.M.; Werner, G.; Abramov-Sommariva, D. Dronabinol Is a Safe Long-Term Treatment Option for Neuropathic Pain Patients. Eur. Neurol. 2017, 78, 320–329. [Google Scholar] [CrossRef]
- Tsang, C.C.; Giudice, M.G. Nabilone for the Management of Pain. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2016, 36, 273–286. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime. Available online: https://www.unodc.org/documents/scientific/STNAR48_Rev.1_ebook.pdf (accessed on 30 December 2021).
- United Nations Office on Drugs and Crime. Available online: https://www.unodc.org/documents/scientific/Synthetic_Cannabinoids.pdf (accessed on 30 December 2021).
- Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990, 346, 561–564. [Google Scholar] [CrossRef]
- Mackie, K. Cannabinoid Receptors: Where They are and What They do. J. Neuroendocrinol. 2008, 20, 10–14. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction. Available online: https://www.emcdda.europa.eu/system/files/publications/537/Spice-Thematic-paper-final-version.pdf (accessed on 30 December 2021).
- Karila, L.; Benyamina, A.; Blecha, L.; Cottencin, O.; Billieux, J. The Synthetic Cannabinoids Phenomenon. Curr. Pharm. Des. 2017, 22, 6420–6425. [Google Scholar] [CrossRef]
- Lindigkeit, R.; Boehme, A.; Eiserloh, I.; Luebbecke, M.; Wiggermann, M.; Ernst, L.; Beuerle, T. Spice: A never ending story? Forensic Sci. Int. 2009, 191, 58–63. [Google Scholar] [CrossRef]
- Simmler, L.; Buser, T.; Donzelli, M.; Schramm, Y.; Dieu, L.-H.; Huwyler, J.; Chaboz, S.; Hoener, M.; Liechti, M. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013, 168, 458–470. [Google Scholar] [CrossRef] [Green Version]
- Docherty, J.R.; Alsufyani, H.A. Pharmacology of Drugs Used as Stimulants. J. Clin. Pharmacol. 2021, 61, S53–S69. [Google Scholar] [CrossRef]
- Karila, L.; Megarbane, B.; Cottencin, O.; Lejoyeux, M. Synthetic Cathinones: A New Public Health Problem. Curr. Neuropharmacol. 2014, 13, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.; Kolanos, R.; Verkariya, R.; De Felice, L.; Glennon, R.A. Mephedrone and methylenedioxypyrovalerone (MDPV), major constituents of “bath salts,” produce opposite effects at the human dopamine transporter. Psychopharmacology 2013, 227, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Green, A.R.; King, M.V.; Shortall, S.E.; Fone, K.C.F. The preclinical pharmacology of mephedrone; not just MDMA by another name. Br. J. Pharmacol. 2014, 171, 2251–2268. [Google Scholar] [CrossRef] [Green Version]
- Prosser, J.M.; Nelson, L.S. The Toxicology of Bath Salts: A Review of Synthetic Cathinones. J. Med. Toxicol. 2012, 8, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, J.; Gardos, G.; Cole, J.O. A Controlled Evaluation of Pyrovalerone in Chronically Fatigued Volunteers. Int. Pharmacopsychiatry 1973, 8, 60–69. [Google Scholar] [CrossRef]
- Mariani, J.J.; Khantzian, E.J.; Levin, F.R. The self-medication hypothesis and psychostimulant treatment of cocaine dependence: An update. Am. J. Addict. 2014, 23, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Global Health Data Exchange. Available online: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b (accessed on 31 December 2021).
- World Health Organization. Available online: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf (accessed on 31 December 2021).
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 31 December 2021).
- Curzon, G. Serotonergic mechanisms of depression. Clin. Neuropharmacol. 1988, 11, S11–S20. [Google Scholar]
- American Psychological Association. Available online: https://www.apa.org/depression-guideline/guideline.pdf (accessed on 31 December 2021).
- Katz, D.P.; Bhattacharya, D.; Bhattacharya, S.; Deruiter, J.; Clark, C.R.; Suppiramaniam, V.; Dhanasekaran, M. Synthetic cathinones: “A khat and mouse game”. Toxicol. Lett. 2014, 229, 349–356. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557676/ (accessed on 31 December 2021).
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 31 December 2021).
- Hu, F.B. Obesity Epidemiology; Oxford University Press: Oxford, UK; New York, NY, USA, 2008; p. 498. [Google Scholar]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef]
- Kelly, T.; Yang, W.; Chen, C.-S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canning, H.; Goff, D.; Leach, M.J.; Miller, A.A.; Tateson, J.E.; Wheatley, P.L. The involvement of dopamine in the central actions of bupropion, a new antidepressant [proceedings]. Br. J. Pharmacol. 1979, 66, 104P–105P. [Google Scholar] [PubMed]
- Markantonis, S.L.; Kyroudis, A.; Beckett, A.H. The stereoselective metabolism of dimethylpropion and monomethylpropion. Biochem. Pharmacol. 1986, 35, 529–532. [Google Scholar] [CrossRef]
- Seaton, D.A.; Duncan, L.J.P.; Rose, K.; Scott, A.M. Diethylpropion in the Treatment of “Refractory” Obesity. BMJ 1961, 1, 1009–1011. [Google Scholar] [CrossRef] [PubMed]
- Wilens, T.E.; Spencer, T.J. Understanding Attention-Deficit/Hyperactivity Disorder from Childhood to Adulthood. Postgrad. Med. 2010, 122, 97–109. [Google Scholar] [CrossRef]
- American Psychiatric Association. Available online: https://www.psychiatry.org/patients-families/adhd/what-is-adhd (accessed on 31 December 2021).
- Danielson, M.L.; Bitsko, R.H.; Ghandour, R.M.; Holbrook, J.R.; Kogan, M.D.; Blumberg, S.J. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment among U.S. Children and Adolescents, 2016. J. Clin. Child Adolesc. Psychol. 2018, 47, 199–212. [Google Scholar] [CrossRef]
- Islam, F.A.; Choundry, Z.; Duffy, W. What to do when adolescents with ADHD self-medicate with bath salts. Curr. Psychiatry 2015, 14, e3–e4. [Google Scholar]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Selvi, E.; Lorenzini, S.; Garcia-Gonzalez, E.; Maggio, R.; Lazzerini, P.E.; Capecchi, P.L.; Balistreri, E.; Spreafico, A.; Niccolini, S.; Pompella, G.; et al. Inhibitory effect of synthetic cannabinoids on cytokine production in rheumatoid fibroblast-like synoviocytes. Clin. Exp. Rheumatol. 2008, 26, 574–581. [Google Scholar]
- Idris, A.I.; van ’t Hof, R.J.; Greig, I.R.; Ridge, S.A.; Baker, D.; Ross, R.A.; Ralston, S.H. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat. Med. 2005, 11, 774–779. [Google Scholar] [CrossRef] [Green Version]
- Gui, H.; Liu, X.; Liu, L.; Su, D.; Dai, S. Activation of cannabinoid receptor 2 attenuates synovitis and joint distruction in collagen-induced arthritis. Immunobiology 2015, 220, 817–822. [Google Scholar] [CrossRef]
- Scott, D.L.; Wolfe, F.; Huizinga, T.W.J. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef]
- Harth, M.; Nielson, W.R. Pain and affective distress in arthritis: Relationship to immunity and inflammation. Expert Rev. Clin. Immunol. 2019, 15, 541–552. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507704/ (accessed on 30 December 2021).
- Hong, J.-I.; Park, I.Y.; Kim, H.A. Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int. J. Mol. Sci. 2020, 21, 533. [Google Scholar] [CrossRef] [Green Version]
- Tateiwa, D.; Yoshikawa, H.; Kaito, T. Cartilage and Bone Destruction in Arthritis: Pathogenesis and Treatment Strategy: A Literature Review. Cells 2019, 8, 818. [Google Scholar] [CrossRef] [Green Version]
- Azizieh, F.Y.; Al Jarallah, K.; Shehab, D.; Gupta, R.; Dingle, K.; Raghupathy, R. Patterns of circulatory and peripheral blood mononuclear cytokines in rheumatoid arthritis. Rheumatol. Int. 2017, 37, 1727–1734. [Google Scholar] [CrossRef]
- Brennan, F.M.; Mcinnes, I.B. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Investig. 2008, 118, 3537–3545. [Google Scholar] [CrossRef] [Green Version]
- Oliviero, F.; Bindoli, S.; Scanu, A.; Feist, E.; Doria, A.; Galozzi, P.; Sfriso, P. Autoinflammatory Mechanisms in Crystal-Induced Arthritis. Front. Med. 2020, 7, 166. [Google Scholar] [CrossRef]
- Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible Nitric Oxide Synthase and Inflammatory Diseases. Mol. Med. 2000, 6, 347–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramson, S.B. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res. Ther. 2008, 10. [Google Scholar] [CrossRef] [Green Version]
- Goggs, R.; Carter, S.D.; Schulze-Tanzil, G.; Shakibaei, M.; Mobasheri, A. Apoptosis and the loss of chondrocyte survival signals contribute to articular cartilage degradation in osteoarthritis. Vet. J. 2003, 166, 140–158. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, H. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. Int. J. Mol. Sci. 2015, 16, 26035–26054. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic-Racic, M.; Taskiran, D.; Georgescu, H.I.; Evans, C.H. Modulation of chondrocyte proteoglycan synthesis by endogeneously produced nitric oxide. Inflamm Res. 1995, 44, S216–S217. [Google Scholar] [CrossRef]
- Cabral, G.A.; Rogers, T.J.; Lichtman, A.H. Turning Over a New Leaf: Cannabinoid and Endocannabinoid Modulation of Immune Function. J. Neuroimmune Pharmacol. 2015, 10, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.-F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459282/ (accessed on 30 December 2021).
- Collins, P.; Rhodes, J. Ulcerative colitis: Diagnosis and management. BMJ 2006, 333, 340–343. [Google Scholar] [CrossRef] [Green Version]
- Halme, L. Family and twin studies in inflammatory bowel disease. World J. Gastroenterol. 2006, 12, 3668. [Google Scholar] [CrossRef]
- Moller, F.T.; Andersen, V.; Wohlfahrt, J.; Jess, T. Familial Risk of Inflammatory Bowel Disease: A Population-Based Cohort Study 1977–2011. Am. J. Gastroenterol. 2015, 110, 564–571. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Higuchi, L.M.; Huang, E.S.; Khalili, H.; Rischter, J.M.; Fuchs, C.S.; Chan, A.T. Aspirin, Nonsteroidal Anti-inflammatory Drug Use, and Risk for Crohn Disease Ulcerative Colitis: A Cohort Study. Ann. Intern. Med. 2012, 156, 350–359. [Google Scholar] [CrossRef]
- Engel, M.A.; Neurath, M.F. New pathophysiological insights and modern treatment of IBD. J. Gastroenterol. 2010, 45, 571–583. [Google Scholar] [CrossRef]
- Terry, R.; Chintanaboina, J.; Patel, D.; Lippert, B.; Haner, M.; Price, K.; Tracy, A.; Lalos, A.; Wakeley, M.; Gutierrez, L.S. Expression of WIF-1 in inflammatory bowel disease. Histol. Histopathol. 2019, 34, 149–157. [Google Scholar] [CrossRef]
- Yamamoto-Furusho, J.K.; Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Sarmiento-Aguilar, A.; Barreto-Zuñiga, R.; Martínez-Benitez, B.; Lara-Velazquez, M.A. Caspase recruitment domain (CARD) family (CARD9, CARD10, CARD11, CARD14 and CARD15) are increased during active inflammation in patients with inflammatory bowel disease. J. Inflamm. 2018, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Wéra, O.; Lancellotti, P.; Oury, C. The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J. Clin. Med. 2016, 5, 118. [Google Scholar] [CrossRef]
- Rosales, C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol. 2018, 9, 113. [Google Scholar] [CrossRef]
- Fournier, B.M.; Parkos, C.A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012, 5, 354–366. [Google Scholar] [CrossRef]
- Papayannopoulos, V.; Zychlinsky, A. NETs: A new strategy for using old weapons. Trends Immunol. 2009, 30, 513–521. [Google Scholar] [CrossRef]
- Tecchio, C.; Cassatella, M.A. Neutrophil-derived chemokines on the road to immunity. Semin. Immunol. 2016, 28, 119–128. [Google Scholar] [CrossRef]
- Stevenson, N.J.; Haan, S.; McClurg, A.E.; McGrattan, M.J.; Armstrong, M.A.; Heinrich, P.C.; Johnston, J.A. The Chemoattractants, IL-8 and Formyl-Methionyl-Leucyl-Phenylalanine, Regulate Granulocyte Colony-Stimulating Factor Signaling by Inducing Suppressor of Cytokine Signaling-1 Expression. J. Immunol. 2004, 173, 3243–3249. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.; Almeida, C.; Tenreiro, S.; Quintas, A. Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson’s Disease. Life 2020, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Cho, J. Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Arch. Pharm. Res. 2013, 36, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Available online: https://www.statpearls.com/ArticleLibrary/viewarticle/26674 (accessed on 30 December 2021).
- DeMaagd, G.; Philip, A. Parkinson’s Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. Pharm. Ther. 2015, 40, 504–532. [Google Scholar]
- Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet 2009, 373, 2055–2066. [Google Scholar] [CrossRef]
- Cabreira, V.; Massano, J. Doença de Parkinson: Revisão Clínica e Atualização. Acta Med. Port. 2019, 32, 661. [Google Scholar] [CrossRef]
- Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef]
- Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016, 15, 1257–1272. [Google Scholar] [CrossRef]
- Klein, C.; Westenberger, A. Genetics of Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a008888. [Google Scholar] [CrossRef] [Green Version]
- Recasens, A.; Dehay, B. Alpha-synuclein spreading in Parkinson’s disease. Front. Neuroanat. 2014, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Percário, S.; da Silva Barbosa, A.; Varela, E.L.P.; Gomes, A.R.Q.; Ferreira, M.E.S.; de Nazaré Araújo Moreira, T.; Dolabela, M.F. Oxidative Stress in Parkinson’s Disease: Potential Benefits of Antioxidant Supplementation. Oxid. Med. Cell. Longev. 2020, 2020, 1–23. [Google Scholar] [CrossRef]
- Ryan, B.J.; Hoek, S.; Fon, E.A.; Wade-Martins, R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends Biochem. Sci. 2015, 40, 200–210. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, X.; Li, Y.; Li, G.; Liu, X. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int. J. Mol. Med. 2018, 41, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- You, L.-H.; Li, F.; Wang, L.; Zhao, S.-E.; Wang, S.-M.; Zhang, L.-L.; Zhang, L.-H.; Duan, X.-L.; Yu, P.; Chang, Y.-Z. Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s disease. Neuroscience 2015, 284, 234–246. [Google Scholar] [CrossRef]
- Li, L.; Zhang, C.; Chen, G.Y.J.; Zhu, B.; Chai, C.; Xu, Q.; Tan, E.; Zhu, Q.; Lim, K.; Yao, S.Q. A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models. Nat. Commun. 2014, 5, 3276. [Google Scholar] [CrossRef]
- Scudamore, O.; Ciossek, T. Increased Oxidative Stress Exacerbates α-Synuclein Aggregation In Vivo. J. Neuropathol. Exp. Neurol. 2018, 77, 443–453. [Google Scholar] [CrossRef]
- Musgrove, R.E.; Helwig, M.; Bae, E.; Aboutalebi, H.; Lee, S.; Ulusoy, A.; Di Monte, D.A. Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J. Clin. Investig. 2019, 129, 3738–3753. [Google Scholar] [CrossRef]
- Berry, C.; La Vecchia, C.; Nicotera, P. Paraquat and Parkinson’s disease. Cell Death Differ. 2010, 17, 1115–1125. [Google Scholar] [CrossRef] [Green Version]
- Schachter, A.S.; Davis, K.L. Alzheimer’s disease. Dialogues Clin. Neurosci. 2000, 2, 91–100. [Google Scholar] [CrossRef]
- Shinohara, M.; Sato, N.; Shimamura, M.; Kurinami, H.; Hamasaki, T.; Chatterjee, A.; Rakugi, H.; Morishita, R. Possible modification of Alzheimer’s disease by statins in midlife: Interactions with genetic and non-genetic risk factors. Front. Aging Neurosci. 2014, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 2018, 7, 1161. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. Available online: https://www.statpearls.com/ArticleLibrary/viewarticle/17423 (accessed on 30 December 2021).
- Silva, M.V.F.; de Loures, C.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; das Carvalho, M.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019, 26, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giri, M.; Lü, Y.; Zhang, M. Genes associated with Alzheimer’s disease: An overview and current status. Clin. Interv. Aging 2016, 11, 665–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, F.-P.; Lin, K.-P.; Kuo, H.-K. Diabetes and the Risk of Multi-System Aging Phenotypes: A Systematic Review and Meta-Analysis. PLoS ONE 2009, 4, e4144. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-S.; Peng, J.; Wu, Q.; Ren, Z.; Pan, L.-H.; Tang, Z.-H.; Jiang, Z.-S.; Wang, G.-X.; Liu, L.-S. Imbalanced cholesterol metabolism in Alzheimer’s disease. Clin. Chim. Acta 2016, 456, 107–114. [Google Scholar] [CrossRef]
- Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011, 10, 698–712. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Selkoe, D.J. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, M.P.; LeVine, H. Alzheimer’s Disease and the Amyloid-β Peptide. J. Alzheimer’s Dis. 2010, 19, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.W.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain 2011, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- García-González, L.; Pilat, D.; Baranger, K.; Rivera, S. Emerging Alternative Proteinases in APP Metabolism and Alzheimer’s Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Front. Aging Neurosci. 2019, 11, 244. [Google Scholar] [CrossRef]
- Blurton-Jones, M.; LaFerla, F. Pathways by Which A? Facilitates Tau Pathology. Curr. Alzheimer Res. 2006, 3, 437–448. [Google Scholar] [CrossRef]
- Rajmohan, R.; Reddy, P.H. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons. J. Alzheimer’s Dis. 2017, 57, 975–999. [Google Scholar] [CrossRef] [Green Version]
- Simon, V.; Ho, D.D.; Abdool Karim, Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 2006, 368, 489–504. [Google Scholar] [CrossRef] [Green Version]
- Boasso, A.; Shearer, G.M.; Chougnet, C. Immune dysregulation in human immunodeficiency virus infection: Know it, fix it, prevent it? J. Intern. Med. 2009, 265, 78–96. [Google Scholar] [CrossRef] [PubMed]
- Schwetz, T.A.; Fauci, A.S. The Extended Impact of Human Immunodeficiency Virus/AIDS Research. J. Infect. Dis. 2018, 219, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Boissé, L.; Gill, M.J.; Power, C. HIV Infection of the Central Nervous System: Clinical Features and Neuropathogenesis. Neurol. Clin. 2008, 26, 799–819. [Google Scholar] [CrossRef] [PubMed]
- Heaton, R.K.; Franklin, D.R.; Ellis, R.J.; McCutchan, J.A.; Letendre, S.L.; LeBlanc, S.; Corkran, S.H.; Duarte, N.A.; Clifford, D.B.; Woods, S.P.; et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. J. Neurovirol. 2011, 17, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, A.; Sacktor, N. Influence of highly active antiretroviral therapy on persistence of HIV in the central nervous system. Curr. Opin. Neurol. 2006, 19, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Sheng, W.S.; Rock, R.B. CB 2 Receptor Agonists Protect Human Dopaminergic Neurons against Damage from HIV-1 gp120. PLoS ONE 2013, 8, e77577. [Google Scholar] [CrossRef]
- Gelman, B.B.; Spencer, J.A.; Holzer, C.E.; Soukup, V.M. Abnormal Striatal Dopaminergic Synapses in National NeuroAIDS Tissue Consortium Subjects with HIV Encephalitis. J. Neuroimmune Pharmacol. 2006, 1, 410–420. [Google Scholar] [CrossRef]
- Munson, A.E.; Harris, L.S.; Friedman, M.A.; Dewey, W.L.; Carchman, R.A. Antineoplastic Activity of Cannabinoids2. JNCI J. Natl. Cancer Inst. 1975, 55, 597–602. [Google Scholar] [CrossRef]
- Carracedo, A.; Lorente, M.; Egia, A.; Blázquez, C.; García, S.; Giroux, V.; Malicet, C.; Villuendas, R.; Gironella, M.; González-Feria, L.; et al. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 2006, 9, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Qin, Y.; Pan, Z.; Li, M.; Liu, X.; Chen, X.; Qu, G.; Zhou, L.; Xu, M.; Zheng, Q.; et al. Cannabidiol Induces Cell Cycle Arrest and Cell Apoptosis in Human Gastric Cancer SGC-7901 Cells. Biomolecules 2019, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Mangal, N.; Erridge, S.; Habib, N.; Sadanandam, A.; Reebye, V.; Sodergren, M.H. Cannabinoids in the landscape of cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 2507–2534. [Google Scholar] [CrossRef]
- Laezza, C.; Pagano, C.; Navarra, G.; Pastorino, O.; Proto, M.C.; Fiore, D.; Piscopo, C.; Gazzerro, P.; Bifulco, M. The Endocannabinoid System: A Target for Cancer Treatment. Int. J. Mol. Sci. 2020, 21, 747. [Google Scholar] [CrossRef] [Green Version]
- Dariš, B.; Verboten, M.T.; Knez, Ž.; Ferk, P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn. J. Basic Med. Sci. 2019, 19, 14–23. [Google Scholar] [CrossRef]
- Kovalchuk, O.; Kovalchuk, I. Cannabinoids as anticancer therapeutic agents. Cell Cycle 2020, 19, 961–989. [Google Scholar] [CrossRef]
- Notaro, A.; Emanuele, S.; Geraci, F.; D’Anneo, A.; Lauricella, M.; Calvaruso, G.; Giuliano, M. WIN55,212-2-Induced Expression of Mir-29b1 Favours the Suppression of Osteosarcoma Cell Migration in a SPARC-Independent Manner. Int. J. Mol. Sci. 2019, 20, 5235. [Google Scholar] [CrossRef] [Green Version]
- Greish, K.; Mathur, A.; Al Zahrani, R.; Elkaissi, S.; Al Jishi, M.; Nazzal, O.; Taha, S.; Pittalà, V.; Taurin, S. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J. Control. Release 2018, 291, 184–195. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.statpearls.com/ArticleLibrary/viewarticle/25360 (accessed on 31 December 2021).
- Tosi, P. Diagnosis and Treatment of Bone Disease in Multiple Myeloma: Spotlight on Spinal Involvement. Scientifica 2013, 2013, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jewell, S.; Xiang, Z.; Kunthur, A.; Mehta, P. Multiple Myeloma: Updates on Diagnosis and Management. Fed. Pract. 2015, 32, 49S–56S. [Google Scholar]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 Patients with Newly Diagnosed Multiple Myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Dhodapkar, M.V. MGUS to myeloma: A mysterious gammopathy of underexplored significance. Blood 2016, 128, 2599–2606. [Google Scholar] [CrossRef] [PubMed]
- Cardona-Benavides, I.J.; de Ramón, C.; Gutiérrez, N.C. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021, 10, 336. [Google Scholar] [CrossRef] [PubMed]
- Mullen, T.D.; Obeid, L.M. Ceramide and Apoptosis: Exploring the Enigmatic Connections between Sphingolipid Metabolism and Programmed Cell Death. Anticancer Agents Med. Chem. 2012, 12, 340–363. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.statpearls.com/ArticleLibrary/viewarticle/56333 (accessed on 31 December 2021).
- Zhao, X.; Wu, Q.; Gong, X.; Liu, J.; Ma, Y. Osteosarcoma: A review of current and future therapeutic approaches. Biomed. Eng. Online 2021, 20, 24. [Google Scholar] [CrossRef]
- Arndt, C.A.S.; Rose, P.S.; Folpe, A.L.; Laack, N.N. Common Musculoskeletal Tumors of Childhood and Adolescence. Mayo Clin. Proc. 2012, 87, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.; Brown, H.L. Understanding osteosarcomas. J. Am. Acad. Physician Assist. 2018, 31, 15–19. [Google Scholar] [CrossRef]
- De Gonzalez, A.B.; Kutsenko, A.; Rajaraman, P. Sarcoma risk after radiation exposure. Clin. Sarcoma Res. 2012, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Cancemi, P.; Aiello, A.; Accardi, G.; Caldarella, R.; Candore, G.; Caruso, C.; Ciaccio, M.; Cristaldi, L.; Di Gaudio, F.; Siino, V.; et al. The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediat. Inflamm. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Bradshaw, A.D.; Sage, E.H. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J. Clin. Investig. 2001, 107, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. Available online: https://www.statpearls.com/ArticleLibrary/viewarticle/22272 (accessed on 31 December 2021).
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, S.U. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev. 2017, 18, 3–9. [Google Scholar] [CrossRef]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef] [Green Version]
- Bush, N.A.O.; Chang, S.M.; Berger, M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev. 2017, 40, 1–14. [Google Scholar] [CrossRef]
- Davis, M. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016, 20, S2–S8. [Google Scholar] [CrossRef] [Green Version]
- Ellor, S.V.; Pagano-Young, T.A.; Avgeropoulos, N.G. Glioblastoma: Background, Standard Treatment Paradigms, and Supportive Care Considerations. J. Law Med. Ethics 2014, 42, 171–182. [Google Scholar] [CrossRef]
- Boyle, P. Triple-negative breast cancer: Epidemiological considerations and recommendations. Ann. Oncol. 2012, 23, vi7–vi12. [Google Scholar] [CrossRef]
- Mehanna, J.; Haddad, F.G.H.; Eid, R.; Lambertini, M.; Kourie, H.R. Triple-negative breast cancer: Current perspective on the evolving therapeutic landscape. Int. J. Womens Health 2019, 11, 431–437. [Google Scholar] [CrossRef] [Green Version]
- World Cancer Research Fund. Available online: https://www.wcrf.org/dietandcancer/worldwide-cancer-data/ (accessed on 31 December 2021).
- Dawson, S.J.; Provenzano, E.; Caldas, C. Triple negative breast cancers: Clinical and prognostic implications. Eur. J. Cancer 2009, 45, 27–40. [Google Scholar] [CrossRef]
- Koo, M.M.; von Wagner, C.; Abel, G.A.; McPhail, S.; Rubin, G.P.; Lyratzopoulos, G. Typical and atypical presenting symptoms of breast cancer and their associations with diagnostic intervals: Evidence from a national audit of cancer diagnosis. Cancer Epidemiol. 2017, 48, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Lu, J.; Wu, J.; Luo, Y. Simultaneous removal of organic carbon and nitrogen pollutants in the Yangtze estuarine sediment: The role of heterotrophic nitrifiers. Estuar. Coast. Shelf Sci. 2017, 191, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Seong, M.-W.; Cho, S.; Noh, D.-Y.; Han, W.; Kim, S.-W.; Park, C.-M.; Park, H.-W.; Kim, S.; Kim, J.; Park, S. Comprehensive mutational analysis of BRCA1/BRCA2 for Korean breast cancer patients: Evidence of a founder mutation. Clin. Genet. 2009, 76, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2012, 12, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peshkin, B.N.; Alabek, M.L.; Isaacs, C. BRCA1/2 mutations and triple negative breast cancers. Breast Dis. 2011, 32, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Hunter, P. The inflammation theory of disease. EMBO Rep. 2012, 13, 968–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.-C.; Huang, C.-C.; Hsu, K.-S. The synthetic cannabinoids attenuate allodynia and hyperalgesia in a rat model of trigeminal neuropathic pain. Neuropharmacology 2007, 53, 169–177. [Google Scholar] [CrossRef]
- Bialuk, I.; Winnicka, M.M. AM251, cannabinoids receptors ligand, improves recognition memory in rats. Pharmacol. Rep. 2011, 63, 670–679. [Google Scholar] [CrossRef]
- Steffens, M.; Szabo, B.; Klar, M.; Rominger, A.; Zentner, J.; Feuerstein, T. Modulation of electrically evoked acetylcholine release through cannabinoid cb1 receptors: Evidence for an endocannabinoid tone in the human neocortex. Neuroscience 2003, 120, 455–465. [Google Scholar] [CrossRef]
- Ryberg, E.; Larsson, N.; Sjögren, S.; Hjorth, S.; Hermansson, N.-O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P.J. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 2007, 152, 1092–1101. [Google Scholar] [CrossRef]
- Lichtman, A.H. SR 141716A enhances spatial memory as assessed in a radial-arm maze task in rats. Eur. J. Pharmacol. 2000, 404, 175–179. [Google Scholar] [CrossRef]
- Keenan, C.M.; Storr, M.A.; Thakur, G.A.; Wood, J.T.; Wager-Miller, J.; Straiker, A.; Eno, M.R.; Nikas, S.P.; Bashashati, M.; Hu, H.; et al. AM841, a covalent cannabinoid ligand, powerfully slows gastrointestinal motility in normal and stressed mice in a peripherally restricted manner. Br. J. Pharmacol. 2015, 172, 2406–2418. [Google Scholar] [CrossRef] [Green Version]
- Bort, A.; Alvarado-Vazquez, P.A.; Moracho-Vilrriales, C.; Virga, K.G.; Gumina, G.; Romero-Sandoval, A.; Asbill, S. Effects of JWH015 in cytokine secretion in primary human keratinocytes and fibroblasts and its suitability for topical/transdermal delivery. Mol. Pain 2017, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wojtowicz, A.M.; Oliveira, S.; Carlson, M.W.; Zawadzka, A.; Rousseau, C.F.; Baksh, D. The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair Regen. 2014, 22, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Lucattelli, M.; Fineschi, S.; Selvi, E.; Gonzalez, E.G.; Bartalesi, B.; De Cunto, G.; Lorenzini, S.; Galeazzi, M.; Lungarella, G. Ajulemic acid exerts potent anti-fibrotic effect during the fibrogenic phase of bleomycin lung. Respir. Res. 2016, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Quiles, M.; Broekema, M.F.; Kalkhoven, E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front. Endocrinol. 2021, 12, 1–17. [Google Scholar] [CrossRef]
- Milam, J.E.; Keshamouni, V.G.; Phan, S.H.; Hu, B.; Gangireddy, S.R.; Hogaboam, C.M.; Standiford, T.J.; Thannickal, V.J.; Reddy, R.C. PPAR-γ agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Cell. Mol. Physiol. 2008, 294, L891–L901. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Burstein, S.H.; Zurier, R.B.; Chen, J.D. Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid. Mol. Pharmacol. 2003, 63, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Huizenga, M.N.; Wicker, E.; Beck, V.C.; Forcelli, P.A. Anticonvulsant effect of cannabinoid receptor agonists in models of seizures in developing rats. Epilepsia 2017, 58, 1593–1602. [Google Scholar] [CrossRef]
- Griffin, A.; Anvar, M.; Hamling, K.; Baraban, S.C. Phenotype-Based Screening of Synthetic Cannabinoids in a Dravet Syndrome Zebrafish Model. Front. Pharmacol. 2020, 11, 464. [Google Scholar] [CrossRef] [Green Version]
- Bayram, S.; Parlar, A.; Arslan, S.O. The curative effect of cannabinoid 2 receptor agonist on functional failure and disruptive inflammation caused by intestinal ischemia and reperfusion. Fundam. Clin. Pharmacol. 2020, 34, 80–90. [Google Scholar] [CrossRef]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Gaweł, S.; Wardas, M.; Niedworok, E.; Wardas, P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad. Lek. 2004, 57, 453–455. [Google Scholar]
- Magid, L.; Heymann, S.; Elgali, M.; Avram, L.; Cohen, Y.; Liraz-Zaltsman, S.; Mechoulam, R.; Shohami, E. Role of CB 2 Receptor in the Recovery of Mice after Traumatic Brain Injury. J. Neurotrauma 2019, 36, 1836–1846. [Google Scholar] [CrossRef]
- Petzoldt, A.G.; Sigrist, S.J. Synaptogenesis. Curr. Biol. 2014, 24, R1076–R1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AL-Eitan, L.; Alhusban, A.; Alahmad, S. Effects of the synthetic cannabinoid XLR-11 on the viability and migration rates of human brain microvascular endothelial cells in a clinically-relevant model. Pharmacol. Rep. 2020, 72, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Otrock, Z.K.; Mahfouz, R.A.R.; Makarem, J.A.; Shamseddine, A.I. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells Mol. Dis. 2007, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Van Hove, L.; Kim, K.R.; Arrick, D.M.; Mayhan, W.G. A cannabinoid type 2 (CB2) receptor agonist augments NOS-dependent responses of cerebral arterioles during type 1 diabetes. Microvasc. Res. 2021, 133, 104077. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, S.H.; Hasko, J.; Skuba, A.; Fan, S.; Dykstra, H.; McCormick, R.; Reichenbach, N.; Krizbai, I.; Mahadevan, A.; Zhang, M.; et al. Activation of Cannabinoid Receptor 2 Attenuates Leukocyte-Endothelial Cell Interactions and Blood-Brain Barrier Dysfunction under Inflammatory Conditions. J. Neurosci. 2012, 32, 4004–4016. [Google Scholar] [CrossRef]
- Arrick, D.M.; Sun, H.; Patel, K.P.; Mayhan, W.G. Chronic resveratrol treatment restores vascular responsiveness of cerebral arterioles in type 1 diabetic rats. Am. J. Physiol. Circ. Physiol. 2011, 301, H696–H703. [Google Scholar] [CrossRef] [Green Version]
- Riley, A.L.; Hempel, B.J.; Clasen, M.M. Sex as a biological variable: Drug use and abuse. Physiol. Behav. 2018, 187, 79–96. [Google Scholar] [CrossRef]
- Varì, M.R.; Pichini, S.; Giorgetti, R.; Busardò, F.P. New psychoactive substances—Synthetic stimulants. WIREs Forensic Sci. 2019, 1, e1197. [Google Scholar] [CrossRef]
- Zaami, S.; Giorgetti, R.; Pichini, S.; Pantano, F.; Marinelli, E.; Busardò, F.P. Synthetic cathinones related fatalities: An update. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 268–274. [Google Scholar] [CrossRef]
- Papaseit, E.; Olesti, E.; Pérez-Mañá, C.; Torrens, M.; Fonseca, F.; Grifell, M.; Ventura, M.; de la Torre, R.; Farré, M. Acute Pharmacological Effects of Oral and Intranasal Mephedrone: An Observational Study in Humans. Pharmaceuticals 2021, 14, 100. [Google Scholar] [CrossRef]
- Soares, J.; Costa, V.M.; Gaspar, H.; Santos, S.; de Lourdes Bastos, M.; Carvalho, F.; Capela, J.P. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology 2019, 75, 158–173. [Google Scholar] [CrossRef]
- Zhou, X.; Luethi, D.; Sanvee, G.; Bouitbir, J.; Liechti, M.; Krähenbühl, S. Molecular Toxicological Mechanisms of Synthetic Cathinones on C2C12 Myoblasts. Int. J. Mol. Sci. 2019, 20, 1561. [Google Scholar] [CrossRef] [Green Version]
- Araújo, A.M.; Valente, M.J.; Carvalho, M.; da Silva, D.D.; Gaspar, H.; Carvalho, F.; de Lourdes Bastos, M.; de Pinho, P.G. Raising awareness of new psychoactive substances: Chemical analysis and in vitro toxicity screening of ‘legal high’ packages containing synthetic cathinones. Arch. Toxicol. 2015, 89, 757–771. [Google Scholar] [CrossRef]
- Belhadj-Tahar, H.; Sadeg, N. Methcathinone: A new postindustrial drug. Forensic Sci. Int. 2005, 153, 99–101. [Google Scholar] [CrossRef]
- Anneken, J.H.; Angoa-Pérez, M.; Kuhn, D.M. 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: β-ketoamphetamine modulation of neurotoxicity by the dopamine transporter. J. Neurochem. 2015, 133, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Sewalia, K.; Watterson, L.R.; Hryciw, A.; Belloc, A.; Ortiz, J.B.; Olive, M.F. Neurocognitive dysfunction following repeated binge-like self-administration of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 2018, 134, 36–45. [Google Scholar] [CrossRef]
- National Association of Boards of Pharmacy. Available online: https://nabp.pharmacy/news/news-releases/bath-salts-linked-to-nearly-23000-emergency-room-visits-in-2011/ (accessed on 12 February 2022).
- Murray, B.L.; Murphy, C.M.; Beuhler, M.C. Death Following Recreational Use of Designer Drug “Bath Salts” Containing 3,4-Methylenedioxypyrovalerone (MDPV). J. Med. Toxicol. 2012, 8, 69–75. [Google Scholar] [CrossRef]
- Warrick, B.J.; Wilson, J.; Hedge, M.; Freeman, S.; Leonard, K.; Aaron, C. Lethal Serotonin Syndrome after Methylone and Butylone Ingestion. J. Med. Toxicol. 2012, 8, 65–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo Clinic. Available online: https://www.mayoclinic.org/drugs-supplements/diethylpropion-oral-route/proper-use/drg-20075120 (accessed on 31 December 2021).
- Halbsguth, U.; Schwanda, S.; Lehmann, T.; Ostheeren-Michaelis, S.; Fattinger, K. Necrotising vasculitis of the skin associated with an herbal medicine containing amfepramone. Eur. J. Clin. Pharmacol. 2009, 65, 647–648. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Monaghan, T.; Redmond, J. Manganese toxicity with ephedrone abuse manifesting as parkinsonism: A case report. J. Med. Case Rep. 2012, 6, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sienkiewicz-Jarosz, H. MRI brain findings in ephedrone encephalopathy associated with manganese abuse: Single-center perspective. Pol. J. Radiol. 2014, 79, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Vignali, C.; Moretti, M.; Groppi, A.; Osculati, A.M.M.; Tajana, L.; Morini, L. Distribution of the Synthetic Cathinone α-Pyrrolidinohexiophenone in Biological Specimens. J. Anal. Toxicol. 2019, 43, e1–e6. [Google Scholar] [CrossRef]
- Young, A.C.; Schwarz, E.S.; Velez, L.I.; Gardner, M. Two cases of disseminated intravascular coagulation due to “bath salts” resulting in fatalities, with laboratory confirmation. Am. J. Emerg. Med. 2013, 31, 445.e3–445.e5. [Google Scholar] [CrossRef] [PubMed]
- Wyman, J.F.; Lavins, E.S.; Engelhart, D.; Armstrong, E.J.; Snell, K.D.; Boggs, P.D.; Taylor, S.M.; Norris, R.N.; Miller, F.P. Postmortem Tissue Distribution of MDPV Following Lethal Intoxication by “Bath Salts”. J. Anal. Toxicol. 2013, 37, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Regunath, H.; Ariyamuthu, V.K.; Dalal, P.; Misra, M. Bath salt intoxication causing acute kidney injury requiring hemodialysis. Hemodial. Int. 2012, 16, S47–S49. [Google Scholar] [CrossRef]
- Adebamiro, A.; Perazella, M.A. Recurrent acute kidney injury following bath salts intoxication. Am. J. Kidney Dis. 2012, 59, 273–275. [Google Scholar] [CrossRef]
- Schifano, F.; Napoletano, F.; Chiappini, S.; Guirguis, A.; Corkery, J.M.; Bonaccorso, S.; Ricciardi, A.; Scherbaum, N.; Vento, A. New/emerging psychoactive substances and associated psychopathological consequences. Psychol. Med. 2021, 51, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.; Carpenter, J.; Dunkley, C.; Moran, T.P.; Kiernan, E.A.; Rianprakaisang, T.; Alsukaiti, W.S.; Calello, D.P.; Kazzi, Z. Single-Agent Bupropion Exposures: Clinical Characteristics and an Atypical Cause of Serotonin Toxicity. J. Med. Toxicol. 2020, 16, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Sidlak, A.M.; Koivisto, K.O.; Marino, R.T.; Abesamis, M.G. Serotonin toxicity from isolated bupropion overdoses. Clin. Toxicol. 2020, 58, 1347–1349. [Google Scholar] [CrossRef] [PubMed]
- European Monitoring Centre for Drugs and Drug Addiction. Available online: https://www.emcdda.europa.eu/attachements.cfm/att_240380_EN_TDAN15001ENN.pdf (accessed on 31 December 2021).
- Moss, M.J.; Hendrickson, R.G. Serotonin Toxicity. J. Clin. Psychopharmacol. 2019, 39, 628–633. [Google Scholar] [CrossRef]
- Kasick, D.P.; McKnight, C.A.; Klisovic, E. “Bath salt” ingestion leading to severe intoxication delirium: Two cases and a brief review of the emergence of mephedrone use. Am. J. Drug Alcohol Abus. 2012, 38, 176–180. [Google Scholar] [CrossRef]
- Coppola, M.; Mondola, R. Synthetic cathinones: Chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”. Toxicol. Lett. 2012, 211, 144–149. [Google Scholar] [CrossRef]
- Pedersen, A.J.; Reitzel, L.A.; Johansen, S.S.; Linnet, K. In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Test. Anal. 2013, 5, 430–438. [Google Scholar] [CrossRef]
- Adamowicz, P.; Tokarczyk, B.; Stanaszek, R.; Slopianka, M. Fatal Mephedrone Intoxication—A Case Report. J. Anal. Toxicol. 2013, 37, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, A. Challenges in Laboratory Detection of Unusual Substance Abuse: Issues with Magic Mushroom, Peyote Cactus, Khat, and Solvent Abuse. Adv. Clin. Chem. 2017, 78, 163–186. [Google Scholar] [CrossRef]
- Pearson, J.M.; Hargraves, T.L.; Hair, L.S.; Massucci, C.J.; Clinton Frazee, C.; Garg, U.; Pietak, B.R. Three Fatal Intoxications Due to Methylone. J. Anal. Toxicol. 2012, 36, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, K.; Wurita, A.; Minakata, K.; Gonmori, K.; Nozawa, H.; Yamagishi, I.; Watanabe, K.; Suzuki, O. Postmortem distribution of PV9, a new cathinone derivative, in human solid tissues in a fatal poisoning case. Forensic Toxicol. 2015, 33, 141–147. [Google Scholar] [CrossRef]
- Wojcieszak, J.; Krzemień, W.; Zawilska, J.B. JWH-133, a Selective Cannabinoid CB2 Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells. J. Mol. Neurosci. 2016, 58, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Almada, M.; Alves, P.; Fonseca, B.M.; Carvalho, F.; Queirós, C.R.; Gaspar, H.; Amaral, C.; Teixeira, N.A.; Correia-da-Silva, G. Synthetic cannabinoids JWH-018, JWH-122, UR-144 and the phytocannabinoid THC activate apoptosis in placental cells. Toxicol. Lett. 2020, 319, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, M.; Cocchi, V.; Cavazza, L.; Bilel, S.; Hrelia, P.; Marti, M. Genotoxic Properties of Synthetic Cannabinoids on TK6 Human Cells by Flow Cytometry. Int. J. Mol. Sci. 2020, 21, 1150–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sezer, Y.; Jannuzzi, A.T.; Huestis, M.A.; Alpertunga, B. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol. Res. 2021, 9, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Couceiro, J.; Bandarra, S.; Sultan, H.; Bell, S.; Constantino, S.; Quintas, A. Toxicological impact of JWH-018 and its phase I metabolite N-(3-hydroxypentyl) on human cell lines. Forensic Sci. Int. 2016, 264, 100–105. [Google Scholar] [CrossRef]
- Ferreira, C.; Couceiro, J.; Família, C.; Jardim, C.; Antas, P.; Santos, C.N.; Outeiro, T.F.; Tenreiro, S.; Quintas, A. The synthetic cannabinoid JWH-018 modulates Saccharomyces cerevisiae energetic metabolism. FEMS Yeast Res. 2019, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Koller, V.J.; Zlabinger, G.J.; Auwärter, V.; Fuchs, S.; Knasmueller, S. Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB1. Arch. Toxicol. 2013, 87, 1287–1297. [Google Scholar] [CrossRef]
- Tomiyama, K.; Funada, M. Cytotoxicity of synthetic cannabinoids found in “Spice” products: The role of cannabinoid receptors and the caspase cascade in the NG 108-15 cell line. Toxicol. Lett. 2011, 207, 12–17. [Google Scholar] [CrossRef]
- Tomiyama, K.; Funada, M. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: The involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol. Appl. Pharmacol. 2014, 274, 17–23. [Google Scholar] [CrossRef]
- Cha, H.J.; Seong, Y.-H.; Song, M.-J.; Jeong, H.-S.; Shin, J.; Yun, J.; Han, K.; Kim, Y.-H.; Kang, H.; Kim, H.S. Neurotoxicity of Synthetic Cannabinoids JWH-081 and JWH-210. Biomol. Ther. 2015, 23, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Tournebize, J.; Gibaja, V.; Kahn, J.-P. Acute effects of synthetic cannabinoids: Update 2015. Subst. Abus. 2017, 38, 344–366. [Google Scholar] [CrossRef]
- Giorgetti, A.; Busardò, F.P.; Tittarelli, R.; Auwärter, V.; Giorgetti, R. Post-mortem toxicology: A systematic review of death cases involving synthetic cannabinoid receptor agonists. Front. Psychiatry 2020, 11, 464. [Google Scholar] [CrossRef]
- Tai, S.; Fantegrossi, W.E. Synthetic Cannabinoids: Pharmacology, Behavioral Effects, and Abuse Potential. Curr. Addict. Rep. 2014, 1, 129–136. [Google Scholar] [CrossRef]
- Soria, M.L. Las nuevas drogas psicoactivas: Populares y peligrosas. Rev. Española Med. Leg. 2018, 44, 64–72. [Google Scholar] [CrossRef]
- Tait, R.J.; Caldicott, D.; Mountain, D.; Hill, S.L.; Lenton, S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin. Toxicol. 2016, 54, 1–13. [Google Scholar] [CrossRef]
- Potts, A.J.; Cano, C.; Thomas, S.H.L.; Hill, S.L. Synthetic cannabinoid receptor agonists: Classification and nomenclature. Clin. Toxicol. 2020, 58, 82–98. [Google Scholar] [CrossRef]
- Winstock, A.; Lynskey, M.; Borschmann, R.; Waldron, J. Risk of emergency medical treatment following consumption of cannabis or synthetic cannabinoids in a large global sample. J. Psychopharmacol. 2015, 29, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Zaurova, M.; Hoffman, R.S.; Vlahov, D.; Manini, A.F. Clinical Effects of Synthetic Cannabinoid Receptor Agonists Compared with Marijuana in Emergency Department Patients with Acute Drug Overdose. J. Med. Toxicol. 2016, 12, 335–340. [Google Scholar] [CrossRef] [Green Version]
Affected System | ||||||
---|---|---|---|---|---|---|
Drug of Abuse | Nervous | Cardiovascular | Digestive | Respiratory | Ocular | Country |
JWH-018 JWH-122 | Headaches, confusion, visual and auditory hallucinations, irritability | Tachycardia | Vomiting | - | Mydriasis and slow reaction to light | Italy |
JWH-018 JWH-073 | Seizures, anxiety, paranoia | Tachycardia and hypertension | Abdominal pain, nausea, vomiting | Tachypnea | Mydriasis | USA |
JWH-018 JWH-081 JWH-250 | Seizures and confusion | Hypertension | Vomiting | - | - | USA |
JWH-018 | Cognitive impairment, insomnia, depression, twitching, dependency | Tachycardia, hypertension, palpitations | Nausea, diarrhea | - | - | Germany |
JWH-210 | Disturbance, anxiety, panic attacks and sedation | Tachycardia, hypertension | Vomiting, diarrhea, intense thirst | Dyspnea | Mydriasis | Germany |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, B.; Fernandes, J.; Botica, M.J.; Ferreira, C.; Quintas, A. Novel Psychoactive Substances: The Razor’s Edge between Therapeutical Potential and Psychoactive Recreational Misuse. Medicines 2022, 9, 19. https://doi.org/10.3390/medicines9030019
Correia B, Fernandes J, Botica MJ, Ferreira C, Quintas A. Novel Psychoactive Substances: The Razor’s Edge between Therapeutical Potential and Psychoactive Recreational Misuse. Medicines. 2022; 9(3):19. https://doi.org/10.3390/medicines9030019
Chicago/Turabian StyleCorreia, Beatriz, Joana Fernandes, Maria João Botica, Carla Ferreira, and Alexandre Quintas. 2022. "Novel Psychoactive Substances: The Razor’s Edge between Therapeutical Potential and Psychoactive Recreational Misuse" Medicines 9, no. 3: 19. https://doi.org/10.3390/medicines9030019
APA StyleCorreia, B., Fernandes, J., Botica, M. J., Ferreira, C., & Quintas, A. (2022). Novel Psychoactive Substances: The Razor’s Edge between Therapeutical Potential and Psychoactive Recreational Misuse. Medicines, 9(3), 19. https://doi.org/10.3390/medicines9030019