Obesity and Frailty Syndrome in the Elderly: Prospective Study in Primary Care
Abstract
:1. Introduction
2. Methodology
2.1. Study Type
2.2. Study Population
2.3. Study Parameters
2.3.1. Population Characteristics
2.3.2. Frailty Screening with the “Simplified Zulfiqar Frailty Scale” (sZFS) Tool
- Nutritional status: weight loss of 5% or more during the previous 6 months
- Physical capabilities, balance/falls: one-legged stance test.
- Social isolation: does the patient live at home alone?
- Cognitive functions: does the patient complain of memory loss?
- Polymedicine: the patient has been taking 5 or more types of medications for at least 6 months.
2.3.3. Frailty Screening with the Fried Scale
2.4. Statistical Analysis
2.5. Administrative Elements
3. Results
3.1. Description of Population
3.2. Comparison of Obese and Non-Obese Elderly Patients
3.3. Primary Criteria of Interest
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organisation Mondiale de la Santé. Obésité: Prévention et Prise en Charge de L’épidémie Mondiale. Rapport d’une Consultation de L’oms; Organisation Mondiale de la Santé: Geneva, Switzerland, 2003.
- Ward, Z.J.; Bleich, S.N.; Cradock, A.L.; Barrett, J.L.; Giles, C.M.; Flax, C.; Long, M.W.; Gortmaker, S.L. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N. Engl. J. Med. 2019, 381, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Equipe de Surveillance et D’épidémiologie Nutritionnelle (Esen). Etude de Santé sur L’environnement, la Biosurveillance, L’activité Physique et la Nutrition (Esteban) 2014–2016; Santé Publique France: Paris, France, 2017; 42p.
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Zulfiqar, A.A.; Dembélé, I. Zulfiqar Frailty Scale: Overview, Stakes, and Possibilities. Medicines 2021, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, A.A. Validation of a new frailty scale in primary care: The simplified Zulfiqar frailty scale. Transl. Med. Aging 2021, 5, 39–42. [Google Scholar] [CrossRef]
- Calle, E.E.; Thun, M.J.; Petrelli, J.M.; Rodriguez, C.; Heath, C.W., Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N. Engl. J. Med. 1999, 341, 1097–1105. [Google Scholar] [CrossRef]
- Diehr, P.; Bild, D.E.; Harris, T.B.; Duxbury, A.; Siscovick, D.; Rossi, M. Body mass index and mortality in nonsmoking older adults: The cardiovascular health study. Am. J. Public Health 1998, 88, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Peeters, A.; Barendregt, J.J.; Willekens, F.; Mackenbach, J.P.; Mamun, A.A.; Bonneux, L.; for NEDCOM, the Netherlands Epidemiology and Demography Compression of Morbidity Research Group. Obesity in adulthood and its consequences for life expectancy: A life-table analysis. Ann. Intern. Med. 2003, 138, 24–32. [Google Scholar] [CrossRef]
- Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.; Benjamin, E.J.; Larson, M.G.; Kannel, W.B.; Vasan, R.S. Obesity and the risk of heart failure. N. Engl. J. Med. 2002, 347, 305–313. [Google Scholar] [CrossRef]
- Dunlap, S.H.; Sueta, C.A.; Tomasko, L.; Adams, K.F., Jr. Association of body mass, gender and race with heart failure primarily due to hypertension. J. Am. Coll. Cardiol. 1999, 34, 1602–1608. [Google Scholar] [CrossRef] [Green Version]
- Katzmarzyk, P.T.; Janssen, I.; Ardern, C.I. Physical inactivity, excess adiposity and premature mortality. Obes. Rev. 2003, 4, 257–290. [Google Scholar] [CrossRef]
- Tamura, Y.; Omura, T.; Toyoshima, K.; Araki, A. Nutrition Management in Older Adults with Diabetes: A Review on the Importance of Shifting Prevention Strategies from Metabolic Syndrome to Frailty. Nutrients 2020, 12, 3367. [Google Scholar] [CrossRef] [PubMed]
- Schaap, L.A.; Koster, A.; Visser, M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol. Rev. 2013, 35, 51–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Esquinas, E.; Graciani, A.; Guallar-Castillón, P.; López-García, E.; Rodríguez-Mañas, L.; Rodríguez-Artalejo, F. Diabetes and risk of frailty and its potential mechanisms: A prospective cohort study of older adults. J. Am. Med. Dir. Assoc. 2015, 16, 748–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, G.E.; Park, Y.G.; Han, K.; Kim, M.K.; Koh, E.S.; Kim, E.S.; Lee, M.-K.; Kim, B.; Hong, O.-K.; Kwon, H.-S. BMI, Weight Change, and Dementia Risk in Patients with New-Onset Type 2 Diabetes: A Nationwide Cohort Study. Diabetes Care 2019, 42, 1217–1224. [Google Scholar] [CrossRef]
- Watanabe, D.; Yoshida, T.; Watanabe, Y.; Yamada, Y.; Kimura, M.; Kyoto-Kameoka Study Group. A U-Shaped Relationship between the Prevalence of Frailty and Body Mass Index in Community-Dwelling Japanese Older Adults: The Kyoto-Kameoka Study. J. Clin. Med. 2020, 9, 1367. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Shen, S.; Hong, X.; Zeng, X.; Yang, Y.; Liu, Z.; Chen, L.; Chen, X. Association between Body Composition and Frailty in Elder Inpatients. Clin. Interv. Aging 2020, 15, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Ting, M.J.M.; Hyde, Z.; Flicker, L.; Almeida, O.P.; Golledge, J.; Hankey, G.J.; Yeap, B.B. Associations between diabetes, body mass index and frailty: The Western Australian Health in Men Study. Maturitas 2022, 161, 58–64. [Google Scholar] [CrossRef]
- Bhardwaj, P.V.; Rastegar, V.; Meka, R.; Sawalha, K.; Brennan, M.; Stefan, M.S. The Association Between Body Mass Index, Frailty and Long-Term Clinical Outcomes in Hospitalized Older Adults. Am. J. Med. Sci. 2021, 362, 268–275. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Ahmed, D.; Alfaris, M.; Holmes, A.; Aljizeeri, A.; Al-Mallah, M.H. Prevalence and predictors of frailty in a high income developing country: A cross-sectional study. Qatar Med. J. 2020, 2019, 20. [Google Scholar] [CrossRef]
- Hirani, V.; Naganathan, V.; Blyth, F.; Le Couteur, D.; Seibel, M.; Waite, L.M.; Handelsman, D.J.; Cumming, R. Longitudinal associations between body composition, sarcopenic obesity and outcomes of frailty, disability, institutionalisation and mortality in community-dwelling older men: The Concord Health and Ageing in Men Project. Age Ageing 2017, 46, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.N.; Park, M.S.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: The Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 2010, 33, 1497–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colleluori, G.; Villareal, D.T. Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Exp. Gerontol. 2021, 155, 111561. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.M. Sarcopenia and sarcopenic obesity. Korean J. Intern. Med. 2016, 31, 1054–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Li, C.W.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W.; et al. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia Muscle 2022, 13, 781–794. [Google Scholar] [CrossRef]
- Hong, S.H.; Choi, K.M. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int. J. Mol. Sci. 2020, 21, 494. [Google Scholar] [CrossRef] [Green Version]
- Ji, T.; Li, Y.; Ma, L. Sarcopenic Obesity: An Emerging Public Health Problem. Aging Dis. 2022, 13, 379–388. [Google Scholar]
- Kim, T.N.; Yang, S.J.; Yoo, H.J.; Lim, K.I.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: The Korean sarcopenic obesity study. Int. J. Obes. 2009, 33, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Koliaki, C.; Liatis, S.; Dalamaga, M.; Kokkinos, A. Sarcopenic Obesity: Epidemiologic Evidence, Pathophysiology, and Therapeutic Perspectives. Curr. Obes. Rep. 2019, 8, 458–471. [Google Scholar] [CrossRef]
- Choi, S.; Chon, J.; Lee, S.A.; Yoo, M.C.; Yun, Y.; Chung, S.J.; Kim, M.; Lee, E.T.; Kyu Choi, M.; Won, C.W.; et al. Central obesity is associated with lower prevalence of sarcopenia in older women, but not in men: A cross-sectional study. BMC Geriatr. 2022, 22, 406. [Google Scholar] [CrossRef]
N = 268 | ||
---|---|---|
Sex, n (%) | Female | 125 (46.6) |
Male | 143 (53.4) | |
Age, m (sd) | 77.5 (7.8) | |
Place of residence, n (%) | Rural | 163 (60.8) |
Urban | 105 (39.2) | |
Marital status, n (%) | Married | 166 (61.9) |
Divorced/Single | 16 (6.0) | |
Widowed | 86 (32.1) | |
Diabetes, n (%) | 129 (48.1) | |
Type of diabetes, n (%) | I | 4 (3.1) |
II | 125 (96.8) | |
Duration, in years, m (sd) | 15.2 (9.3) | |
HbA1c, m (sd) | 7.32 (1.25) | |
Renal disease, n (%) | 81 (62.8) | |
Eye disease, n (%) | 19 (14.7) | |
Heart disease, n (%) | 37 (28.7) | |
Diabetic foot, n (%) | 12 (9.3) | |
Neuropathy, n (%) | 22 (17.0) | |
Obliterating arteriopathy, n (%) | 24 (18.6) | |
Other, n (%) | 1 (0.8) | |
Weight, in kilos, m (sd) | 79.9 (16.5) | |
Height, in centimeters, m (sd) | 165.7 (8.9) | |
BMI in kg/m², m (sd) | 29.1 (5.3) | |
Nutritional status, according to BMI, n (%) | Malnourished | 8 (3.0) |
Normal | 52 (19.4) | |
Overweight | 108 (40.3) | |
Obese | 100 (37.3) | |
Smoking status, n (%) | Non-smoker | 140 (52.2) |
Former smoker | 93 (34.7) | |
Smoker | 35 (13.1) | |
ADL, out of 6, m (sd) | 5.60 (0.90) | |
IADL, out of 4, m (sd) | 0.72 (1.08) | |
Charlson, out of 24, m (sd) | 2.43 (1.92) | |
Fried, out of 5, m (sd) | 1.57 (1.12) | |
Weight, n (%) | 17 (6.3) | |
Fatigue, n (%) | 7 (2.6) | |
Mobility, n (%) | 176 (65.7) | |
Activity, n (%) | 149 (55.6) | |
Strength, n (%) | 72 (26.9) | |
sZFS, out of 5, m (sd) | 0.91 (0.88) | |
Weight, n (%) | 16 (6.0) | |
Monopedal balance, n (%) | 128 (47.8) | |
Isolation, n (%) | 63 (23.5) | |
Memory, n (%) | 35 (13.1) | |
Polypharmacy, n (%) | 3 (1.1) | |
Number of treatments, m (sd) | 7.59 (3.84) | |
Antihypertensive drugs, n (%) | 225 (83.9) | |
Antiplatelet agents, n (%) | 117 (43.7) | |
Anticoagulants, n (%) | 45 (16.8) | |
Oral antidiabetics, n (%) | 106 (39.6) | |
Insulin, n (%) | 40 (14.9) |
Data Collected | Non Obese | Obese | p | |
---|---|---|---|---|
n | 168 | 100 | ||
Sex (%) | Female | 79 (47.0) | 46 (46.0) | 0.971 |
Male | 89 (53.0) | 54 (54.0) | ||
Age (mean (SD)) | 78.93 (7.99) | 74.99 (6.78) | <0.001 | |
Location (%) | Rural | 98 (58.3) | 65 (65.0) | 0.341 |
Urban | 70 (41.7) | 35 (35.0) | ||
Marital status (%) | Divorced/Single | 8 (4.8) | 8 (8.0) | 0.009 |
Married | 95 (56.5) | 71 (71.0) | ||
Widower | 65 (38.7) | 21 (21.0) | ||
Diabetes (%) | No | 94 (56.0) | 45 (45.0) | 0.108 |
Yes | 74 (44.0) | 55 (55.0) | ||
Type of diabetes (%) | I | 2 (1.2) | 2 (2.0) | 1.000 |
II | 72 (42.9) | 53 (53.0) | ||
Duration of diabetes (mean (SD)) | 14.51 (7.97) | 16.11 (10.90) | 0.339 | |
HbA1c (mean (SD)) | 7.19 (1.12) | 7.50 (1.40) | 0.174 | |
Renal disease (%) | No | 23 (13.7) | 25 (25.0) | 0.137 |
Yes | 51 (30.4) | 30 (30.0) | ||
Retinopathy (%) | No | 68 (40.5) | 42 (42.0) | 0.027 |
Yes | 6 (3.6) | 13 (13.0) | ||
Heart disease (%) | No | 52 (31.0) | 40 (40.0) | 0.914 |
Yes | 22 (13.1) | 15 (15.0) | ||
Diabetic foot (%) | No | 68 (40.5) | 49 (49.0) | 0.814 |
Yes | 6 (3.6) | 6 (6.0) | ||
Neuropathy (%) | No | 63 (37.5) | 44 (44.0) | 0.596 |
Yes | 11 (6.5) | 11 (11.0) | ||
Obliterating arteritis (%) | No | 66 (39.3) | 39 (39.0) | 0.016 |
Yes | 8 (4.8) | 16 (16.0) | ||
Other (%) | No | 74 (44.0) | 54 (54.0) | 0.426 |
Yes | 0 (0.0) | 1 (1.0) | ||
Weight (mean (SD)) | 71.02 (10.79) | 94.84 (13.35) | <0.001 | |
Height (mean (SD)) | 166.04 (8.78) | 165.17 (9.14) | 0.443 | |
BMI (mean (SD)) | 25.75 (2.60) | 34.76 (3.77) | <0.001 | |
Nutrition status (%) | Malnutrition | 8 (4.8) | ||
Normal | 52 (31.0) | |||
Overweight | 108 (64.3) | |||
Smoker (%) | Former smoker | 51 (30.4) | 42 (42.0) | 0.035 |
Smoker | 19 (11.3) | 16 (16.0) | ||
None smoker | 98 (58.3) | 42 (42.0) | ||
ADL /6 (mean (SD)) | 5.56 (1.01) | 5.67 (0.69) | 0.301 | |
IADL/4 (mean (SD)) | 0.73 (1.11) | 0.70 (1.02) | 0.822 | |
CHARLSON/24 (mean (SD)) | 2.29 (1.98) | 2.65 (1.80) | 0.139 | |
FRIED/5 (mean (SD)) | 1.57 (1.15) | 1.57 (1.08) | 0.975 | |
FRIED weight (%) | 0 | 158 (94.0) | 93 (93.0) | 0.935 |
1 | 10 (6.0) | 7 (7.0) | ||
FRIED fatigue (%) | 0 | 165 (98.2) | 96 (96.0) | 0.430 |
1 | 3 (1.8) | 4 (4.0) | ||
FRIED walk (%) | 0 | 55 (32.7) | 37 (37.0) | 0.563 |
1 | 113 (67.3) | 63 (63.0) | ||
FRIED activity (%) | 0 | 78 (46.4) | 41 (41.0) | 0.461 |
1 | 90 (53.6) | 59 (59.0) | ||
FRIED strength (%) | 0 | 120 (71.4) | 76 (76.0) | 0.500 |
1 | 48 (28.6) | 24 (24.0) | ||
sZFS/5 (mean (SD)) | 0.98 (0.95) | 0.80 (0.75) | 0.103 | |
sZFS weight (%) | 0 | 158 (94) | 94 (94) | 1.000 |
1 | 10 (6) | 6 (6) | ||
sZFS monopodal balance (%) | 0 | 87 (51.8) | 53 (53) | 0.947 |
1 | 81 (48.2) | 47 (47) | ||
sZFS isolation (%) | 0 | 124 (73.8) | 81 (81) | 0.233 |
1 | 44 (26.2) | 19 (19) | ||
sZFS mémory (%) | 0 | 140 (83.3) | 93 (93) | 0.037 |
1 | 28 (16.7) | 7 (7) | ||
sZFS polymedication (%) | 0 | 166 (98.8) | 99 (99) | 1.000 |
1 | 2 (1.2) | 1 (1) | ||
Number of treatments (mean (SD)) | 6.81 (3.69) | 8.91 (3.75) | <0.001 | |
Number of antihypertensive treatments (mean (SD)) | 1.83 (1.30) | 2.37 (1.31) | 0.001 | |
Antiplatelet agents (%) | No | 99 (58.9) | 52 (52.0) | 0.328 |
Yes | 69 (41.1) | 48 (48.0) | ||
Anticoagulants (%) | No | 145 (86.3) | 78 (78.0) | 0.112 |
Yes | 23 (13.7) | 22 (22.0) | ||
Oral antidiabetic treatment (%) | No | 8 (4.8) | 5 (5.0) | 1.000 |
Yes | 61 (36.3) | 45 (45.0) | ||
Number of Oral antidiabetic treatment (mean (SD)) | 1.74 (0.81) | 2.09 (0.90) | 0.038 | |
Insulin (%) | No | 48 (28.6) | 31 (31.0) | 0.506 |
Yes | 21 (12.5) | 19 (19.0) |
Weight | Value | Fried (Mean (SD)) | sZFS (Mean (SD)) |
---|---|---|---|
Malnourished | N = 8 | 1.25 (1.28) | 0.25 (0.46) |
Normal | N = 52 | 1.79 (1.07) | 1.17 (0.98) |
Overweight | N = 108 | 1.48 (1.17) | 0.94 (0.93) |
Obese | N = 100 | 1.57 (1.07) | 0.80 (0.75) |
p = 0.350 | p = 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulfiqar, A.-A.; Habchi, P.; Dembele, I.A. Obesity and Frailty Syndrome in the Elderly: Prospective Study in Primary Care. Medicines 2022, 9, 38. https://doi.org/10.3390/medicines9070038
Zulfiqar A-A, Habchi P, Dembele IA. Obesity and Frailty Syndrome in the Elderly: Prospective Study in Primary Care. Medicines. 2022; 9(7):38. https://doi.org/10.3390/medicines9070038
Chicago/Turabian StyleZulfiqar, Abrar-Ahmad, Perla Habchi, and Ibrahima Amadou Dembele. 2022. "Obesity and Frailty Syndrome in the Elderly: Prospective Study in Primary Care" Medicines 9, no. 7: 38. https://doi.org/10.3390/medicines9070038
APA StyleZulfiqar, A. -A., Habchi, P., & Dembele, I. A. (2022). Obesity and Frailty Syndrome in the Elderly: Prospective Study in Primary Care. Medicines, 9(7), 38. https://doi.org/10.3390/medicines9070038