Bicarbonate-Activated Hydrogen Peroxide for an Azo Dye Degradation: Experimental Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Analysis Methods
2.3. Experimental Design-Catalytic Tests
3. Results and Discussion
3.1. Experimental Design, Analysis of Variance and Optimization
3.2. Post-Oxidation Co2+ Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desore, A.; Narula, S.A. An overview on corporate response towards sustainability issues in textile industry. Environ. Dev. Sustain. 2018, 20, 1439–1459. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Wong, Y.; Yu, J. Laccase-catalyzed decolorization of synthetic dyes. Water Res. 1999, 33, 3512–3520. [Google Scholar] [CrossRef]
- Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019, 5, e02711. [Google Scholar] [CrossRef] [PubMed]
- Benkhaya, S.; M’ rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- Liu, T.; Aniagor, C.O.; Ejimofor, M.I.; Menkiti, M.C.; Wakawa, Y.M.; Li, J.; Akbour, R.A.; Yap, P.-S.; Lau, S.Y.; Jeevanandam, J. Recent developments in the utilization of modified graphene oxide to adsorb dyes from water: A review. J. Ind. Eng. Chem. 2023, 117, 21–37. [Google Scholar] [CrossRef]
- Siddiqua, U.H.; Ali, S.; Iqbal, M.; Hussain, T. Relationship between structure and dyeing properties of reactive dyes for cotton dyeing. J. Mol. Liq. 2017, 241, 839–844. [Google Scholar] [CrossRef]
- Chakraborty, J.N. Chapter 3—Dye–Fibre Interaction. In Fundamentals and Practices in Colouration of Textiles; Chakraborty, J.N., Ed.; Woodhead Publishing: New Delhi, India, 2010; pp. 20–26. [Google Scholar]
- Donkadokula, N.Y.; Kola, A.K.; Naz, I.; Saroj, D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 2020, 19, 543–560. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’Rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 2020, 6, e03271. [Google Scholar] [CrossRef]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Classification of Dye and Pigments. In Dyes and Pigments; Sharma, S.K., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 31–45. [Google Scholar]
- Thiam, A.; Sirés, I.; Garrido, J.A.; Rodríguez, R.M.; Brillas, E. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes. J. Hazard. Mater. 2015, 290, 34–42. [Google Scholar] [CrossRef]
- Brillas, E.; Martínez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 2015, 166–167, 603–643. [Google Scholar] [CrossRef]
- Solís, M.; Solís, A.; Pérez, H.I.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes: A review. Process Biochem. 2012, 47, 1723–1748. [Google Scholar] [CrossRef]
- Bastaki, M.; Farrell, T.; Bhusari, S.; Pant, K.; Kulkarni, R. Lack of genotoxicity in vivo for food color additive Allura Red AC. Food Chem. Toxicol. 2017, 105, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Sharma, B.; Dangi, A.K.; Shukla, P. Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manag. 2018, 210, 10–22. [Google Scholar] [CrossRef]
- Khan, S.; Malik, A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ. Sci. Pollut. Res. 2018, 25, 4446–4458. [Google Scholar] [CrossRef]
- Gupta, V.K. Suhas Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Thamaraiselvan, C.; Noel, M. Membrane processes for dye wastewater treatment: Recent progress in fouling control. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1007–1040. [Google Scholar] [CrossRef]
- Bilińska, L.; Blus, K.; Bilińska, M.; Gmurek, M. Industrial textile wastewater ozone treatment: Catalyst selection. Catalysts 2020, 10, 611. [Google Scholar] [CrossRef]
- Lin, S.H.; Peng, C.F. Treatment of textile wastewater by electrochemical method. Water Res. 1994, 28, 277–282. [Google Scholar] [CrossRef]
- Pourali, P.; Fazlzadeh, M.; Aaligadri, M.; Dargahi, A.; Poureshgh, Y.; Kakavandi, B. Enhanced three-dimensional electrochemical process using magnetic recoverable of Fe3O4@GAC towards furfural degradation and mineralization. Arab. J. Chem. 2022, 15, 103980. [Google Scholar] [CrossRef]
- Sukanya Devi, R.; Dhurai, B.; Sundaresan, S.; Selvakumar, A. Advanced Oxidation Processes (AOP)—Effective Innovative Treatment Methods to Degrade Textile Dye Effluent. In Advances in Textile Waste Water Treatments; Muthu, S.S., Ed.; Springer: Singapore, 2021; pp. 173–203. [Google Scholar]
- Macías-Quiroga, I.F.; Rengifo-Herrera, J.A.; Arredondo-López, S.M.; Marín-Flórez, A.; Sanabria-González, N.R. Research trends on pillared interlayered clays (PILCs) used as catalysts in environmental and chemical processes: Bibliometric analysis. Sci. World J. 2022, 2022, 5728678. [Google Scholar] [CrossRef] [PubMed]
- Al-Musawi, T.J.; Rajiv, P.; Mengelizadeh, N.; Mohammed, I.A.; Balarak, D. Development of sonophotocatalytic process for degradation of acid orange 7 dye by using titanium dioxide nanoparticles/graphene oxide nanocomposite as a catalyst. J. Environ. Manag. 2021, 292, 112777. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Su, R.; Yao, H.; Zhang, A.; Xiang, S.; Huang, L. Degradation of trimethoprim by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Environ. Sci. Pollut. Res. 2021, 28, 62572–62582. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Xie, C.; Alhassan, S.I.; Huang, S.; Chen, R.; Xiang, S.; Wang, Z.; Huang, L. Oxygen reduction reaction in the field of water environment for application of nanomaterials. Nanomaterials 2020, 10, 1719. [Google Scholar] [CrossRef]
- Dargahi, A.; Moradi, M.; Marafat, R.; Vosoughi, M.; Mokhtari, S.A.; Hasani, K.; Asl, S.M. Applications of advanced oxidation processes (electro-Fenton and sono-electro-Fenton) for degradation of diazinon insecticide from aqueous solutions: Optimization and modeling using RSM-CCD, influencing factors, evaluation of toxicity, and degradation pathway. Biomass Convers. Biorefin. 2021, 13, 10615–10632. [Google Scholar]
- Hasani, K.; Peyghami, A.; Moharrami, A.; Vosoughi, M.; Dargahi, A. The efficacy of sono-electro-Fenton process for removal of Cefixime antibiotic from aqueous solutions by response surface methodology (RSM) and evaluation of toxicity of effluent by microorganisms. Arab. J. Chem. 2020, 13, 6122–6139. [Google Scholar] [CrossRef]
- Jawad, A.; Chen, Z.; Yin, G. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese J. Catal. 2016, 37, 810–825. [Google Scholar] [CrossRef]
- Pan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chem. Eng. J. 2021, 408, 127332. [Google Scholar] [CrossRef]
- Richardson, D.E.; Yao, H.; Frank, K.M.; Bennett, D.A. Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate. J. Am. Chem. Soc. 2000, 122, 1729–1739. [Google Scholar] [CrossRef]
- Kan, H.; Soklun, H.; Yang, Z.; Wu, R.; Shen, J.; Qu, G.; Wang, T. Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Sep. Purif. Technol. 2020, 232, 115974. [Google Scholar] [CrossRef]
- Xu, A.; Li, X.; Ye, S.; Yin, G.; Zeng, Q. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Appl. Catal. B Environ. 2011, 102, 37–43. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Chen, M.; Luo, M.; Xia, D.; Xu, A.; Zeng, Q. Fast degradation and biodegradability improvement of Reactive Brilliant Red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Ind. Eng. Chem. Res. 2012, 51, 11104–11111. [Google Scholar] [CrossRef]
- Luo, M.; Lv, L.; Deng, G.; Yao, W.; Ruan, Y.; Li, X.; Xu, A. The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+-HCO3− system. Appl. Catal. A Gen. 2014, 469, 198–205. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Z.; Ruan, X.; Xia, D.; Zeng, Q.; Xu, A. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Appl. Catal. A Gen. 2012, 411–412, 24–30. [Google Scholar] [CrossRef]
- Long, X.; Yang, Z.; Wang, H.; Chen, M.; Peng, K.; Zeng, Q.; Xu, A. Selective degradation of Orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Ind. Eng. Chem. Res. 2012, 51, 11998–12003. [Google Scholar] [CrossRef]
- Macías-Quiroga, I.F.; Rojas-Méndez, E.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R. Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data Brief. 2020, 30, 105463. [Google Scholar] [CrossRef]
- Jawad, A.; Li, Y.; Lu, X.; Chen, Z.; Liu, W.; Yin, G. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. J. Hazard. Mater. 2015, 289, 165–173. [Google Scholar] [CrossRef]
- Zhou, L.; Song, W.; Chen, Z.; Yin, G. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environ. Sci. Technol. 2013, 47, 3833–3839. [Google Scholar] [CrossRef]
- Macías-Quiroga, I.F.; Pérez-Flórez, A.; Arcila, J.S.; Giraldo-Goméz, G.I.; Sanabria-Gonzalez, N.R. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catal. Lett. 2022, 152, 1905–1916. [Google Scholar] [CrossRef]
- Dong, H.; Feng, X.; Guo, Y.; Jia, Z.; Zhang, X.; Xu, A.; Li, X. Bicarbonate activated hydrogen peroxide with cobalt nanoparticles embedded in nitrogen-doped carbon nanotubes for highly efficient organic dye degradation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127645. [Google Scholar] [CrossRef]
- Urbina-Suarez, N.A.; Rivera-Caicedo, C.; González-Delgado, Á.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Bicarbonate-hydrogen peroxide system for treating dyeing wastewater: Degradation of organic pollutants and color removal. Toxics 2023, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Urbina-Suarez, N.A.; Salcedo-Pabón, C.J.; López-Barrera, G.L.; García-Martínez, J.B.; Barajas-Solano, A.F.; Machuca-Martínez, F. Using the response surface methodology to treat tannery wastewater with the bicarbonate-peroxide system. ChemEngineering 2023, 7, 62. [Google Scholar] [CrossRef]
- Macías-Quiroga, I.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R. Characterization of colombian clay and its potential use as adsorbent. Sci. World J. 2018, 2018, 5969178. [Google Scholar] [CrossRef] [PubMed]
- Ay, F.; Catalkaya, E.C.; Kargi, F. A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment. J. Hazard. Mater. 2009, 162, 230–236. [Google Scholar] [CrossRef]
- Francis, F.; Sabu, A.; Nampoothiri, K.M.; Ramachandran, S.; Ghosh, S.; Szakacs, G.; Pandey, A. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem. Eng. J. 2003, 15, 107–115. [Google Scholar] [CrossRef]
- Seidmohammadi, A.; Vaziri, Y.; Dargahi, A.; Nasab, H.Z. Improved degradation of metronidazole in a heterogeneous photo-Fenton oxidation system with PAC/Fe3O4 magnetic catalyst: Biodegradability, catalyst specifications, process optimization, and degradation pathway. Biomass Convers. Biorefin. 2023, 13, 9057–9073. [Google Scholar] [CrossRef]
- Samarghandi, M.R.; Dargahi, A.; Shabanloo, A.; Nasab, H.Z.; Vaziri, Y.; Ansari, A. Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arab. J. Chem. 2020, 13, 6847–6864. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Corbo, M.; Sinigaglia, M. Design of experiments: A powerful tool in food microbiology. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex Research Center: Madrid, Spain, 2010; pp. 1419–1429. [Google Scholar]
- Demirel, M.; Kayan, B. Application of response surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation. Int. J. Ind. Chem. 2012, 3, 24. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, H. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. J. Hazard. Mater. 2009, 172, 1388–1393. [Google Scholar] [CrossRef]
- Roudi, A.M.; Salem, S.; Abedini, M.; Maslahati, A.; Imran, M. Response surface methodology (RSM)-based prediction and optimization of the Fenton process in landfill leachate decolorization. Processes 2021, 9, 2284. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Leili, M.; Shirmohammadi Khorram, N.; Godini, K.; Azarian, G.; Moussavi, R.; Peykhoshian, A. Application of central composite design (CCD) for optimization of cephalexin antibiotic removal using electro-oxidation process. J. Mol. Liq. 2020, 313, 113556. [Google Scholar] [CrossRef]
- Spadaro, J.T.; Isabelle, L.; Renganathan, V. Hydroxyl radical mediated degradation of azo dyes: Evidence for benzene generation. Environ. Sci. Technol. 1994, 28, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Thiam, A.; Brillas, E.; Garrido, J.A.; Rodríguez, R.M.; Sirés, I. Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Appl. Catal. B Environ. 2016, 180, 227–236. [Google Scholar] [CrossRef]
- Thiam, A.; Sirés, I.; Garrido, J.A.; Rodríguez, R.M.; Brillas, E. Effect of anions on electrochemical degradation of azo dye Carmoisine (Acid Red 14) using a BDD anode and air-diffusion cathode. Sep. Purif. Technol. 2015, 140, 43–52. [Google Scholar] [CrossRef]
- Herney-Ramirez, J.; Vicente, M.A.; Madeira, L.M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Appl. Catal. B Environ. 2010, 98, 10–26. [Google Scholar] [CrossRef]
- Bobu, M.; Yediler, A.; Siminiceanu, I.; Schulte-Hostede, S. Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl. Catal. B Environ. 2008, 83, 15–23. [Google Scholar] [CrossRef]
- Vera Candioti, L.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 2014, 124, 123–138. [Google Scholar]
- Tangparitkul, S. Evaluation of effecting factors on oil recovery using the desirability function. J. Pet. Explor. Prod. Technol. 2018, 8, 1199–1208. [Google Scholar] [CrossRef]
- Al-Jlil, S.A. Adsorption of cobalt ions from waste water on activated Saudi clays. Appl. Water Sci. 2017, 7, 383–391. [Google Scholar] [CrossRef]
- Saili, K.S.; Cardwell, A.S.; Stubblefield, W.A. Chronic toxicity of cobalt to marine organisms: Application of a species sensitivity distribution approach to develop international water quality standards. Environ. Toxicol. Chem. 2021, 40, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Ellwood, M.J.; van den Berg, C.M.G. Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry. Mar. Chem. 2001, 75, 33–47. [Google Scholar] [CrossRef]
- Al-Shahrani, S.S. Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alex. Eng. J. 2014, 53, 205–211. [Google Scholar] [CrossRef]
- Mnasri-Ghnimi, S.; Frini-Srasra, N. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl. Clay Sci. 2019, 179, 105151. [Google Scholar] [CrossRef]
Structure | Characteristics |
---|---|
CAS number: 25956–17–6 Formula: C18H14N2Na2O8S2 Molecular weight: 496.4 g/mol |
Symbol | Independent Variable | Range and Level | ||||
---|---|---|---|---|---|---|
−1.682 | −1 | 0 | +1 | +1.682 | ||
X1 | H2O2, mM | 1.31 | 2.5 | 4.25 | 6.0 | 7.19 |
X2 | NaHCO3, mM | 0.81 | 2.0 | 3.75 | 5.5 | 6.69 |
X3 | Co2+, µM | 1.63 | 3.5 | 6.25 | 9.0 | 10.88 |
X4 | Dye, mg/L | 23.18 | 30.0 | 40.00 | 50.0 | 56.82 |
Run | Experimental Values | Response Variables (%) | ||||||
---|---|---|---|---|---|---|---|---|
H2O2 (mM) | NaHCO3 (mM) | Co2+ (µM) | AR–AC (mg/L) | Y1 | Y2 | Y3 | ||
20 min | 3 h | |||||||
11 | 2.50 | 5.50 | 3.50 | 50.00 | 47.52 | 90.33 | 5.57 | 43.48 |
34 | 4.25 | 3.75 | 6.25 | 40.00 | 92.41 | 97.94 | 9.12 | 43.62 |
19 | 7.19 | 3.75 | 6.25 | 40.00 | 73.33 | 96.85 | 16.59 | 45.82 |
3 | 2.50 | 5.50 | 3.50 | 30.00 | 69.33 | 96.89 | 3.56 | 30.12 |
29 | 4.25 | 3.75 | 6.25 | 23.00 | 99.72 | >99.74 | 6.49 | 31.93 |
1 | 2.50 | 2.00 | 3.50 | 30.00 | 70.62 | 97.18 | 2.52 | 34.56 |
12 | 6.00 | 5.50 | 3.50 | 50.00 | 36.35 | 85.63 | 8.54 | 48.03 |
35 | 4.25 | 3.75 | 6.25 | 40.00 | 89.03 | 97.85 | 8.48 | 48.48 |
30 | 4.25 | 3.75 | 6.25 | 23.18 | 91.04 | >99.74 | 6.95 | 31.2 |
31 | 4.25 | 3.75 | 6.25 | 56.82 | 74.65 | 97.68 | 4.29 | 52.63 |
4 | 6.00 | 5.50 | 3.50 | 30.00 | 58.34 | 93.11 | 7.82 | 37.77 |
13 | 2.50 | 2.00 | 9.00 | 50.00 | 99.00 | >99.88 | 5.40 | 50.48 |
22 | 4.25 | 0.81 | 6.25 | 40.00 | 90.02 | >99.85 | 9.27 | 56.78 |
6 | 6.00 | 2.00 | 9.00 | 30.00 | 99.80 | >99.80 | 12.17 | 40.34 |
21 | 4.25 | 0.81 | 6.25 | 40.00 | 93.54 | >99.85 | 9.51 | 46.91 |
8 | 6.00 | 5.50 | 9.00 | 30.00 | 99.80 | >99.80 | 8.01 | 40.09 |
10 | 6.00 | 2.00 | 3.50 | 50.00 | 43.36 | 87.08 | 7.92 | 53.13 |
20 | 7.19 | 3.75 | 6.25 | 40.00 | 69.92 | 96.78 | 15.41 | 52.93 |
7 | 2.50 | 5.50 | 9.00 | 30.00 | 99.80 | >99.80 | 3.98 | 40.32 |
9 | 2.50 | 2.00 | 3.50 | 50.00 | 47.70 | 89.15 | 2.01 | 54.82 |
33 | 4.25 | 3.75 | 6.25 | 40.00 | 91.84 | 97.90 | 9.54 | 49.02 |
24 | 4.25 | 6.69 | 6.25 | 40.00 | 83.95 | >99.85 | 4.11 | 47.27 |
17 | 1.31 | 3.75 | 6.25 | 40.00 | 76.51 | 98.12 | 3.68 | 43.15 |
36 | 4.25 | 3.75 | 6.25 | 40.00 | 93.99 | 97.96 | 9.72 | 48.96 |
23 | 4.25 | 6.69 | 6.25 | 40.00 | 80.04 | >99.85 | 5.68 | 42.82 |
25 | 4.25 | 3.75 | 1.63 | 40.00 | 36.91 | 85.25 | 5.45 | 44.51 |
26 | 4.25 | 3.75 | 1.63 | 40.00 | 33.13 | 83.10 | 4.15 | 42.7 |
16 | 6.00 | 5.50 | 9.00 | 50.00 | 78.54 | 98.67 | 6.99 | 50.6 |
2 | 6.00 | 2.00 | 3.50 | 30.00 | 63.80 | 95.34 | 9.49 | 39.23 |
14 | 6.00 | 2.00 | 9.00 | 50.00 | 91.93 | 98.63 | 12.08 | 53.39 |
32 | 4.25 | 3.75 | 6.25 | 56.82 | 71.44 | 97.88 | 7.08 | 50.28 |
15 | 2.50 | 5.50 | 9.00 | 50.00 | 99.88 | >99.88 | 4.12 | 44.07 |
18 | 1.31 | 3.75 | 6.25 | 40.00 | 79.61 | 98.06 | 3.93 | 40.99 |
27 | 4.25 | 3.75 | 10.88 | 40.00 | 99.85 | >99.85 | 8.99 | 42.52 |
5 | 2.50 | 2.00 | 9.00 | 30.00 | 99.80 | >99.80 | 6.96 | 36.65 |
28 | 4.25 | 3.75 | 10.88 | 40.00 | 99.75 | >99.85 | 8.04 | 44.77 |
Source | Sum of Squares | DF a | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 14,883.36 | 14 | 1063.10 | 84.50 | <0.0001 b |
X1 | 254.50 | 1 | 254.50 | 20.23 | 0.0002 b |
X2 | 129.02 | 1 | 129.02 | 10.25 | 0.0043 b |
X3 | 11,051.80 | 1 | 11,051.80 | 878.45 | <0.0001 b |
X4 | 1351.56 | 1 | 1351.56 | 107.43 | <0.0001 b |
X1X2 | 39.91 | 1 | 39.91 | 3.17 | 0.0894 c |
X1X3 | 1.51 | 1 | 1.51 | 0.12 | 0.7327 c |
X1X4 | 42.61 | 1 | 42.61 | 3.39 | 0.0799 c |
X2X3 | 0.13 | 1 | 0.13 | 0.010 | 0.9207 c |
X2X4 | 10.48 | 1 | 10.48 | 0.83 | 0.3717 c |
X3X4 | 205.28 | 1 | 205.28 | 16.32 | 0.0006 b |
X12 | 645.32 | 1 | 645.32 | 51.29 | <0.0001 b |
X22 | 22.55 | 1 | 22.55 | 1.79 | 0.1949 c |
X32 | 1455.27 | 1 | 1455.27 | 115.67 | <0.0001 b |
X42 | 87.16 | 1 | 87.16 | 6.93 | 0.0156 b |
Residuals | 264.20 | 21 | 12.58 | ||
Lack of fit | 176.93 | 10 | 17.69 | 2.23 | 0.1022 c |
Pure error | 87.27 | 11 | 7.93 | ||
Cor Total | 15,147.56 | 35 |
Source | Sum of Squares | DF a | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 362.73 | 14 | 25.91 | 22.31 | <0.0001 b |
X1 | 233.84 | 1 | 233.84 | 201.32 | <0.0001 b |
X2 | 23.03 | 1 | 23.03 | 19.83 | 0.0002 b |
X3 | 22.47 | 1 | 22.47 | 19.35 | 0.0003 b |
X4 | 1.05 | 1 | 1.05 | 0.91 | 0.3520 c |
X1X2 | 7.08 | 1 | 7.08 | 6.09 | 0.0223 b |
X1X3 | 0.11 | 1 | 0.11 | 0.094 | 0.7625 c |
X1X4 | 0.26 | 1 | 0.26 | 0.22 | 0.6409 c |
X2X3 | 18.19 | 1 | 18.19 | 15.66 | 0.0007 b |
X2X4 | 1.95 | 1 | 1.95 | 1.68 | 0.2096 c |
X3X4 | 0.63 | 1 | 0.63 | 0.54 | 0.4689 c |
X12 | 1.20 | 1 | 1.20 | 1.03 | 0.3218 c |
X22 | 13.24 | 1 | 13.24 | 11.40 | 0.0028 b |
X32 | 19.99 | 1 | 19.99 | 17.21 | 0.0005 b |
X42 | 27.57 | 1 | 27.57 | 23.74 | <0.0001 b |
Residuals | 24.39 | 21 | 1.16 | ||
Lack of fit | 16.20 | 10 | 1.62 | 2.18 | 0.1092 c |
Pure error | 8.19 | 11 | 0.74 | ||
Cor Total | 387.13 | 35 |
Source | Sum of Squares | DF a | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 1442.79 | 14 | 103.06 | 14.35 | <0.0001 b |
X1 | 101.49 | 1 | 101.49 | 14.13 | 0.0012 b |
X2 | 95.20 | 1 | 95.20 | 13.25 | 0.0015 b |
X3 | 8.17 | 1 | 8.17 | 1.14 | 0.2984 c |
X4 | 1006.70 | 1 | 1006.70 | 140.15 | <0.0001 b |
X1X2 | 4.97 | 1 | 4.97 | 0.69 | 0.4147 c |
X1X3 | 0.32 | 1 | 0.32 | 0.045 | 0.8336 c |
X1X4 | 0.76 | 1 | 0.76 | 0.11 | 0.7487 c |
X2X3 | 17.14 | 1 | 17.14 | 2.39 | 0.1374 c |
X2X4 | 33.52 | 1 | 33.52 | 4.67 | 0.0425 b |
X3X4 | 17.31 | 1 | 17.31 | 2.41 | 0.1356 c |
X12 | 10.79 | 1 | 10.79 | 1.50 | 0.2339 c |
X22 | 1.91 | 1 | 1.91 | 0.27 | 0.6112 c |
X32 | 47.36 | 1 | 47.36 | 6.59 | 0.0179 b |
X42 | 110.43 | 1 | 110.43 | 15.37 | 0.0008 b |
Residuals | 150.85 | 21 | 7.18 | ||
Lack of fit | 36.98 | 10 | 3.70 | 0.36 | 0.9420 c |
Pure error | 113.87 | 11 | 10.35 | ||
Cor Total | 1593.64 | 35 |
Variables | Value | Decolorization (%) | Mineralization (%) | TN Removal (%) | |||
---|---|---|---|---|---|---|---|
Predic. | Exper. | Predic. | Exper. | Predic. | Exper. | ||
H2O2, mM | 5.58 | 99.32 | 98.15 (20 min) > 99.86 (3 h) | 13.06 | 12.99 | 49.47 | 51.97 |
NaHCO3, mM | 2.00 | ||||||
Co2+, µM | 9.00 | ||||||
Dye, mg/L | 41.86 | ||||||
H2O2, mM | 5.00 | 99.18 | 98.37 (20 min) > 99.80 (3 h) | 11.02 | 10.52 | 40.64 | 43.48 |
NaHCO3, mM | 2.00 | ||||||
Co2+, µM | 7.00 | ||||||
Dye, mg/L | 30.00 | ||||||
H2O2, mM | 7.00 | 72.80 | 70.65 (20 min) > 97.85 (3 h) | 14.98 | 13.93 | 49.42 | 46.12 |
NaHCO3, mM | 3.00 | ||||||
Co2+, µM | 6.00 | ||||||
Dye, mg/L | 40.00 |
Pollutant | T °C | H2O2 mM | NaHCO3 mM | Co2+ μM | Results | Ref. |
---|---|---|---|---|---|---|
Methylene blue, 1.07 mM | 25 | 100 | 25 | 20 | Decolorization: ≈100% TOC removal: 17% | [35] |
Reactive brilliant red X-3B, 0.34 mM | 25 | 5–100 | 10 | 20 | Decolorization: >88% TOC removal: ≈26% | [36] |
Acid orange II, 0.25 mM | 18 | 10 | 2.5 | 5 | Decolorization: >96% TOC removal: Null | [37] |
Methylene blue, 17.7 μM | 25 | 10 | 10 | 10 | Decolorization: ≈100% TOC removal: ≈19% | [38] |
Orange II, 125 μM | 25 | 50 | 10 | 5 | Decolorization: 100% TOC removal: 45.3% | [39] |
Ponceau 4R, 20 mg/L (33 μM) | 25 | 7.97 | 4.71 | 11.16 | Decolorization: 96.3% TOC removal: 13.9% | [40] |
Allura red AC, 41.86 mg/L (84.3 μM) | 25 | 5.58 | 2 | 9 | Decolorization: >99.86% TOC removal: 12.99% | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Bonilla, K.Y.; Macías-Quiroga, I.F.; Sanabria-González, N.R.; Dávila-Arias, M.T. Bicarbonate-Activated Hydrogen Peroxide for an Azo Dye Degradation: Experimental Design. ChemEngineering 2023, 7, 86. https://doi.org/10.3390/chemengineering7050086
Mora-Bonilla KY, Macías-Quiroga IF, Sanabria-González NR, Dávila-Arias MT. Bicarbonate-Activated Hydrogen Peroxide for an Azo Dye Degradation: Experimental Design. ChemEngineering. 2023; 7(5):86. https://doi.org/10.3390/chemengineering7050086
Chicago/Turabian StyleMora-Bonilla, Karla Y., Iván F. Macías-Quiroga, Nancy R. Sanabria-González, and María T. Dávila-Arias. 2023. "Bicarbonate-Activated Hydrogen Peroxide for an Azo Dye Degradation: Experimental Design" ChemEngineering 7, no. 5: 86. https://doi.org/10.3390/chemengineering7050086
APA StyleMora-Bonilla, K. Y., Macías-Quiroga, I. F., Sanabria-González, N. R., & Dávila-Arias, M. T. (2023). Bicarbonate-Activated Hydrogen Peroxide for an Azo Dye Degradation: Experimental Design. ChemEngineering, 7(5), 86. https://doi.org/10.3390/chemengineering7050086