Facile Synthesis Method of Zeolite NaY and Zeolite NaY-Supported Ni Catalyst with High Catalytic Activity for the Conversion of CO2 to CH4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.1.1. Zeolite NaY Preparation
2.1.2. Zeolite-Supported Ni Catalyst Preparation
2.1.3. Characterization
2.1.4. CO2 Methanation Catalytic Activity Test
2.1.5. In Situ X-ray Absorption Spectroscopy
Oxidation State of Ni during CO2 Methanation
Local Environment of Ni during CO2 Methanation
Stability Test Carried out by Monitoring the Ni Oxidation State Changes during Fluctuating Conditions
3. Results and Discussion
3.1. Zeolite NaY Support and Zeolite-Supported Ni Catalyst
3.2. Temperature-Programmed Results
3.3. CO2 Methanation Catalytic Activity
3.4. X-ray Absorption Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onrubia-Calvo, J.A.; Quindimil, A.; Davó-Quiñonero, A.; Bermejo-López, A.; Bailón-García, E.; Pereda-Ayo, B.; Lozano-Castelló, D.; González-Marcos, J.A.; Bueno-López, A.; González-Velasco, J.R. Kinetics, Model Discrimination, and Parameters Estimation of CO2 Methanation on Highly Active Ni/CeO2 Catalyst. Ind. Eng. Chem. Res. 2022, 61, 10419–10435. [Google Scholar] [CrossRef]
- Makdee, A.; Chanapattharapol, K.C.; Kidkhunthod, P.; Poo-arporn, Y.; Ohno, T. The role of Ce addition in catalytic activity enhancement of TiO2-supported Ni for CO2 methanation reaction. RSC Adv. 2020, 10, 26952–26971. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Kaydouh, M.-N.; Ahmed, H.; Ibrahim, A.A.; Alotibi, M.F.; Osman, A.I.; Hassan, N.E. Sr Promoted Ni/W–Zr Catalysts for Highly Efficient CO2 Methanation: Unveiling the Role of Surface Basicity. Langmuir 2023, 39, 17723–17732. [Google Scholar] [CrossRef] [PubMed]
- Ridzuan, N.D.M.; Shaharun, M.S.; Anawar, M.A.; Ud-Din, I. Ni-Based Catalyst for Carbon Dioxide Methanation: A Review on Performance and Progress. Catalysts 2022, 12, 469. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Cui, Y.; Xing, Y.; Su, W. Research on nickel-based catalysts for carbon dioxide methanation combined with literature measurement. J. CO2 Util. 2022, 63, 102117. [Google Scholar] [CrossRef]
- Shen, L.; Xu, J.; Zhu, M.; Han, Y.-F. Essential Role of the Support for Nickel-Based CO2 Methanation Catalysts. ACS Catal. 2020, 10, 14581–14591. [Google Scholar] [CrossRef]
- Costa-Serra, J.F.D.; Cerdá-Moreno, C.; Chica, A. Zeolite-Supported Ni Catalysts for CO2 Methanation: Effect of Zeolite Structure and Si/Al Ratio. Appl. Sci. 2020, 10, 5131. [Google Scholar] [CrossRef]
- Sholeha, N.A.; Mohamad, S.; Bahruji, H.; Prasetyoko, D.; Widiastuti, N.; Fatah, N.A.A. Enhanced CO2 methanation at mild temperature on Ni/zeolite from kaolin: Effect of metal–support interface. RSC Adv. 2021, 11, 16376. [Google Scholar] [CrossRef]
- Guilera, J.; Valle, J.; Alarcón, A.; Díaz, J.A.; Andreu, T. Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts. J. CO2 Util. 2019, 30, 11–17. [Google Scholar] [CrossRef]
- Ye, R.-P.; Liao, L.; Reina, T.R.; Liu, J.; Chevella, D.; Jin, Y. Engineering Ni/SiO2 catalysts for enhanced CO2 methanation. Fuel 2021, 285, 119151. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, Y.; Li, Z.; Song, Y.; Zang, J.; Wang, J. Highly Dispersed Ni Catalyst on Metal–Organic Framework-Derived Porous Hydrous Zirconia for CO2 Methanation. ACS Appl. Mater. Interfaces 2020, 12, 17436. [Google Scholar] [CrossRef]
- Unwiset, P.; Chanapattharapol, K.C.; Kidkhunthod, P.; Poo-Arporn, Y.; Ohtani, B. Catalytic activities of titania-supported nickel for carbon-dioxide methanation. Chem. Eng. Sci. 2020, 228, 115955. [Google Scholar] [CrossRef]
- Krachuamram, S.; Kidkhunthod, P.; Poo-arporn, Y.; Kamonsutthipaijit, N.; Chanapattharapol, K.C. On the Optimization of Ni/A and Ni/X Synthesis Procedure toward Active and Selective Catalysts for the Production of CH4 from CO2. Catalysts 2022, 12, 823. [Google Scholar] [CrossRef]
- Czuma, N.; Zarębska, K.; Motak, M.; Gálvez, M.E.; Costa, P.D. Ni/zeolite X derived from fly ash as catalysts for CO2 methanation. Fuel 2020, 267, 117139. [Google Scholar] [CrossRef]
- Kostyniuk, A.; Bajec, D.; Likozar, B. Catalytic hydrogenation, hydrocracking and isomerization reactions of biomass tar model compound mixture over Ni-modified zeolite catalysts in packed bed reactor. Renew. Energy 2021, 167, 409. [Google Scholar] [CrossRef]
- Alismaeel, Z.T.; Al-Jadir, T.M.; Albayati, T.M.; Abbas, A.S.; Doyle, A.M. Modification of FAU zeolite as an active heterogeneous catalyst for biodiesel production and theoretical considerations for kinetic modeling. Adv. Powder Technol. 2022, 33, 103646. [Google Scholar] [CrossRef]
- Parise, J.B.; Corbin, D.R.; Abrams, L.; Cox, D.E. Structure of dealuminated Linde Y-zeolite; Si139.7Al52.3O384 and Si173.1Al18.9O384: Presence of non-framework Al species. Acta Crystallogr. C 1984, 40, 1493. [Google Scholar] [CrossRef]
- Quindimil, A.; Torre, U.; Pereda, B.; Gonzalez-Marcos, J.A.; Gonzalez-Velasco, J.R. Ni catalysts with La as promoter supported over Y- and Beta- zeolites for CO2 methanation. Appl. Catal. B Environ. 2018, 238, 393–403. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Bértolo, R.; Graça, I.; Lopes, J.M.; Henriques, C. The effect of the compensating cation on the catalytic performances of Ni/USY zeolites towards CO2 methanation. J. CO2 Util. 2017, 21, 280–291. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Fu, Y.; Amoo, C.C.; Jiang, Y.; Yang, R.; Sun, X.; Xing, C.; Maturura, E. An ambient pressure method for synthesizing NaY zeolite. Microporous Mesoporous Mater. 2021, 320, 111073. [Google Scholar] [CrossRef]
- Sun, X.; Wang, J.; Jiang, Y.; Maturura, E.; Wang, W.; Yang, R.; Xing, C.; Chen, J.; Tsubaki, N. Facile synthesis of zeolites under an atmospheric reflux system. Microporous Mesoporous Mater. 2022, 331, 111646. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Chen, Y. Rapid synthesis of uniform nano-sized silicalite-1 zeolite crystals under atmospheric pressure without wastes discharge. Chem. Eng. J. 2020, 382, 122913. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, J.; Zhang, M.; Li, H.; Gu, F.; Xu, G.; Zhong, Z.; Su, F. Highly active and stable Ni/g-Al2O3 catalysts selectively deposited with CeO2 for CO methanation. RSC Adv. 2014, 4, 16094. [Google Scholar] [CrossRef]
- Koroglu, H.J.; Sarioglan, A.; Tatlier, M.; Erdem-Senatalar, A.; Savasci, O.T. Synthesis of zeolites in the absence of organic structure-directing agents: Factors governing crystal selection and polymorphism. J. Cryst. Growth 2002, 241, 481. [Google Scholar]
- Krachuamram, S.; Chanapattharapol, K.C.; Kamonsutthipaijit, N. Synthesis and characterization of NaX-type zeolites prepared by different silica and alumina sources and their CO2 adsorption properties. Microporous Mesoporous Mater. 2021, 310, 110632. [Google Scholar] [CrossRef]
- Maia, A.B.; Dias, R.N.; Angélica, R.S.; Neves, R.F. Influence of an aging step on the synthesis of zeolite NaA from Brazilian Amazon kaolin waste. J. Mater. Res. Technol. 2019, 8, 2924–2929. [Google Scholar] [CrossRef]
- Nguyen, D.-K.; Dinh, V.-P.; Dang, N.T.; Khan, T.; Hungg, N.T.; Tran, N.H.T. Effects of aging and hydrothermal treatment on the crystallization of ZSM-5 zeolite synthesis from bentonite. RSC Adv. 2023, 13, 20565. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ghose, R. Synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method. Superlattices Microstruct. 2015, 80, 169. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Amjad, S.; Teixeira, P.; Lopes, J.; Henriques, C. Boosting Ni Dispersion on Zeolite-Supported Catalysts for CO2 Methanation: The Influence of the Impregnation Solvent. Energy Fuels 2020, 34, 14656. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Wang, L.; Li, H.; Fan, Y.; Yang, X.; Du, H.; Zhang, Y.; Li, Z. Ni-derived electronic/ionic engineering on NiSe/Ni@C for ultrafast and stable sodium storage. Chem. Commun. 2023, 59, 11859. [Google Scholar] [CrossRef]
- Graca, I.; González, L.V.; Bacariza, M.C.; Fernandes, A.; Henriques, C.; Lopes, J.M. CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Appl. Catal. B Environ. 2014, 147, 101–110. [Google Scholar] [CrossRef]
- Branco, J.B.; Brito, P.E.; Ferreira, A.C. Methanation of CO2 over nickel-lanthanide bimetallic oxides supported on silica. Chem. Eng. J. 2020, 380, 122465. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, J.; Kang, J.K.; Park, E.D. CO and CO2 methanation over M (MMn, Ce, Zr, Mg, K, Zn, or V)-promoted Ni/Al@Al2O3 catalysts. Catal. Today 2020, 348, 80–88. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Lopes, J.M.; Henriques, C. Enhanced Activity of CO2 Hydrogenation to CH4 over Ni Based Zeolites through the Optimization of the Si/Al Ratio. Microporous Mesoporous Mater. 2018, 267, 9. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, B.; Sun, P. Highly stable Ni-based catalysts derived from LDHs supported on zeolite for CO2 methanation. Int. J. Hydrogen Energy 2020, 45, 16183. [Google Scholar] [CrossRef]
- Guo, X.; Traitangwong, A.; Hu, M.; Zuo, C.; Meeyoo, V.; Peng, Z.; Li, C. Carbon Dioxide Methanation over Nickel-Based Catalysts Supported on Various Mesoporous Material. Energy Fuels 2018, 32, 3681–3689. [Google Scholar] [CrossRef]
- Spataru, D.; Canastreiro, D.; Swirk Da Costa, K.; Quindimil, A.; Lopes, J.M.; Costa, P.; Henriques, C.; Bacariza, C. Doping Ni/USY zeolite catalysts with transition metals for CO2 methanation. Int. J. Hydrogen Energy 2024, 53, 468–481. [Google Scholar] [CrossRef]
- Garbarino, G.; Riani, P.; Magistri, L.; Busca, G. A study of the methanation of carbon dioxide on Ni/Al2O3 catalyst at atmospheric pressure. Int. J. Hydrogen Energy 2014, 39, 11557. [Google Scholar] [CrossRef]
- Li, Y.; Men, Y.; Liu, S.; Wang, J.; Wang, K.; Tang, Y. Remarkably efficient and stable Ni/Y2O3 catalysts for CO2 methanation: Effect of citric acid addition. Appl. Catal. B Environ. 2021, 293, 120206. [Google Scholar] [CrossRef]
- Serrer, M.-A.; Gaur, A.; Jelic, J.; Weber, S.; Fritsch, C.; Clark, A.H.; Saraçi, E.; Studt, F.; Grunwaldt, J.-D. Structural dynamics in Ni–Fe catalysts during CO2 methanation—Role of iron oxide clusters. Catal. Sci. Technol. 2020, 10, 7542. [Google Scholar] [CrossRef]
- Kesavana, J.K.; Luisettoa, I.; Tutia, S.; Meneghinia, C.; Iuccia, G.; Battocchioa, C.; Mobilioa, S.; Casciardib, S.; Sistob, R. Nickel supported on YSZ: The effect of Ni particle size on the catalytic activity for CO2 methanation. J. CO2 Util. 2018, 23, 200. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Baran, R.; Dębek, R.; Motak, M.; Gálvez, M.E.; Grzybek, T.; Da Costa, P.; Glatzel, P. Examination of the influence of La promotion on Ni state in hydrotalcite-derived catalysts under CO2 methanation reaction conditions: Operando X-ray absorption and emission spectroscopy investigation. Appl. Catal. B Environ. 2018, 232, 409. [Google Scholar] [CrossRef]
- Mutz, B.; Carvalho, H.W.P.; Mangold, S.; Kleist, W.; Grunwaldt, J.-D. Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy. J. Catal. 2015, 327, 48. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Crystallite Size of Zeolite (nm) a | Crystallite Size of NiO (nm) b | Synthesis Method | Reference |
---|---|---|---|---|---|
ZY_0D | 285.3 | 41.1 | - |
| This work |
ZY_1D | 313.0 | 33.6 | - | ||
ZY_3D | 390.1 | 27.5 | - | ||
ZY_7D | 468.8 | 23.6 | - | ||
Zeolite NaY | 384.0 | - | - |
| [20] |
Zeolite NaY | 564.0 | - | - |
| [21] |
silicalite-1 zeolite | 466.2 | - | - |
| [22] |
10 wt%Ni/ZY_7D | 377.3 | 37.0 | 13.2 | Wet impregnation | This work |
20 wt%Ni/ZY_7D | 300.4 | 38.8 | 16.4 | ||
30 wt%Ni/ZY_7D | 282.8 | 39.2 | 18.9 |
Sample | H2 Consumption (mmol/g) a | H2 Desorption (mmol/g) b | CO2 Desorption (mmol/g) c | % Dispersion | Ea (kJmol−1) | |
---|---|---|---|---|---|---|
Weak | Medium | |||||
ZY_7D | - | - | 0.294 | 0.406 | - | - |
10 wt%Ni/ZY_7D | 132.5 | 46.32 | 0.482 | 0.622 | 29.5 | 94.46 |
20 wt%Ni/ZY_7D | 184.3 | 50.61 | 0.302 | 0.405 | 14.6 | 80.20 |
30 wt%Ni/ZY_7D | 195.5 | 56.25 | 0.478 | 0.601 | 11.0 | 72.01 |
Catalysts | Temperature (°C) | CO2 Conversion (%) | CH4 Selectivity (%) | Condition | Reference |
---|---|---|---|---|---|
5Ni/ITQ-2(∞) | 350 | 68 | 99 | H2/CO2 = 4:1, 1 atm, GHSV = 3500 h−1 | [7] |
15 wt%Ni/zeolite NaY | 250 | 33 | 100 | H2/CO2 = 4:1, 1 atm, GHSV = 12,500 h−1 | [8] |
10 wt%Ni/ZSM-5 | 400 | 76 | 77 | H2/CO2 = 4:1, 1 atm, GHSV = 2400 h−1 | [36] |
Ni-10%La2O3/Na-BETA | 350 | 65 | 100 | H2/CO2 = 4:1, 1 atm, GHSV = 10,000 h−1 | [19] |
15 wt%Ni/USY (Cs+ = compensating cation) | 325 | 35 | 100 | H2/CO2 = 6:1, 5 atm | [37] |
30 wt%Ni/ZY_7D | 350 | 58 | 97 | H2/CO2 = 4:1, 1 atm, GHSV = 4250 h−1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krachuamram, S.; Kidkhunthod, P.; Poo-arporn, Y.; Chanapattharapol, K.C. Facile Synthesis Method of Zeolite NaY and Zeolite NaY-Supported Ni Catalyst with High Catalytic Activity for the Conversion of CO2 to CH4. ChemEngineering 2024, 8, 28. https://doi.org/10.3390/chemengineering8020028
Krachuamram S, Kidkhunthod P, Poo-arporn Y, Chanapattharapol KC. Facile Synthesis Method of Zeolite NaY and Zeolite NaY-Supported Ni Catalyst with High Catalytic Activity for the Conversion of CO2 to CH4. ChemEngineering. 2024; 8(2):28. https://doi.org/10.3390/chemengineering8020028
Chicago/Turabian StyleKrachuamram, Somkiat, Pinit Kidkhunthod, Yingyot Poo-arporn, and Kingkaew Chayakul Chanapattharapol. 2024. "Facile Synthesis Method of Zeolite NaY and Zeolite NaY-Supported Ni Catalyst with High Catalytic Activity for the Conversion of CO2 to CH4" ChemEngineering 8, no. 2: 28. https://doi.org/10.3390/chemengineering8020028
APA StyleKrachuamram, S., Kidkhunthod, P., Poo-arporn, Y., & Chanapattharapol, K. C. (2024). Facile Synthesis Method of Zeolite NaY and Zeolite NaY-Supported Ni Catalyst with High Catalytic Activity for the Conversion of CO2 to CH4. ChemEngineering, 8(2), 28. https://doi.org/10.3390/chemengineering8020028