Formulation and Characterization of Double Emulsions W/O/W Stabilized by Two Natural Polymers with Two Manufacturing Processes (Comparative Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
3. Results
3.1. W/O/W Multiple Emulsions Formulation Using the Stepwise Process
3.1.1. Primary Emulsion (W/O) Formulation
Characteristics of Primary Emulsions Formulated
- Physico-chemical characterization
- Viscosity study
- Microscopical (morphological) study
3.1.2. Formulation and Characterization of Multiple Emulsions W/O/W Stabilized by Xanthan Gum
Characterizations of Multiple Emulsions Formulated
- Physico-chemical characterizations
- Stability at different storage temperatures
- Viscosity study
- Microscopic study
3.1.3. Formulation and Characterization of Multiple W/O/W Emulsions Stabilized by Pectin
Characterizations of Multiple Emulsions Formulated
- Physico-chemical characterizations
- Viscosity study
- Microscopical Study
3.2. Formulation and Characterization of Multiple W/O/W Emulsions Stabilized by Xanthan Using the Direct Process
3.2.1. Formulation Procedure
3.2.2. Characterization of Multiple W/O/W Emulsions
3.3. Formulation and Characterization of Multiple W/O/W Emulsions Stabilized by Pectin Using Direct Process
Characterization of W/O/W Multiple Emulsions
4. Comparison of Results
5. Conclusions
- -
- Stable multiple emulsions formulated with xanthan gum/pectin using process-by-step were developed.
- -
- Emulsions containing xanthan gum present viscoelastic properties higher than pectin.
- -
- The stepwise process is the most suitable compared to that of the direct process.
- -
- The stability obtained by xanthan gum is significant and better compared to that obtained once pectin is used.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nooshkam, M.; Varidi, M. Maillard Conjugate-Based Delivery Systems for the Encapsulation, Protection, and Controlled Release of Nutraceuticals and Food Bioactive Ingredients: A Review. Food Hydrocoll. 2020, 100, 105389. [Google Scholar] [CrossRef]
- Khalid, N.; Kobayashi, I.; Neves, M.A.; Uemura, K.; Nakajima, M. Preparation and Characterization of Water-in-Oil Emulsions Loaded with High Concentration of l-Ascorbic Acid. LWT Food Sci. Technol. 2013, 51, 448–454. [Google Scholar] [CrossRef]
- Zamouche, M.; Tahraoui, H.; Laggoun, Z.; Mechati, S.; Chemchmi, R.; Kanjal, M.I.; Amrane, A.; Hadadi, A.; Mouni, L. Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network. Processes 2023, 11, 364. [Google Scholar] [CrossRef]
- Tatar, B.; Şahin, S. Advances in Food Rheology and Its Applications. In Rheology of Emulsion; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Yahoum, M.M.; Toumi, S.; Hentabli, S.; Tahraoui, H.; Lefnaoui, S.; Hadjsadok, A.; Amrane, A.; Kebir, M.; Moula, N.; Assadi, A.A. Experimental Analysis and Neural Network Modeling of the Rheological Behavior of Xanthan Gum and Its Derivatives. Materials 2023, 16, 2565. [Google Scholar] [CrossRef]
- Luhede, L.; Wollborn, T.; Fritsching, U. Stability of Multiple Emulsions under Shear Stress. Can. J. Chem. Eng. 2020, 98, 186–193. [Google Scholar] [CrossRef]
- Stasse, M.; Laurichesse, E.; Ribaut, T.; Anthony, O.; Héroguez, V.; Schmitt, V. Formulation of Concentrated Oil-in-Water-in-Oil Double Emulsions for Fragrance Encapsulation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 592, 124564. [Google Scholar] [CrossRef]
- Seddari, S.; Moulai-Mostefa, N. Double Emulsions Stabilized by Xanthan in the Absence of Hydrophilic Surfactant. J. Dispers. Sci. Technol. 2016, 37, 530–535. [Google Scholar] [CrossRef]
- Nedjhioui, M.; Nasrallah, N.; Kebir, M.; Tahraoui, H.; Bouallouche, R.; Assadi, A.A.; Amrane, A.; Jaouadi, B.; Zhang, J.; Mouni, L. Designing an Efficient Surfactant–Polymer–Oil–Electrolyte System: A Multi-Objective Optimization Study. Processes 2023, 11, 1314. [Google Scholar] [CrossRef]
- Wang, J.; Shi, A.; Agyei, D.; Wang, Q. Formulation of Water-in-Oil-in-Water (W/O/W) Emulsions Containing Trans-Resveratrol. RSC Adv. 2017, 7, 35917–35927. [Google Scholar] [CrossRef]
- Leong, T.S.; Zhou, M.; Kukan, N.; Ashokkumar, M.; Martin, G.J. Preparation of Water-in-Oil-in-Water Emulsions by Low Frequency Ultrasound Using Skim Milk and Sunflower Oil. Food Hydrocoll. 2017, 63, 685–695. [Google Scholar] [CrossRef]
- Seifriz, W. Studies in Emulsions III–V. J. Phys. Chem. 2002, 29, 738–749. [Google Scholar] [CrossRef]
- Yan, J.; Bauer, W.-A.C.; Fischlechner, M.; Hollfelder, F.; Kaminski, C.F.; Huck, W.T. Monodisperse Water-in-Oil-in-Water (W/O/W) Double Emulsion Droplets as Uniform Compartments for High-Throughput Analysis via Flow Cytometry. Micromachines 2013, 4, 402–413. [Google Scholar] [CrossRef]
- Dams, S.S.; Walker, I.M. [5] Multiple Emulsions as Targetable Delivery Systems. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 149, pp. 51–64. ISBN 0076-6879. [Google Scholar]
- Protat, M. Formation d’Emulsions Multiples Stimulables en une Seule Étape d’Emulsification: Effet du Sel et Évolution Vers des Architectures Biocompatibles. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 2016. [Google Scholar]
- Raina, N.; Rani, R.; Thakur, V.K.; Gupta, M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS Omega 2023, 8, 19145–19167. [Google Scholar] [CrossRef]
- Swamy, M.V.; Metta, S.; Kumar, A.A.; Reddy, C.; Dharani, G.; Ramya, K. Formulation and Characterization of a Multiple Emulsion Containing Vitamin-C. Indian J. 2023, 15, 1–6. [Google Scholar] [CrossRef]
- Deepak, S.; Sanjay, K.; Piyush, A. Recent Advancement, Technology & Applications of the Multiple Emulsions. Innovare J. Health Sci. 2013, 1, 19–23. [Google Scholar]
- Mudrić, J.; Šavikin, K.; Ibrić, S.; Đuriš, J. Double Emulsions (W/O/W Emulsions): Encapsulation of Plant Bioactives. Lek. Sirovine 2019, 39, 76–83. [Google Scholar] [CrossRef]
- Moussaoui, N.; Hammadi, L.; Boudjenane, N.-E.; Denine, R.R. Development of Multiple W/O/W Emulsions Used in Pharmaceutical Field: Effect of Additives and Insulin on Physicochemical and Rheological Stability of Emulsions. Colloid Polym. Sci. 2017, 295, 125–133. [Google Scholar] [CrossRef]
- Dhadde, G.S.; Mali, H.S.; Raut, I.D.; Nitalikar, M.M. An Overview on Multiple Emulsions. Asian J. Pharm. Technol. 2021, 11, 156–162. [Google Scholar] [CrossRef]
- Khan, B.A.; Akhtar, N.; Khan, H.M.S.; Waseem, K.; Mahmood, T.; Rasul, A.; Iqbal, M.; Khan, H. Basics of Pharmaceutical Emulsions: A Review. Afr. J. Pharm. Pharmacol. 2011, 5, 2715–2725. [Google Scholar]
- Ifrah, S.; Dahan, A.; Debotton, N. Towards Effective Antiviral Oral Therapy: Development of a Novel Self-Double Emulsifying Drug Delivery System for Improved Zanamivir Intestinal Permeability. Pharmaceutics 2023, 15, 2518. [Google Scholar] [CrossRef] [PubMed]
- Dluska, E.; Markowska-Radomska, A.; Metera, A.; Ordak, M. Multiple Emulsions as a Biomaterial-Based Delivery System for the Controlled Release of an Anti-Cancer Drug. J. Phys. Conf. Ser. 2020, 1681, 012021. [Google Scholar] [CrossRef]
- Jain, U.; Jaiswal, H. Designing 5-fluorouracil loaded Lipid Nanoparticles Using Double Emulsion and Solvent Evaporation for Skin Cancer Therapy. Oncol. Radiother. 2023, 17, 935–942. [Google Scholar]
- Lee, Y.; Lee, D.; Park, E.; Jang, S.; Cheon, S.Y.; Han, S.; Koo, H. Rhamnolipid-Coated W/O/W Double Emulsion Nanoparticles for Efficient Delivery of Doxorubicin/Erlotinib and Combination Chemotherapy. J. Nanobiotechnol. 2021, 19, 411. [Google Scholar]
- Yahoum, M.M.; Toumi, S.; Tahraoui, H.; Lefnaoui, S.; Hadjsadok, A.; Amrane, A.; Kebir, M.; Zhang, J.; Assadi, A.A.; Mouni, L. Evaluation of Physicochemical and Amphiphilic Properties of New Xanthan Gum Hydrophobically Functionalized Derivatives. Sustainability 2023, 15, 6345. [Google Scholar] [CrossRef]
- Jiao, J.; Burgess, D.J. Rheology and Stability of Water-in-Oil-in-Water Multiple Emulsions Containing Span 83 and Tween 80. Aaps Pharmsci 2003, 5, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Yahoum, M.M.; Toumi, S.; Tahraoui, H.; Lefnaoui, S.; Kebir, M.; Amrane, A.; Assadi, A.A.; Zhang, J.; Mouni, L. Formulation and Evaluation of Xanthan Gum Microspheres for the Sustained Release of Metformin Hydrochloride. Micromachines 2023, 14, 609. [Google Scholar] [CrossRef] [PubMed]
- Salager, J.-L.; Antón, R.; Bullón, J.; Forgiarini, A.; Marquez, R. How to Use the Normalized Hydrophilic-Lipophilic Deviation (HLDN) Concept for the Formulation of Equilibrated and Emulsified Surfactant-Oil-Water Systems for Cosmetics and Pharmaceutical Products. Cosmetics 2020, 7, 57. [Google Scholar] [CrossRef]
- Mellou, F.; Varvaresou, A.; Papageorgiou, S. Renewable Sources: Applications in Personal Care Formulations. Int. J. Cosmet. Sci. 2019, 41, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, T.B.; Dias, M.M.; Barreiro, M.F.; Pinho, S.P. Saponins as Natural Emulsifiers for Nanoemulsions. J. Agric. Food Chem. 2022, 70, 6573–6590. [Google Scholar] [CrossRef]
- Ezzroug, K.; Bouaziz, M.N. Formulation et Évaluation de Vecteurs Particulaires à Base de Polysaccharides Natifs et Modifiés. Applications Pharmaceutiques. Ph.D. Thesis, University of Medea, Medea, Algeria, February 2019. [Google Scholar]
- Campos, P.; Melo, M.O.; Camargo Junior, F.B. Effects of Polysaccharide-Based Formulations on Human Skin. In Polysaccharides; Springer: Cham, Switzerland, 2014; pp. 1–8. [Google Scholar]
- Lim, X.-Y.; Li, J.; Yin, H.-M.; He, M.; Li, L.; Zhang, T. Stabilization of Essential Oil: Polysaccharide-Based Drug Delivery System with Plant-like Structure Based on Biomimetic Concept. Polymers 2023, 15, 3338. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids as Emulsifiers and Emulsion Stabilizers. Food Hydrocoll. 2009, 23, 1473–1482. [Google Scholar] [CrossRef]
- Weiss, J.; Scherze, I.; Muschiolik, G. Polysaccharide Gel with Multiple Emulsion. Food Hydrocoll. 2005, 19, 605–615. [Google Scholar] [CrossRef]
- Dokić, L.; Krstonošić, V.; Nikolić, I. Physicochemical Characteristics and Stability of Oil-in-Water Emulsions Stabilized by OSA Starch. Food Hydrocoll. 2012, 29, 185–192. [Google Scholar] [CrossRef]
- Krstonošić, V.; Dokić, L.; Nikolić, I.; Milanović, M. Influence of Xanthan Gum on Oil-in-Water Emulsion Characteristics Stabilized by OSA Starch. Food Hydrocoll. 2015, 45, 9–17. [Google Scholar] [CrossRef]
- Wulff-Pérez, M.; de Vicente, J.; Martín-Rodríguez, A.; Gálvez-Ruiz, M.J. Controlling Lipolysis through Steric Surfactants: New Insights on the Controlled Degradation of Submicron Emulsions after Oral and Intravenous Administration. Int. J. Pharm. 2012, 423, 161–166. [Google Scholar] [CrossRef]
- Costa, C.; Medronho, B.; Filipe, A.; Mira, I.; Lindman, B.; Edlund, H.; Norgren, M. Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers 2019, 11, 1570. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.; Dohare, N.; Kumari, M.; Singh, U.K.; Khan, A.B.; Borse, M.S.; Patel, R. Comparative Effect of Cationic Gemini Surfactant and Its Monomeric Counterpart on the Conformational Stability and Activity of Lysozyme. RSC Adv. 2017, 7, 16763–16776. [Google Scholar] [CrossRef]
- Garti, N.; Bisperink, C. Double Emulsions: Progress and Applications. Curr. Opin. Colloid Interface Sci. 1998, 3, 657–667. [Google Scholar] [CrossRef]
- Stauffer, F. La Préparation D’émulsions Doubles Par Un Système Microfluidique. Sciences Pharmaceutiques. 26 March 2014. Available online: https://www.researchgate.net/profile/Fanny-Stauffer/publication/323795638_La_preparation_d’emulsions_doubles_par_un_systeme_microfluidique/links/5e9575bf92851c2f529f5099/La-preparation-demulsions-doubles-par-un-systeme-microfluidique.pdf (accessed on 3 February 2024).
- Besnard, L.; Protat, M.; Malloggi, F.; Daillant, J.; Cousin, F.; Pantoustier, N.; Guenoun, P.; Perrin, P. Breaking of the Bancroft Rule for Multiple Emulsions Stabilized by a Single Stimulable Polymer. Soft Matter 2014, 10, 7073–7087. [Google Scholar] [CrossRef]
- Besnard, L.; Marchal, F.; Paredes, J.F.; Daillant, J.; Pantoustier, N.; Perrin, P.; Guenoun, P. Multiple Emulsions Controlled by Stimuli-Responsive Polymers. Adv. Mater. 2013, 25, 2844–2848. [Google Scholar] [CrossRef]
- Hanson, J.A.; Chang, C.B.; Graves, S.M.; Li, Z.; Mason, T.G.; Deming, T.J. Nanoscale Double Emulsions Stabilized by Single-Component Block Copolypeptides. Nature 2008, 455, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Tu, F.; Lee, D. One-Step Encapsulation and Triggered Release Based on Janus Particle-Stabilized Multiple Emulsions. Chem. Commun. 2014, 50, 15549–15552. [Google Scholar] [CrossRef]
- Sun, G.; Liu, M.; Zhou, X.; Hong, L.; Ngai, T. Influence of Asymmetric Ratio of Amphiphilic Diblock Copolymers on One-Step Formation and Stability of Multiple Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 454, 16–22. [Google Scholar] [CrossRef]
- Hong, L.; Sun, G.; Cai, J.; Ngai, T. One-Step Formation of w/o/w Multiple Emulsions Stabilized by Single Amphiphilic Block Copolymers. Langmuir 2012, 28, 2332–2336. [Google Scholar] [CrossRef] [PubMed]
- Kobori, T.; Matsumoto, A.; Sugiyama, S. pH-Dependent Interaction between Sodium Caseinate and Xanthan Gum. Carbohydr. Polym. 2009, 75, 719–723. [Google Scholar] [CrossRef]
- López, M.J.; Vargas-Garcıa, M.C.; Suarez-Estrella, F.; Moreno, J. Properties of Xanthan Obtained from Agricultural Wastes Acid Hydrolysates. J. Food Eng. 2004, 63, 111–115. [Google Scholar] [CrossRef]
- Bouyer, E.; Mekhloufi, G.; Huang, N.; Rosilio, V.; Agnely, F. β-Lactoglobulin, Gum Arabic, and Xanthan Gum for Emulsifying Sweet Almond Oil: Formulation and Stabilization Mechanisms of Pharmaceutical Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 433, 77–87. [Google Scholar] [CrossRef]
- Garcıa-Ochoa, F.; Santos, V.; Casas, J.; Gómez, E. Xanthan Gum: Production, Recovery, and Properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Yin, M.; Yang, D.; Lai, S.; Yang, H. Rheological Properties of Xanthan-Modified Fish Gelatin and Its Potential to Replace Mammalian Gelatin in Low-Fat Stirred Yogurt. LWT 2021, 147, 111643. [Google Scholar] [CrossRef]
- Santos, J.; Alcaide-González, M.; Trujillo-Cayado, L.; Carrillo, F.; Alfaro-Rodríguez, M. Development of Food-Grade Pickering Emulsions Stabilized by a Biological Macromolecule (Xanthan Gum) and Zein. Int. J. Biol. Macromol. 2020, 153, 747–754. [Google Scholar] [CrossRef]
- Lutz, R.; Aserin, A.; Wicker, L.; Garti, N. Release of Electrolytes from W/O/W Double Emulsions Stabilized by a Soluble Complex of Modified Pectin and Whey Protein Isolate. Colloids Surf. B Biointerfaces 2009, 74, 178–185. [Google Scholar] [CrossRef]
- Huang, X.; Tu, R.; Song, H.; Dong, K.; Geng, F.; Chen, L.; Huang, Q.; Wu, Y. Fabrication of Gelatin-EGCG-Pectin Ternary Complex Stabilized W/O/W Double Emulsions by Ultrasonic Emulsification: Physicochemical Stability, Rheological Properties and Structure. J. Food Eng. 2023, 338, 111259. [Google Scholar] [CrossRef]
- Mezger, T. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers; European Coatings: Nuremberg, Germany, 2020; ISBN 3-86630-532-X. [Google Scholar]
- Manral, K. Viscoelastic Properties and Rheological Characterization of Carbomers. Int. J. Res. Eng. Technol. 2015, 1, 17–30. [Google Scholar]
- Saharudin, S.H.; Ahmad, Z.; Basri, M. Role of Xanthan Gum on Physicochemical and Rheological Properties of Rice Bran Oil Emulsion. Int. Food Res. J. 2016, 23, 1361. [Google Scholar]
- Pal, R. Rheology of Emulsions Containing Polymeric Liquids. Encycl. Emuls. Technol. 1996, 4, 93–263. [Google Scholar]
- Frank, D.; Appelqvist, I.; Piyasiri, U.; Wooster, T.J.; Delahunty, C. Proton Transfer Reaction Mass Spectrometry and Time Intensity Perceptual Measurement of Flavor Release from Lipid Emulsions Using Trained Human Subjects. J. Agric. Food Chem. 2011, 59, 4891–4903. [Google Scholar] [CrossRef]
- Van Aken, G.A.; Vingerhoeds, M.H.; De Wijk, R.A. Textural Perception of Liquid Emulsions: Role of Oil Content, Oil Viscosity and Emulsion Viscosity. Food Hydrocoll. 2011, 25, 789–796. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0-429-12389-2. [Google Scholar]
- André, P.; Aubry, J.-M.; Berteina-Raboin, S.; Bouix-Peter, C.; Del Bino, S.; Humbert, P.; Leclaire, J.; Marrot, L.; Masson, C.; Pélisson, I. Formulation Cosmétique Matières Premières, Concepts et Procédés Innovants; EDP: Les Ulis Cedex, France, 2005. [Google Scholar]
- Guo, T.; Li, J.; Guo, M.; Yang, Q.; Dai, X.; Qiao, X.; Song, Z.; Tian, C.; Li, Y.; Ge, H. Low Temperature Inhibits Pectin Degradation by PpCBFs to Prolong Peach Storage Time. J. Food Sci. 2023, 88, 3725–3736. [Google Scholar] [CrossRef] [PubMed]
- Fraeye, I.; De Roeck, A.; Duvetter, T.; Verlent, I.; Hendrickx, M.; Van Loey, A. Influence of Pectin Properties and Processing Conditions on Thermal Pectin Degradation. Food Chem. 2007, 105, 555–563. [Google Scholar] [CrossRef]
- Craig, D.Q.; Kee, A.; Tamburic, S.; Barnes, D. An Investigation into the Temperature Dependence of the Rheological Synergy between Xanthan Gum and Locust Bean Gum Mixtures. J. Biomater. Sci. Polym. Ed. 1997, 8, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Reinoso, D.; Martín-Alfonso, M.J.; Luckham, P.F.; Martinez-Boza, F.J. Flow Behavior and Thermal Resistance of Xanthan Gum in Formate Brine. J. Pet. Sci. Eng. 2020, 188, 106881. [Google Scholar] [CrossRef]
- Pelletier, E.; Viebke, C.; Meadows, J.; Williams, P.A. A Rheological Study of the Order–Disorder Conformational Transition of Xanthan Gum. Biopolym. Orig. Res. Biomol. 2001, 59, 339–346. [Google Scholar] [CrossRef]
Composition | Formulation | |||||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | |||
Vaseline oil (%) | 26.8 | 24 | 23 | 24 | ||
Span 60 (%) | 0.5 | 3 | 4 | 5 | ||
MgSO4 (%) | 0.7 | 0.7 | 0.7 | 0.7 | ||
distilled water (%) | 72 | 72.3 | 72.8 | 70.3 | ||
Results | Macroscopic | PS | H | H | H | |
pH | / | 6.27 | 6.33 | 6.13 | ||
Conductivity (μs/cm) | / | 3.40 | 2.80 | 3.10 | ||
Centrifugation (trs/min) For 5 min | 2000 | / | + | + | + | |
4000 | / | + | + | + | ||
6000 | / | − | + | + | ||
Aspect | Shine, oily, homogeneous; medium consistency. Low spread with lubrication of the skin. Difficult cleaning. |
Composition (%) | N° Formulation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | |
Primary Emulsion | 40 | 60 | 40 | 40 | 60 | 40 | 60 | 60 | 60 | 53.33 |
Tween 80 | 0.1 | 0.1 | 0.5 | 0.1 | 0.1 | 0.5 | 0.5 | 0.5 | 0.366 | 0.5 |
Xanthan Gum | 0.5 | 0.5 | 0.5 | 1.5 | 1.5 | 1.5 | 1.5 | 0.833 | 0.5 | 0.5 |
Distilled water | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP |
Observation | H | H | H | H | H | H | H | H | H | H |
pH | 6.48 | 6.53 | 6.51 | 5.74 | 6.19 | 5.77 | 6.10 | 5.39 | 6.17 | 6.29 |
Conductivity (ms/cm) | 1.82 | 1.26 | 2.2 | 1.82 | 1.84 | 1.82 | 2.15 | 1.68 | 1.94 | 1.63 |
Macroscopic Properties | Milky, Homogeneous | Medium consistency | Hight consistency | Hight consistency | Hight consistency | Hight consistency | Hight consistency | Medium consistency | Milky, Homogeneous | Milky, Homogeneous |
Encapsulation rate (%) | 75.1 | 77.6 | 80.1 | 82.6 | 76.4 | 72.7 | 87.5 | 92.5 | 88.8 | 90.0 |
Composition (%) | N° Formulation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | |
Primary Emulsion | 60 | 40 | 60 | 40 | 60 | 40 | 60 | 50 | 50 | 50 |
Tween 80 | 0.1 | 0.2 | 0.2 | 0.15 | 0.15 | 0.15 | 0.15 | 0.1 | 0.2 | 0.15 |
Pectin | 2.75 | 2.75 | 2.75 | 0.5 | 0.5 | 5 | 5 | 0.5 | 5 | 2.75 |
Distilled water | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP |
Observation | H | H | H | H | H | H | H | PS | H | H |
pH | 6.48 | 6.53 | 6.51 | 5.74 | 6.19 | 5.77 | 6.10 | / | 6.47 | 6.49 |
Conductivity (ms/cm) | 1.82 | 1.26 | 2.2 | 1.82 | 1.84 | 1.82 | 2.15 | / | 1.49 | 1.63 |
macroscopic properties | Milky, Homogeneous. | Medium consistency | Medium consistency | Milky, Homogeneous | Milky, Homogeneous | High consistency | High consistency | Separation Phase | High consistency | Medium consistency |
Encapsulation rate (%) | / | / | 70.23 | / | / | 72.71 | 69.79 | / | 60.3 | / |
Composition (%) | N° Formulation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | |
Vaselin oil | 20 | 10 | 20 | 20 | 10 | 10 | 20 | 13.33 | 13.33 | 15 |
Span 60 | 3 | 1 | 3 | 3 | 1 | 1.66 | 1 | 1 | 3 | 2 |
Xanthan Gum | 0.5 | 0.5 | 0.5 | 1.5 | 1.16 | 1.5 | 0.833 | 1.5 | 0.5 | 1 |
Tween 80 | 0.1 | 0.5 | 0.5 | 0.5 | 0.1 | 0.5 | 0.1 | 0.1 | 0.1 | 0.3 |
MgSO4·7H2O | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Distilled water | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP |
Observation | H | H | H | H | H | H | H | H | H | H |
pH | 6.29 | 6.24 | 6.48 | 5.96 | 6.15 | 6.06 | 6.24 | 6.11 | 6.6 | 6.18 |
Conductivity (ms/cm) | 2.61 | 3.7 | 2.16 | 1.2 | 1.4 | 2.4 | 1.8 | 1.3 | 2.4 | 2 |
Composition (% ) | N° Formulation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | |
Vaselin Oil | 15 | 20 | 15 | 20 | 15 | 15 | 15 | 15 | 15 | 20 |
Span 60 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 1 | 2 |
Pectin | 0.5 | 2.75 | 2.75 | 2.75 | 5 | 5 | 5 | 2.75 | 5 | 0.5 |
Tween 80 | 0.2 | 0.2 | 0.3 | 0.1 | 0.2 | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 |
MgSO4·7H2O | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Distilled water | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP | QSP |
Observation | PS | PS | H | PS | H | H | H | PS | H | PS |
pH | / | / | 5.91 | / | 5.66 | 5.44 | 5.30 | / | 5.11 | / |
Conductivity (ms/cm) | / | / | 2.9 | / | 3.2 | 2.5 | 3.5 | / | 3 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudoukhani, M.; Yahoum, M.M.; Ezzroug, K.; Toumi, S.; Lefnaoui, S.; Moulai-Mostefa, N.; Sid, A.N.E.H.; Tahraoui, H.; Kebir, M.; Amrane, A.; et al. Formulation and Characterization of Double Emulsions W/O/W Stabilized by Two Natural Polymers with Two Manufacturing Processes (Comparative Study). ChemEngineering 2024, 8, 34. https://doi.org/10.3390/chemengineering8020034
Boudoukhani M, Yahoum MM, Ezzroug K, Toumi S, Lefnaoui S, Moulai-Mostefa N, Sid ANEH, Tahraoui H, Kebir M, Amrane A, et al. Formulation and Characterization of Double Emulsions W/O/W Stabilized by Two Natural Polymers with Two Manufacturing Processes (Comparative Study). ChemEngineering. 2024; 8(2):34. https://doi.org/10.3390/chemengineering8020034
Chicago/Turabian StyleBoudoukhani, Meriem, Madiha Melha Yahoum, Kaouther Ezzroug, Selma Toumi, Sonia Lefnaoui, Nadji Moulai-Mostefa, Asma Nour El Houda Sid, Hichem Tahraoui, Mohammed Kebir, Abdeltif Amrane, and et al. 2024. "Formulation and Characterization of Double Emulsions W/O/W Stabilized by Two Natural Polymers with Two Manufacturing Processes (Comparative Study)" ChemEngineering 8, no. 2: 34. https://doi.org/10.3390/chemengineering8020034
APA StyleBoudoukhani, M., Yahoum, M. M., Ezzroug, K., Toumi, S., Lefnaoui, S., Moulai-Mostefa, N., Sid, A. N. E. H., Tahraoui, H., Kebir, M., Amrane, A., Jaouadi, B., & Zhang, J. (2024). Formulation and Characterization of Double Emulsions W/O/W Stabilized by Two Natural Polymers with Two Manufacturing Processes (Comparative Study). ChemEngineering, 8(2), 34. https://doi.org/10.3390/chemengineering8020034