Oxalic Acid-Assisted Photo-Fenton Catalysis Using Magnetic Fe3O4 Nanoparticles for Complete Removal of Textile Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Magnetic Ferrous–Ferric Oxide Nanoparticles
2.3. Characterization Study
2.4. Photo-Fenton Reaction for Photosensitized Dye Degradation
2.4.1. Optimized Conditions for Dye Degradation
2.4.2. Mimicry of Photo-Fenton Reaction Using Oxalic Acid
2.5. Liquid Chromatography–Mass Spectrometry (LC-MS)
3. Results
3.1. Synthesis of Magnetic Ferrous–Ferric Oxide Nanoparticles
3.2. Characterization of Ferrous–Ferric Oxide Nanoparticles
3.2.1. XRD
3.2.2. FTIR
3.2.3. SEM and EDX
3.2.4. TEM
3.2.5. Magnetization
3.3. Photocatalytic Dye Degradation
3.4. Optimized Conditions for Dye Degradation
3.4.1. Effect of Dye Concentration
3.4.2. Effect of H2O2 Concentration
3.4.3. Effect of Ferrous–Ferric Oxide Nanoparticles Concentration
3.4.4. Effect of pH
3.5. Photo-Fenton Reaction Mimicry Using Oxalic Acid
3.6. LC-MS Analysis of Dye Degradation
4. Discussion
Sr. No. | Nanoparticles | Light Sources | Dye | Degradation Time (Min.) | Degradation (%) | References |
---|---|---|---|---|---|---|
1 | ZnO | UV light | Methyl orange | 180 | 89.6 | [50] |
2 | ZnO | UV light | Methylene blue | 200 | 69.0 | [51] |
3 | CeO2/CoWO4 | Visible light | Methylene blue | 105 | 92.5 | [52] |
4 | MgO | UV light | Methylene blue | 120 | 75.0 | [53] |
5 | ZnMgO | UV light | Methylene blue | 60 | 87.0 | [54] |
6 | CaO-MgO | UV light | Methylene blue | 100 | 44.0 | [55] |
7 | Co-CeO2 | Sunlight | Methylene blue | 180 | 29.0 | [56] |
8 | Ag2S-MgO-GO | UV light | Rhodamine B | 60 | 98.8 | [57] |
9 | NiO and Fe-NiO | Visible light | Rhodamine B | 40 | 73.0 and 99.0 | [58] |
10 | Ag-Fe2O3 | Visible light | Phenol red | 8 | 78.0 | [59] |
11 | Fe2O3 | Xenon arc lamp | Methylene blue | 120 | 63.6 | [60] |
12 | Hematite (α-Fe2O3) | Sunlight | Bromophenol blue | 240 | 87.9 | [61] |
13 | MoO3 | Xenon lamp | Alizarin | 120 | 74.0 | [62] |
14 | TiO2 | Sunlight | Crystal violet | 45 | 90.5 | [63] |
15 | TiO2 | Mercury lamp | Sudan black B | 100 | 96.0 | [64] |
16 | SnO2 | Mercury lamp | Eriochrome black T | 270 | 77.0 | [65] |
17 | CuO | Sun light | Methyl red | 135 | 85.0 | [66] |
18 | ZrO2 | Sun light | Reactive yellow 160 | 120 | 94.0 | [67] |
19 | NiO | Sun light | Congo red | 160 | 84.0 | [68] |
20 | Fe3O4 | Visible Light | Disperse red 277 | 180 | 100 | Present work |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, W.U.; Ahmed, S.; Dhoble, Y.; Madhav, S. A Critical Review of Hazardous Waste Generation from Textile Industries and Associated Ecological Impacts. J. Indian Chem. Soc. 2023, 100, 100829. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Chang, J.-S.; Govindwar, S.P. Decolorization and Biodegradation of Textile Dye Navy Blue HER by Trichosporon Beigelii NCIM-3326. J. Hazard. Mater. 2009, 166, 1421–1428. [Google Scholar] [CrossRef]
- El Harfi, S.; El Harfi, A. Classifications, Properties and Applications of Textile Dyes: A Review. Appl. J. Environ. Eng. Sci. 2017, 3, 311–320. [Google Scholar]
- Kallawar, G.A.; Bhanvase, B.A. A Review on Existing and Emerging Approaches for Textile Wastewater Treatments: Challenges and Future Perspectives. Environ. Sci. Pollut. Res. 2024, 31, 1748–1789. [Google Scholar] [CrossRef]
- Bhavsar, S.; Dudhagara, P.; Tank, S. R Software Package Based Statistical Optimization of Process Components to Simultaneously Enhance the Bacterial Growth, Laccase Production and Textile Dye Decolorization with Cytotoxicity Study. PLoS ONE 2018, 13, e0195795. [Google Scholar] [CrossRef]
- Clark, M. Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 0857093975. [Google Scholar]
- Belessiotis, G.V.; Falara, P.P.; Ibrahim, I.; Kontos, A.G. Magnetic Metal Oxide-Based Photocatalysts with Integrated Silver for Water Treatment. Materials 2022, 15, 4629. [Google Scholar] [CrossRef]
- Emran, M.Y.; Miran, W.; Gomaa, H.; Ibrahim, I.; Belessiotis, G.V.; Abdelwahab, A.A. Handbook of Biodegradable Materials; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 9783030837839. [Google Scholar]
- Kefeni, K.K.; Mamba, B.B. Photocatalytic Application of Spinel Ferrite Nanoparticles and Nanocomposites in Wastewater Treatment. Sustain. Mater. Technol. 2020, 23, e00140. [Google Scholar] [CrossRef]
- Ohtani, B. Photocatalysis A to Z—What We Know and What We Do Not Know in a Scientific Sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef]
- Sanford, J.R.; Larson, R.A.; Runge, T. Nitrate Sorption to Biochar Following Chemical Oxidation. Sci. Total Environ. 2019, 669, 938–947. [Google Scholar] [CrossRef]
- Shan, R.; Lu, L.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y.; Luo, B. Photocatalytic Degradation of Methyl Orange by Ag/TiO2/Biochar Composite Catalysts in Aqueous Solutions. Mater. Sci. Semicond. Process. 2020, 114, 105088. [Google Scholar] [CrossRef]
- Nie, C.; Wang, J.; Cai, B.; Lai, B.; Wang, S.; Ao, Z. Multifunctional Roles of MoS2 in Persulfate-Based Advanced Oxidation Processes for Eliminating Aqueous Organic Pollutants: A Review. Appl. Catal. B Environ. 2023, 340, 123173. [Google Scholar] [CrossRef]
- Neon, M.H.K.; Islam, M.S. MoO3 and Ag Co-Synthesized TiO2 as a Novel Heterogeneous Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Activity for Methyl Orange Dye Degradation. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100244. [Google Scholar]
- Dudita, M.; Bogatu, C.; Enesca, A.; Duta, A. The Influence of the Additives Composition and Concentration on the Properties of SnOx Thin Films Used in Photocatalysis. Mater. Lett. 2011, 65, 2185–2189. [Google Scholar] [CrossRef]
- Enesca, A.; Isac, L.; Duta, A. Charge Carriers Injection in Tandem Semiconductors for Dyes Mineralization. Appl. Catal. B Environ. 2015, 162, 352–363. [Google Scholar] [CrossRef]
- He, S.; Li, W.; Wang, X.; Ma, Q.; Li, M.; Xu, W.; Wang, X.; Zhao, C. High-Efficient Precious-Metal-Free g-C3N4-Fe3O4/β-FeOOH Photocatalyst Based on Double-Heterojunction for Visible-Light-Driven Hydrogen Evolution. Appl. Surf. Sci. 2020, 506, 144948. [Google Scholar] [CrossRef]
- Bekhit, F.; Farag, S.; Attia, A.M. Decolorization and Degradation of the Azo Dye by Bacterial Cells Coated with Magnetic Iron Oxide Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100376. [Google Scholar] [CrossRef]
- Manohar, A.; Vijayakanth, V.; Vattikuti, S.V.P.; Kim, K.H. A Mini-Review on AFe2O4 (A = Zn, Mg, Mn, Co, Cu, and Ni) Nanoparticles: Photocatalytic, Magnetic Hyperthermia and Cytotoxicity Study. Mater. Chem. Phys. 2022, 286, 126117. [Google Scholar] [CrossRef]
- Egea-Benavente, D.; Díaz-Ufano, C.; Gallo-Cordova, Á.; Palomares, F.J.; Cuya Huaman, J.L.; Barber, D.F.; Morales, M.d.P.; Balachandran, J. Cubic Mesocrystal Magnetic Iron Oxide Nanoparticle Formation by Oriented Aggregation of Cubes in Organic Media: A Rational Design to Enhance the Magnetic Hyperthermia Efficiency. ACS Appl. Mater. Interfaces 2023, 15, 32162–32176. [Google Scholar] [CrossRef]
- Parida, K.M.; Naik, B. Synthesis of Mesoporous TiO2−XNx Spheres by Template Free Homogeneous Co-Precipitation Method and Their Photo-Catalytic Activity under Visible Light Illumination. J. Colloid Interface Sci. 2009, 333, 269–276. [Google Scholar] [CrossRef]
- Vaidyanathan, G.; Sendhilnathan, S. Characterization of Co1−XZnxFe2O4 Nanoparticles Synthesized by Co-Precipitation Method. Phys. B Condens. Matter 2008, 403, 2157–2167. [Google Scholar] [CrossRef]
- Raja, M. Green Synthesis of Iron Nanoparticles and Investigation of Their Effect on Degradation of Dyes. J. Biol. Inf. Sci. 2015, 4, 6–8. [Google Scholar]
- Villegas, V.A.R.; Ramírez, J.I.D.L.; Guevara, E.H.; Sicairos, S.P.; Ayala, L.A.H.; Sanchez, B.L. Synthesis and Characterization of Magnetite Nanoparticles for Photocatalysis of Nitrobenzene. J. Saudi Chem. Soc. 2020, 24, 223–235. [Google Scholar] [CrossRef]
- Kim, W.; Suh, C.Y.; Cho, S.W.; Roh, K.M.; Kwon, H.; Song, K.; Shon, I.J. A New Method for the Identification and Quantification of Magnetite-Maghemite Mixture Using Conventional X-Ray Diffraction Technique. Talanta 2012, 94, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, W.; Xiao, X.; Zhou, J.; Ren, F.; Jiang, C. Preparation and Characterization of Spindle-like Fe3O4 Mesoporous Nanoparticles. Nanoscale Res. Lett. 2011, 6, 89. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Li, W.; Zhang, L.; Guo, B.; Ding, L.; Li, X. Photocatalytic Activity of Magnetic Nano-β-FeOOH/Fe3O4/Biochar Composites for the Enhanced Degradation of Methyl Orange under Visible Light. Nanomaterials 2021, 11, 526. [Google Scholar] [CrossRef]
- Ambashta, R.D.; Sillanpää, M. Water Purification Using Magnetic Assistance: A Review. J. Hazard. Mater. 2010, 180, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Mahdavian, A.R.; Mirrahimi, M.A.-S. Efficient Separation of Heavy Metal Cations by Anchoring Polyacrylic Acid on Superparamagnetic Magnetite Nanoparticles through Surface Modification. Chem. Eng. J. 2010, 159, 264–271. [Google Scholar] [CrossRef]
- Ma, Z.-Y.; Guan, Y.-P.; Liu, X.-Q.; Liu, H.-Z. Preparation and Characterization of Micron-Sized Non-Porous Magnetic Polymer Microspheres with Immobilized Metal Affinity Ligands by Modified Suspension Polymerization. J. Appl. Polym. Sci. 2005, 96, 2174–2180. [Google Scholar] [CrossRef]
- Hu, H.; Wang, Z.; Pan, L. Synthesis of Monodisperse Fe3O4@silica Core–Shell Microspheres and Their Application for Removal of Heavy Metal Ions from Water. J. Alloys Compd. 2010, 492, 656–661. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Wu, F.; Wang, T.; Cai, Y.; Shi, Y.; Jiang, G. Removal of Fluoride from Aqueous Media by Fe3O4@Al(OH)3 Magnetic Nanoparticles. J. Hazard. Mater. 2010, 173, 102–109. [Google Scholar] [CrossRef]
- Movahedyan, H.; Mohammadi, A.S.; Assadi, A. Comparison of Different Advanced Oxidation Processes Degrading P-Chlorophenol in Aqueous Solution. J. Environ. Health Sci. Eng. 2009, 6, 153–160. [Google Scholar]
- Kavitha, S.K.; Palanisamy, P.N. Photocatalytic and Sonophotocatalytic Degradation of Reactive Red 120 Using Dye Sensitized TiO2 under Visible Light. Int. J. Civ. Environ. Eng. 2011, 3, 1–6. [Google Scholar]
- Rauf, M.A.; Ashraf, S.S. Fundamental Principles and Application of Heterogeneous Photocatalytic Degradation of Dyes in Solution. Chem. Eng. J. 2009, 151, 10–18. [Google Scholar] [CrossRef]
- Sabhi, S.; Kiwi, J. Degradation of 2, 4-Dichlorophenol by Immobilized Iron Catalysts. Water Res. 2001, 35, 1994–2002. [Google Scholar] [CrossRef] [PubMed]
- Dindarloo Inaloo, K.; Naddafi, K.; Mesdaghinia, A.R.; Nasseri, S.; Nabizadeh Nodehi, R.; Rahimi, A. Optimization of operational parameters for decolorization and degradation of ci reactive blue 29 by ozone. Iran. J. Environ. Health Sci. Eng. 2011, 8, 227–234. [Google Scholar]
- Fernandez, J.; Dhananjeyan, M.R.; Kiwi, J.; Senuma, Y.; Hilborn, J. Evidence for Fenton Photoassisted Processes Mediated by Encapsulated Fe Ions at Biocompatible PH Values. J. Phys. Chem. B 2000, 104, 5298–5301. [Google Scholar] [CrossRef]
- Lim, H.; Lee, J.; Jin, S.; Kim, J.; Yoon, J.; Hyeon, T. Highly Active Heterogeneous Fenton Catalyst Using Iron Oxide Nanoparticles Immobilized in Alumina Coated Mesoporous Silica. Chem. Commun. 2006, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Leland, J.K.; Bard, A.J. Photochemlstry of Colloidal Semiconducting Iron Oxlde Polymorphs. J. Phys. Chem. 1987, 91, 5076–5083. [Google Scholar] [CrossRef]
- Siffert, C.; Sulzberger, B. Light-Induced Dissolution of Hematite in the Presence of Oxalate. A Case Study. Langmuir 1991, 7, 1627–1634. [Google Scholar] [CrossRef]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; et al. Use of Iron Oxide Nanomaterials in Wastewater Treatment: A Review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef]
- Quici, N.; Morgada, M.E.; Piperata, G.; Babay, P.; Gettar, R.T.; Litter, M.I. Oxalic Acid Destruction at High Concentrations by Combined Heterogeneous Photocatalysis and Photo-Fenton Processes. Catal. Today 2005, 101, 253–260. [Google Scholar] [CrossRef]
- Faust, B.C.; Zepp, R.G. Photochemistry of Aqueous Iron (III)-Polycarboxylate Complexes: Roles in the Chemistry of Atmospheric and Surface Waters. Environ. Sci. Technol. 1993, 27, 2517–2522. [Google Scholar] [CrossRef]
- Christian, D.; Gaekwad, A.; Dani, H.; Shabiimam, M.A.; Kandya, A. Recent Techniques of Textile Industrial Wastewater Treatment: A Review. Mater. Today Proc. 2023, 77, 277–285. [Google Scholar] [CrossRef]
- Xiao, C.; Li, S.; Yi, F.; Zhang, B.; Chen, D.; Zhang, Y.; Chen, H.; Huang, Y. Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin–FeOOH system for the degradation of organic dyes. RSC Adv. 2020, 10, 18704–18714. [Google Scholar] [CrossRef]
- Akhavan, O.; Azimirad, R. Photocatalytic Property of Fe2O3 Nanograin Chains Coated by TiO2 Nanolayer in Visible Light Irradiation. Appl. Catal. A Gen. 2009, 369, 77–82. [Google Scholar] [CrossRef]
- Fan, F.-L.; Qin, Z.; Bai, J.; Rong, W.-D.; Fan, F.-Y.; Tian, W.; Wu, X.-L.; Wang, Y.; Zhao, L. Rapid Removal of Uranium from Aqueous Solutions Using Magnetic Fe3O4@SiO2 Composite Particles. J. Environ. Radioact. 2012, 106, 40–46. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.; Lo, I.M.C. Removal and Recovery of Cr(VI) from Wastewater by Maghemite Nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef]
- Asif, M.; Shafiq, M.; Imtiaz, F.; Ahmed, S.; Alazba, A.A.; Hussain, H.N.; Butt, F.N.; Zainab, S.A.; Khan, M.K.; Bilal, M. Photocatalytic Degradation of Methyl Orange from Aqueous Solution Using ZnO by Response Surface Methodology. Top Catal. 2024, 67, 1–9. [Google Scholar] [CrossRef]
- Kahsay, M.H. Synthesis and characterization of ZnO nanoparticles using aqueous extract of Becium grandiflorum for antimicrobial activity and adsorption of methylene blue. Appl. Water Sci. 2021, 11, 45. [Google Scholar] [CrossRef]
- Selvi, S.; Rajendran, R.; Barathi, D.; Jayamani, N. Facile Synthesis of CeO2/CoWO4 Hybrid Nanocomposites for High Photocatalytic Performance and Investigation of Antimicrobial Activity. J. Electron. Mater. 2021, 50, 2890–2902. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Velavan, R.; Batoo, K.M.; Raslan, E.H. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 2020, 16, 103013. [Google Scholar] [CrossRef]
- Sierra-Fernandez, A.; De la Rosa-García, S.C.; Gomez-Villalba, L.S.; Gómez-Cornelio, S.; Rabanal, M.E.; Fort, R.; Quintana, P. Synthesis, Photocatalytic, and Antifungal Properties of MgO, ZnO and Zn/Mg Oxide Nanoparticles for the Protection of Calcareous Stone Heritage. ACS Appl. Mater. Interfaces 2017, 9, 24873–24886. [Google Scholar] [CrossRef]
- Shahid, M.; Farrukh, M.A.; Umar, A.A.; Khaleeq-ur-Rahman, M. Solvent controlled synthesis of CaO-MgO nanocomposites and their application in the photodegradation of organic pollutants of industrial waste. Russ. J. Phys. Chem. A 2014, 88, 836–844. [Google Scholar] [CrossRef]
- George, S.E.; George, M.; Alex, J.; Joy, L.K.; Aravind, A.; Sajan, D.; Thakur, A.; Hussain, S.; Vinitha, G. Nonlinear optical and photocatalytic dye degradation of Co doped CeO2 nanostructures synthesized through a modified combustion technique. Ceram. Int. 2020, 46, 13932–13940. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Fakhri, A. Fabrication and structural of the Ag2S-MgO/graphene oxide nanocomposites with high photocatalysis and antimicrobial activities. J. Photochem. Photobiol. B Biol. 2020, 207, 111882. [Google Scholar] [CrossRef]
- Minisha, S.; Johnson, J.; Mohammad Wabaidur, S.; Gupta, J.K.; Aftab, S.; Siddiqui, M.R.; Lai, W.C. Synthesis and characterizations of Fe-doped NiO nanoparticles and their potential photocatalytic dye degradation activities. Sustainability 2023, 15, 14552. [Google Scholar] [CrossRef]
- Idris, D.S.; Roy, A. Antioxidant and dye degradation activity of green synthesized silver-iron oxide (Ag-Fe2O3) bimetallic nanoparticles. Nano-Struct. Nano-Objects 2024, 38, 101142. [Google Scholar] [CrossRef]
- Subaihi, A.; Naglah, A.M. Facile synthesis and characterization of Fe2O3 nanoparticles using L-lysine and L-serine for efficient photocatalytic degradation of methylene blue dye. Arab. J. Chem. 2022, 15, 103613. [Google Scholar] [CrossRef]
- Ahmed, A.; Usman, M.; Yu, B.; Shen, Y.; Cong, H. Sustainable fabrication of hematite (α-Fe2O3) nanoparticles using biomolecules of Punica granatum seed extract for unconventional solar-light-driven photocatalytic remediation of organic dyes. J. Mol. Liq. 2021, 339, 116729. [Google Scholar] [CrossRef]
- Bharathi, D.; AlSalhi, M.S.; Devanesan, S.; Nandagopal, J.G.T.; Kim, W.; Ranjithkumar, R. Photocatalytic degradation of Rhodamine B using green-synthesized ZnO nanoparticles from Sechium edule polysaccharides. Appl. Nanosci. 2022, 12, 2477–2487. [Google Scholar] [CrossRef]
- Balaraman, P.; Balasubramanian, B.; Liu, W.C.; Kaliannan, D.; Durai, M.; Kamyab, H.; Alwetaishi, M.; Maluventhen, V.; Ashokkumar, V.; Chelliapan, S.; et al. Sargassum myriocystum-mediated TiO2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. Environ. Res. 2022, 204, 112278. [Google Scholar] [CrossRef]
- Safaralizadeh, E.; Darzi, S.J.; Mahjoub, A.R.; Abazari, R. Visible light-induced degradation of phenolic compounds by Sudan black dye sensitized TiO2 nanoparticles as an advanced photocatalytic material. Res. Chem. Intermediat. 2017, 43, 1197–1209. [Google Scholar] [CrossRef]
- Najjar, M.; Hosseini, H.A.; Masoudi, A.; Sabouri, Z.; Mostafapour, A.; Khatami, M.; Darroudi, M. Green chemical approach for the synthesis of SnO2 nanoparticles and its application in photocatalytic degradation of Eriochrome Black T dye. Optik 2021, 242, 167152. [Google Scholar] [CrossRef]
- Dulta, K.; Koşarsoy Ağçeli, G.; Chauhan, P.; Jasrotia, R.; Chauhan, P.K.; Ighalo, J.O. Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain. Environ. Res. 2022, 32, 2. [Google Scholar] [CrossRef]
- Al-Zaqri, N.; Muthuvel, A.; Jothibas, M.; Alsalme, A.; Alharthi, F.A.; Mohana, V. Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: Characterization, photocatalytic degradation and antibacterial activities. Inorg. Chem. Commun. 2021, 127, 108507. [Google Scholar] [CrossRef]
- Bhat, S.A.; Zafar, F.; Mondal, A.H.; Kareem, A.; Mirza, A.U.; Khan, S.; Mohammad, A.; Haq, Q.M.R.; Nishat, N. Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J. Iran. Chem. Soc. 2020, 17, 215–227. [Google Scholar] [CrossRef]
Position [°2ϴ] | FWHM * [°2ϴ] | d-Spacing [Å] | Height [cps] | Relative Intensities [%] | Significance | Miller Indices hkl | Structure | Particle Size (nm) |
---|---|---|---|---|---|---|---|---|
30.11 | 0.4428 | 2.95412 | 23.78 | 27.02 | 2.4779 | 220 | Cubic spinel | 19.41 |
35.66 | 0.4920 | 2.52352 | 88.01 | 100.00 | 5.9428 | 311 | 17.72 | |
43.38 | 0.4428 | 2.10187 | 20.00 | 22.73 | 2.3232 | 400 | 20.18 | |
53.84 | 0.6888 | 1.70288 | 13.86 | 15.75 | 2.0597 | 422 | 13.52 | |
57.28 | 0.3936 | 1.61336 | 42.46 | 48.25 | 2.1600 | 511 | 24.08 | |
62.64 | 0.3444 | 1.47759 | 71.86 | 81.66 | 1.3618 | 440 | 28.22 | |
71.43 | 0.5904 | 1.32271 | 6.60 | 7.50 | 1.3419 | 620 | 17.32 | |
74.52 | 0.4200 | 1.27388 | 17.73 | 20.15 | 1.0193 | 533 | 24.84 |
Element | Weight % | Atomic % | Net Intensities | Error % | K Ratio | Z | R | A |
---|---|---|---|---|---|---|---|---|
Fe | 52.47 | 22.25 | 2910.82 | 1.77 | 0.46 | 0.86 | 1.05 | 1.01 |
O | 30.48 | 45.11 | 1691.59 | 7.57 | 0.12 | 1.11 | 0.93 | 0.36 |
C | 16.26 | 32.06 | 303.43 | 8.95 | 0.05 | 1.16 | 0.91 | 0.28 |
S | 0.79 | 0.58 | 124.30 | 9.65 | 0.01 | 1.00 | 1.00 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhavsar, S.; Dudhagara, P.; Ghelani, A.; Wirajana, I.N.; Phi, Q.-T.; Chen, Y.-Y.; Shyu, D.J.H. Oxalic Acid-Assisted Photo-Fenton Catalysis Using Magnetic Fe3O4 Nanoparticles for Complete Removal of Textile Dye. ChemEngineering 2024, 8, 67. https://doi.org/10.3390/chemengineering8040067
Bhavsar S, Dudhagara P, Ghelani A, Wirajana IN, Phi Q-T, Chen Y-Y, Shyu DJH. Oxalic Acid-Assisted Photo-Fenton Catalysis Using Magnetic Fe3O4 Nanoparticles for Complete Removal of Textile Dye. ChemEngineering. 2024; 8(4):67. https://doi.org/10.3390/chemengineering8040067
Chicago/Turabian StyleBhavsar, Sunil, Pravin Dudhagara, Anjana Ghelani, I Nengah Wirajana, Quyet-Tien Phi, Yih-Yuan Chen, and Douglas J. H. Shyu. 2024. "Oxalic Acid-Assisted Photo-Fenton Catalysis Using Magnetic Fe3O4 Nanoparticles for Complete Removal of Textile Dye" ChemEngineering 8, no. 4: 67. https://doi.org/10.3390/chemengineering8040067
APA StyleBhavsar, S., Dudhagara, P., Ghelani, A., Wirajana, I. N., Phi, Q. -T., Chen, Y. -Y., & Shyu, D. J. H. (2024). Oxalic Acid-Assisted Photo-Fenton Catalysis Using Magnetic Fe3O4 Nanoparticles for Complete Removal of Textile Dye. ChemEngineering, 8(4), 67. https://doi.org/10.3390/chemengineering8040067