Visible Light-Driven Photocatalytic CH4 Production from an Acetic Acid Solution with Cetyltrimethylammonium Bromide-Assisted ZnIn2S4
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of ZnIn2S4 (ZIS)
2.3. Characterization
2.4. Photocatalytic Methane Production
3. Results and Discussion
3.1. X-ray Diffraction (XRD) Analysis
3.2. Fourier-Transform Infrared (FTIR) Spectroscopic Analysis
3.3. Scanning Electron Microscopic (SEM) and Transmission Electron Microscopic (TEM) Analyses
3.4. Brunauer–Emmett–Teller (BET) Surface Area and Pore Size Analysis
3.5. Ultraviolet–Visible Diffuse Reflectance Spectroscopic (DRS) Analysis
3.6. Mott–Schottky Analysis
3.7. Photoluminescence (PL) Analysis
3.8. Electrochemical Impedance Spectroscopy (EIS) and Transient Photocurrent Response (TPCR) Analysis
3.9. Photocatalytic Methane Production
3.10. Photocatalytic Performance Conditions
3.10.1. Effect of Catalyst Loading
3.10.2. Effect of Reaction Temperature
3.10.3. Effect of CH3COOH Concentration
3.10.4. Effect of pH
4. Stability and Reusability Test
5. Proposed Mechanism
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Chauhan, D.K.; Sharma, N.; Kailasam, K. A Critical Review on Emerging Photocatalysts for Syngas Generation via CO2 Reduction under Aqueous Media: A Sustainable Paradigm. Mater. Adv. 2022, 3, 5274–5298. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane Production from Lignocellulosic Agricultural Crop Wastes: A Review in Context to Second Generation of Biofuel Production. Renew. Sustain. Energy Rev. 2012, 16, 1462–1476. [Google Scholar] [CrossRef]
- Roy, S.C.; Varghese, O.K.; Paulose, M.; Grimes, C.A. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 2010, 4, 1259–1278. [Google Scholar] [CrossRef]
- Yang, R.; Mei, L.; Fan, Y.; Zhang, Q.; Zhu, R.; Amal, R.; Yin, Z.; Zeng, Z. ZnIn2S4-Based Photocatalysts for Energy and Environmental Applications. Small Methods 2021, 5, 2100887. [Google Scholar] [CrossRef]
- Amin, A.M.; Croiset, E.; Epling, W. Review of Methane Catalytic Cracking for Hydrogen Production. Int. J. Hydrogen Energy 2011, 36, 2904–2935. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Feng, H.-P.; Zhang, X.-G.; Guo, H.; Wen, X.-J.; Sui, L.; Dong, Z.-T.; Yan, M.; Niu, C.-G. Regulating and Protecting of Oxygen Vacancy Endow MoO3-X@Zn2In2S5 S-Scheme Core–Shell Heterojunction with High-Efficiency Organic Pollutant Removal and Bacterial Disinfection: Correlation of Pollutant Active Sites to Degradation Pathways. Chem. Eng. J. 2024, 490, 151309. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Zhou, R.; Li, Y.; He, Z.; Ding, H.; Chen, D.; Ao, W. A Review: Synthesis, Modification and Photocatalytic Applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1–19. [Google Scholar] [CrossRef]
- Lei, Z.; Ma, G.; Liu, M.; You, W.; Yan, H.; Wu, G.; Takata, T.; Hara, M.; Domen, K.; Li, C. Sulfur-Substituted and Zinc-Doped In(OH)3: A New Class of Catalyst for Photocatalytic H2 Production from Water under Visible Light Illumination. J. Catal. 2006, 237, 322–329. [Google Scholar] [CrossRef]
- Yadav, G.; Ahmaruzzaman, M. ZnIn2S4 and ZnIn2S4 Based Advanced Hybrid Materials: Structure, Morphology and Applications in Environment and Energy. Inorg. Chem. Commun. 2022, 138, 109288. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G. Half-Unit-Cell ZnIn2S4 Monolayer with Sulfur Vacancies for Photocatalytic Hydrogen Evolution. Appl. Catal. B 2019, 248, 193–201. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A Mini-Review on ZnIn2S4-Based Photocatalysts for Energy and Environmental Application. Green Energy Environ. 2022, 7, 176–204. [Google Scholar] [CrossRef]
- Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal Oxides as Photocatalysts. J. Saudi Chem. Soc. 2015, 19, 462–464. [Google Scholar] [CrossRef]
- Gao, M.-R.; Xu, Y.-F.; Jiang, J.; Yu, S.-H. Nanostructured Metal Chalcogenides: Synthesis, Modification and Applications in Energy Conversion and Storage Devices. Chem. Soc. Rev. 2013, 42, 2986. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.; Cheng, X.; Shi, W. Research Progress of ZnIn2S4-Based Catalysts for Photocatalytic Overall Water Splitting. Catalysts 2023, 13, 967. [Google Scholar] [CrossRef]
- Shen, S.; Guo, P.; Zhao, L.; Du, Y.; Guo, L. Insights into Photoluminescence Property and Photocatalytic Activity of Cubic and Rhombohedral ZnIn2S4. J. Solid State Chem. 2011, 184, 2250–2256. [Google Scholar] [CrossRef]
- Gao, C.; Xie, Y.; Chen, Y.; Ling, Y.; Ma, Y.; Zhang, Y.; Shao, Y. Construction of ZnIn2S4/Bi2MoO6 Heterojunction Enhancement Photocatalytic Hydrogen Evolution Performance under Visible Light. Int. J. Hydrogen Energy 2024, 52, 90–99. [Google Scholar] [CrossRef]
- Zheng, X.; Song, Y.; Liu, Y.; Yang, Y.; Wu, D.; Yang, Y.; Feng, S.; Li, J.; Liu, W.; Shen, Y.; et al. ZnIn2S4-Based Photocatalysts for Photocatalytic Hydrogen Evolution via Water Splitting. Coord. Chem. Rev. 2023, 475, 214898. [Google Scholar] [CrossRef]
- Zhong, X.; Zhu, Y.; Jiang, M.; Sun, Q.; Yao, J. Dual Defective K-Doping and Cyano Group Sites on Carbon Nitride Nanotubes for Improved Hydrogen Photo-Production. Energy Fuels 2023, 37, 5448–5456. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, L.; Guo, L. Cetyltrimethylammoniumbromide (CTAB)-Assisted Hydrothermal Synthesis of ZnIn2S4 as an Efficient Visible-Light-Driven Photocatalyst for Hydrogen Production. Int. J. Hydrogen Energy 2008, 33, 4501–4510. [Google Scholar] [CrossRef]
- Shen, S.; Zhao, L.; Guo, L. Crystallite, Optical and Photocatalytic Properties of Visible-Light-Driven ZnIn2S4 Photocatalysts Synthesized via a Surfactant-Assisted Hydrothermal Method. Mater. Res. Bull. 2009, 44, 100–105. [Google Scholar] [CrossRef]
- Kraeutler, B.; Bard, A.J. Photoelectrosynthesis of Ethane from Acetate Ion at an N-Type Titanium Dioxide Electrode. The Photo-Kolbe Reaction. J. Am. Chem. Soc. 1977, 99, 7729–7731. [Google Scholar] [CrossRef]
- Mozia, S.; Heciak, A.; Morawski, A.W. Photocatalytic Acetic Acid Decomposition Leading to the Production of Hydrocarbons and Hydrogen on Fe-Modified TiO2. Catal. Today 2011, 161, 189–195. [Google Scholar] [CrossRef]
- Heciak, A.; Morawski, A.W.; Grzmil, B.; Mozia, S. Cu-Modified TiO2 Photocatalysts for Decomposition of Acetic Acid with Simultaneous Formation of C1–C3 Hydrocarbons and Hydrogen. Appl. Catal. B 2013, 140, 108–114. [Google Scholar] [CrossRef]
- Amorós-Pérez, A.; Cano-Casanova, L.; Lillo-Ródenas, M.Á.; Román-Martínez, M.C. Cu/TiO2 Photocatalysts for the Conversion of Acetic Acid into Biogas and Hydrogen. Catal. Today 2017, 287, 78–84. [Google Scholar] [CrossRef]
- Gou, X.; Cheng, F.; Shi, Y.; Zhang, L.; Peng, S.; Chen, J.; Shen, P. Shape-Controlled Synthesis of Ternary Chalcogenide ZnIn2S4 and CuIn(S,Se)2 Nano-/Microstructures via Facile Solution Route. J. Am. Chem. Soc. 2006, 128, 7222–7229. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Guo, F.; Sun, H.; Shi, Y.; Shi, W. Well-Designed Three-Dimensional Hierarchical Hollow Tubular g-C3N4/ZnIn2S4 Nanosheets Heterostructure for Achieving Efficient Visible-Light Photocatalytic Hydrogen Evolution. J. Colloid Interface Sci. 2022, 607, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, K.; Feng, Z.; Bao, Y.; Dong, B. Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 Production Based on Photoinduced Interfacial Charge Transfer. Sci. Rep. 2016, 6, 19221. [Google Scholar] [CrossRef]
- Shettigar, R.R.; Misra, N.M.; Patel, K. Cationic Surfactant (CTAB) a Multipurpose Additive in Polymer-Based Drilling Fluids. J. Pet. Explor. Prod. Technol. 2018, 8, 597–606. [Google Scholar] [CrossRef]
- Elfeky, S.A.; Mahmoud, S.E.; Youssef, A.F. Applications of CTAB Modified Magnetic Nanoparticles for Removal of Chromium (VI) from Contaminated Water. J. Adv. Res. 2017, 8, 435–443. [Google Scholar] [CrossRef]
- Ramos Guivar, J.A.; Sanches, E.A.; Magon, C.J.; Ramos Fernandes, E.G. Preparation and Characterization of Cetyltrimethylammonium Bromide (CTAB)-Stabilized Fe3O4 Nanoparticles for Electrochemistry Detection of Citric Acid. J. Electroanal. Chem. 2015, 755, 158–166. [Google Scholar] [CrossRef]
- Viana, R.B.; da Silva, A.B.F.; Pimentel, A.S. Infrared Spectroscopy of Anionic, Cationic, and Zwitterionic Surfactants. Adv. Phys. Chem. 2012, 2012, 903272. [Google Scholar] [CrossRef]
- Predoi, S.-A.; Ciobanu, C.S.; Motelica-Heino, M.; Chifiriuc, M.C.; Badea, M.L.; Iconaru, S.L. Preparation of Porous Hydroxyapatite Using Cetyl Trimethyl Ammonium Bromide as Surfactant for the Removal of Lead Ions from Aquatic Solutions. Polymers 2021, 13, 1617. [Google Scholar] [CrossRef]
- Lin, C.; Fan, B.; Zhang, J.X.; Yang, X.; Zhang, H. Study on Lead Ion Wastewater Treatment of Self-Assembled Film. Desalination Water Treat. 2016, 57, 21627–21633. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, J.; Yang, T.; Yang, X.; Qu, J.; Xu, Q.; Li, C.M. Significantly Enhanced Photocatalytic In-Situ H2O2 Production and Consumption Activities for Efficient Sterilization by ZnIn2S4/g-C3N4 Heterojunction. Carbon 2022, 190, 337–347. [Google Scholar] [CrossRef]
- Kumar, Y.; Sudhaik, A.; Sharma, K.; Sonu; Raizada, P.; Aslam Parwaz Khan, A.; Nguyen, V.-H.; Ahamad, T.; Singh, P.; Asiri, A.M. Construction of Magnetically Separable Novel Arrow down Dual S-Scheme ZnIn2S4/BiOCl/FeVO4 Heterojunction for Improved Photocatalytic Activity. J. Photochem. Photobiol. A Chem. 2023, 435, 114326. [Google Scholar] [CrossRef]
- Zhong, Y.; Shi, J.; Li, K.; Guo, H.; Yan, L.; Luo, S. Fabrication and Immobilization of Heteropoly Acids (HPAs) and Hexadecyl Trimethyl Ammonium Bromide (CTAB) Co-Modified Ternary Zinc Indium Sulfide (ZnIn2S4): Capture Photogenerated Electrons and Pollutant Molecules by Co-Photocatalyst for Enhancing the Photocatalytic Ability. Appl. Surf. Sci. 2023, 624, 157105. [Google Scholar] [CrossRef]
- Yuan, L.; Li, Y.-H.; Tang, Z.-R.; Gong, J.; Xu, Y.-J. Defect-Promoted Visible Light-Driven C–C Coupling Reactions Pairing with CO2 Reduction. J. Catal. 2020, 390, 244–250. [Google Scholar] [CrossRef]
- ALOthman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Li, L.; Ma, D.; Xu, Q.; Huang, S. Constructing Hierarchical ZnIn2S4/g-C3N4 S-Scheme Heterojunction for Boosted CO2 Photoreduction Performance. J. Chem. Eng. 2022, 437, 135153. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Chen, H.S.; Jiang, S.P. Carbon Layer Derived Carrier Transport in Co/g-C3N4 Nanosheet Junctions for Efficient H2O2 Production and NO Removal. J. Chem. Eng. 2024, 479, 147609. [Google Scholar] [CrossRef]
- Tsuji, I.; Kato, H.; Kudo, A. Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands. Chem. Mater. 2006, 18, 1969–1975. [Google Scholar] [CrossRef]
- Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. Delaminating Ti3C2 MXene by Blossom of ZnIn2S4 Microflowers for Noble-Metal-Free Photocatalytic Hydrogen Production. J. Mater. Sci. Technol. 2022, 120, 89–98. [Google Scholar] [CrossRef]
- Yang, Y.; Niu, W.; Dang, L.; Mao, Y.; Wu, J.; Xu, K. Recent Progress in Doped g-C3N4 Photocatalyst for Solar Water Splitting: A Review. Front. Chem. 2022, 10, 955065. [Google Scholar] [CrossRef] [PubMed]
- Uzzaman, M.; Suhag, M.H.; Katsumata, H.; Tateishi, I.; Furukawa, M.; Kaneco, S. A Graphitic Carbon Nitride Photocatalyst with a Benzene-Ring-Modified Isotype Heterojunction for Visible-Light-Driven Hydrogen Production. Catal. Sci. Technol. 2024, 14, 267–278. [Google Scholar] [CrossRef]
- Chang, B.-Y.; Park, S.-M. Electrochemical Impedance Spectroscopy. Annu. Rev. Anal. Chem. 2010, 3, 207–229. [Google Scholar] [CrossRef]
- Zhang, D.; Lv, S.; Luo, Z. A Study on the Photocatalytic Degradation Performance of a [KNbO3]0.9-[BaNi0.5Nb0.5O3−δ]0.1 Perovskite. RSC Adv. 2020, 10, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Mizuno, Y.; Teramura, K.; Shishido, T.; Tanaka, T. Effects of Reaction Temperature on the Photocatalytic Activity of Photo-SCR of NO with NH3 over a TiO2 Photocatalyst. Catal. Sci. Technol. 2013, 3, 1771. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Hsu, Y.-H. Effects of Reaction Temperature on the Photocatalytic Activity of TiO2 with Pd and Cu Cocatalysts. Catalysts 2021, 11, 966. [Google Scholar] [CrossRef]
- Azad, K.; Gajanan, P. Photodegradation of Methyl Orange in Aqueous Solution by the Visible Light Active Co:La:TiO2 Nanocomposite. Chem. Sci. J. 2017, 8, 1000164–1000174. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, G.; Wang, H.; Wu, J.; Yang, G.; Jia, Q.; Zhang, S.; Li, F.; Zhang, H. Preparation of Core/Shell-Structured ZnFe2O4@ZnIn2S4 Catalysts and Its Ultrafast Microwave Catalytic Reduction Performance for Aqueous Cr(VI). J. Chem. Eng. 2023, 451, 138182. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El-Nemr, M.A.; Elkatory, M.R.; Ragab, S.; Niculescu, V.-C.; El Nemr, A. Principles of Photocatalysts and Their Different Applications: A Review. Top. Curr. Chem. 2023, 381, 31. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Xiong, Y.; Li, G.; Zha, C.; Zhu, X. Synergetic Effect in Degradation of Formic Acid Using a New Photoelectrochemical Reactor. J. Photochem. Photobiol. A Chem. 2002, 152, 155–165. [Google Scholar] [CrossRef]
- Chen, Q.; Song, J.M.; Pan, F.; Xia, F.L.; Yuan, J.Y. The Kinetics of Photocatalytic Degradation of Aliphatic Carboxylic Acids in an UV/TiO2 Suspension System. Environ. Technol. 2009, 30, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Jain, M.; Pant, K.K.; Ziora, Z.M.; Blaskovich, M.A.T. Photocatalytic Degradation of Parabens: A Comprehensive Meta-Analysis Investigating the Environmental Remediation Potential of Emerging Pollutant. Sci. Total Environ. 2024, 920, 171020. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chang, J.; Li, L.; Yuan, J.Y. A New Kinetic Model of Photocatalytic Degradation of Formic Acid in UV/TiO2 Suspension System with in-Situ Monitoring. React. Kinet. Catal. Lett. 2008, 93, 157–164. [Google Scholar] [CrossRef]
- Serpone, N.; Martin, J.; Horikoshi, S.; Hidaka, H. Photocatalyzed Oxidation and Mineralization of C1–C5 Linear Aliphatic Acids in UV-Irradiated Aqueous Titania Dispersions—Kinetics, Identification of Intermediates and Quantum Yields. J. Photochem. Photobiol. A Chem. 2005, 169, 235–251. [Google Scholar] [CrossRef]
- Guillard, C. Photocatalytic Degradation of Butanoic Acid. J. Photochem. Photobiol. A Chem. 2000, 135, 65–75. [Google Scholar] [CrossRef]
- Franch, M.I.; Ayllón, J.A.; Peral, J.; Domènech, X. Photocatalytic Degradation of Short-Chain Organic Diacids. Catal. Today 2002, 76, 221–233. [Google Scholar] [CrossRef]
- Shi, J.; Yuan, T.; Zheng, M.; Wang, X. Metal-Free Heterogeneous Semiconductor for Visible-Light Photocatalytic Decarboxylation of Carboxylic Acids. ACS Catal. 2021, 11, 3040–3047. [Google Scholar] [CrossRef]
- Tezuka, K.; Kogure, M.; Shan, Y.J. Photocatalytic Degradation of Acetic Acid on Spinel Ferrites MFe2O4 (M = Mg, Zn, and Cd). Catal. Commun. 2014, 48, 11–14. [Google Scholar] [CrossRef]
- Zheng, X.-J.; Wei, L.-F.; Zhang, Z.-H.; Jiang, Q.-J.; Wei, Y.-J.; Xie, B.; Wei, M.-B. Research on Photocatalytic H2 Production from Acetic Acid Solution by Pt/TiO2 Nanoparticles under UV Irradiation. Int. J. Hydrogen Energy 2009, 34, 9033–9041. [Google Scholar] [CrossRef]
- Tang, M.; Yin, W.; Zhang, F.; Liu, X.; Wang, L. The Potential Strategies of ZnIn2S4-Based Photocatalysts for the Enhanced Hydrogen Evolution Reaction. Front. Chem. 2022, 10, 959414. [Google Scholar] [CrossRef]
- Mozia, S.; Heciak, A.; Morawski, A.W. The Influence of Physico-Chemical Properties of TiO2 on Photocatalytic Generation of C1–C3 Hydrocarbons and Hydrogen from Aqueous Solution of Acetic Acid. Appl. Catal. B 2011, 104, 21–29. [Google Scholar] [CrossRef]
- Mozia, S.; Heciak, A.; Darowna, D.; Morawski, A.W. A Novel Suspended/Supported Photoreactor Design for Photocatalytic Decomposition of Acetic Acid with Simultaneous Production of Useful Hydrocarbons. J. Photochem. Photobiol. A Chem. 2012, 236, 48–53. [Google Scholar] [CrossRef]
- Asal, S.; Saif, M.; Hafez, H.; Mozia, S.; Heciak, A.; Moszyński, D.; Abdel-Mottaleb, M.S.A. Photocatalytic Generation of Useful Hydrocarbons and Hydrogen from Acetic Acid in the Presence of Lanthanide Modified TiO2. Int. J. Hydrogen Energy 2011, 36, 6529–6537. [Google Scholar] [CrossRef]
Photocatalyst | SBET (m2/g) | Vpore (cm3/g) | Dpore (nm) |
---|---|---|---|
ZIS-0 | 18.80 | 0.085 | 18.08 |
ZIS-3.75 | 6.63 | 0.052 | 31.35 |
Photocatalyst (mg/mL) | CH3COOH conc. (M) | Light Source (nm) | CH4 (µmol h−1 g−1) | Ref. |
---|---|---|---|---|
TiO2 (1.0) | 1.0 | Hg lamp (365) | 108 | [65] |
TiO2 (1.86) | 1.0 | Hg lamp (365) | 72 | [66] |
Fe-TiO2 (1.0) | 1.0 | Hg lamp (365) | 91 | [24] |
Sm3+-TiO2 (1.0) | 1.0 | UV lamp (365) | 124 | [67] |
Cu-TiO2 (1.0) | 1.0 | Hg lamp (365) | 590 | [25] |
CTAB assisted ZnIn2S4 (1.87) | 1.0 | LED (450) | 0.11 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzzaman, M.; Afrin, M.F.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Visible Light-Driven Photocatalytic CH4 Production from an Acetic Acid Solution with Cetyltrimethylammonium Bromide-Assisted ZnIn2S4. ChemEngineering 2024, 8, 75. https://doi.org/10.3390/chemengineering8040075
Uzzaman M, Afrin MF, Furukawa M, Tateishi I, Katsumata H, Kaneco S. Visible Light-Driven Photocatalytic CH4 Production from an Acetic Acid Solution with Cetyltrimethylammonium Bromide-Assisted ZnIn2S4. ChemEngineering. 2024; 8(4):75. https://doi.org/10.3390/chemengineering8040075
Chicago/Turabian StyleUzzaman, Monir, Mst. Farhana Afrin, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata, and Satoshi Kaneco. 2024. "Visible Light-Driven Photocatalytic CH4 Production from an Acetic Acid Solution with Cetyltrimethylammonium Bromide-Assisted ZnIn2S4" ChemEngineering 8, no. 4: 75. https://doi.org/10.3390/chemengineering8040075
APA StyleUzzaman, M., Afrin, M. F., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2024). Visible Light-Driven Photocatalytic CH4 Production from an Acetic Acid Solution with Cetyltrimethylammonium Bromide-Assisted ZnIn2S4. ChemEngineering, 8(4), 75. https://doi.org/10.3390/chemengineering8040075