The Influence of Pervaporation on Ferulic Acid and Maltol in Dealcoholised Beer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beer Production
2.2. Microfiltration
2.3. Pervaporation
2.4. Calculation of Separation Factor
2.5. Calculation of Retention Factor
2.6. Determination of Ethanol
2.7. Determination of Ferulic Acid
2.8. Determination of Maltol
2.9. Colour Measurement
2.10. Organoleptic Tests
3. Results
3.1. Concentrations of Alcohol, Maltol and Ferulic Acid
3.2. Separation Process Parameters
3.3. Consumer Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Brewers of Europe European Beer Trends-Statistics Report, 2020th ed.; Brewers of Europe: Brussels, Belgium, 2021; pp. 1–36. Available online: https://brewersofeurope.eu/uploads/mycms-files/documents/publications/2021/european-beer-statistics-2020.pdf (accessed on 13 September 2024).
- Deloitte. Podsumowanie Analizy Wybranych Wskaźników Wpływu Przemysłu Piwowarskiego Na Polską Gospodarkę i Otoczenie; Browary Polskie: Warszawa, Poland, 2018. [Google Scholar]
- Tomski, P. Rozwój Branży Piwowarstwa Rzemieślniczego Wybrane Problemy; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2020; ISBN 978-83-7193-783-5. [Google Scholar]
- Brányik, T.; Silva, D.P.; Baszczyňski, M.; Lehnert, R.; Almeida e Silva, J.B. A Review of Methods of Low Alcohol and Alcohol-Free Beer Production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- Jackowski, M.; Trusek, A. Non-Alcoholic Beer Production—An Overview. Pol. J. Chem. Technol. 2018, 20, 32–38. [Google Scholar] [CrossRef]
- Kaminski, W.; Marszalek, J.; Tomczak, E. Water Desalination by Pervaporation–Comparison of Energy Consumption. Desalination 2018, 433, 89–93. [Google Scholar] [CrossRef]
- Wang, Q.; Li, N.; Bolto, B.; Hoang, M.; Xie, Z. Desalination by Pervaporation: A Review. Desalination 2016, 387, 46–60. [Google Scholar] [CrossRef]
- Coghe, S.; Benoot, K.; Delvaux, F.; Vanderhaegen, B.; Delvaux, F.R. Ferulic Acid Release and 4-Vinylguaiacol Formation during Brewing and Fermentation: Indications for Feruloyl Esterase Activity in Saccharomyces Cerevisiae. J. Agric. Food Chem. 2004, 52, 602–608. [Google Scholar] [CrossRef]
- Graf, E. Antioxidant Potential of Ferulic Acid. Free. Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar] [CrossRef]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Takahashi, H.; Kashimura, M.; Koiso, H.; Kuda, T.; Kimura, B. Use of Ferulic Acid as a Novel Candidate of Growth Inhibiting Agent against Listeria Monocytogenes in Ready-to-Eat Food. Food Control. 2013, 33, 244–248. [Google Scholar] [CrossRef]
- Koh, P.O. Ferulic Acid Prevents Cerebral Ischemic Injury-Induced Reduction of Hippocalcin Expression. Synapse 2013, 67, 390–398. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Hou, J.G.; Zhou, Y.D.; He, Y.F.; Jiang, S.; Wang, Y.P.; Ren, S.; Li, W. The Liver Protection Effects of Maltol, a Flavoring Agent, on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Inhibiting Apoptosis and Inflammatory Response. Molecules 2018, 23, 2120. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Xu, C.; Pan, H.; Zhang, Z. Maltol Inhibits Apoptosis of Human Neuroblastoma Cells Induced by Hydrogen Peroxide. BMB Rep. 2011, 39, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The Chemistry of Beer Aging—A Critical Review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Hong, S.; Iizuka, Y.; Lee, T.; Kim, C.Y.; Seong, G.J. Neuroprotective and Neurite Outgrowth Effects of Maltol on Retinal Ganglion Cells under Oxidative Stress. Mol. Vis. 2014, 20, 1456–1462. [Google Scholar] [PubMed]
- Cho, J.H.; Song, M.C.; Lee, Y.; Noh, S.T.; Kim, D.O.; Rha, C.S. Newly Identified Maltol Derivatives in Korean Red Ginseng and Their Biological Influence as Antioxidant and Anti-Inflammatory Agents. J. Ginseng Res. 2023, 47, 593–603. [Google Scholar] [CrossRef]
- Ahn, H.; Lee, G.; Han, B.C.; Lee, S.H.; Lee, G.S. Maltol, a Natural Flavor Enhancer, Inhibits NLRP3 and Non-Canonical Inflammasome Activation. Antioxidants 2022, 11, 1923. [Google Scholar] [CrossRef]
- Sohrabvandi, S.; Mortazavian, A.M.; Rezaei, K. Health-Related Aspects of Beer: A Review. Int. J. Food Prop. 2012, 15, 350–373. [Google Scholar] [CrossRef]
- Chuntanalerg, P.; Kulprathipanja, S.; Chaisuwan, T.; Aungkavattana, P.; Hemra, K.; Wongkasemjit, S. Performance Polybenzoxazine Membrane and Mixed Matrix Membrane for Ethanol Purification via Pervaporation Applications. J. Chem. Technol. Biotechnol. 2016, 91, 1173–1182. [Google Scholar] [CrossRef]
- Claes, S.; Vandezande, P.; Mullens, S.; Leysen, R.; De Sitter, K.; Andersson, A.; Maurer, F.H.J.; Van den Rul, H.; Peeters, R.; Van Bael, M.K. High Flux Composite PTMSP-Silica Nanohybrid Membranes for the Pervaporation of Ethanol/Water Mixtures. J. Membr. Sci. 2010, 351, 160–167. [Google Scholar] [CrossRef]
- Samanta, H.S.; Ray, S.K. Separation of Ethanol from Water by Pervaporation Using Mixed Matrix Copolymer Membranes. Sep. Purif. Technol. 2015, 146, 176–186. [Google Scholar] [CrossRef]
- Di Matteo, P.; Stoller, M.; Petrucci, R.; Russo, P. Development of a Diafiltration-Pervaporation Process for Beer Dealcoholisation. Chem. Eng. Trans. 2021, 87, 13–18. [Google Scholar] [CrossRef]
- Dawiec-Liśniewska, A.; Szumny, A.; Podstawczyk, D.; Witek-Krowiak, A. Concentration of Natural Aroma Compounds from Fruit Juice Hydrolates by Pervaporation in Laboratory and Semi-Technical Scale. Part 1. Base Study. Food Chem. 2018, 258, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Olmo, Á.D.; Blanco, C.A.; Palacio, L.; Prádanos, P.; Hernández, A. Pervaporation Methodology for Improving Alcohol-Free Beer Quality through Aroma Recovery. J. Food Eng. 2014, 133, 1–8. [Google Scholar] [CrossRef]
- Takács, L.; Vatai, G.; Korány, K. Production of Alcohol Free Wine by Pervaporation. J. Food Eng. 2007, 78, 118–125. [Google Scholar] [CrossRef]
- Weschenfelder, T.A.; Lantin, P.; Viegas, M.C.; De Castilhos, F.; Scheer, A.D.P. Concentration of Aroma Compounds from an Industrial Solution of Soluble Coffee by Pervaporation Process. J. Food Eng. 2015, 159, 57–65. [Google Scholar] [CrossRef]
- Gortat, I.; Marszałek, J.; Wawrzyniak, P. Energy analysis of a laboratory process of water desalination by pervaporation and reverse osmosis. Chem. Process Eng. New Front. 2023, 45, e48. [Google Scholar] [CrossRef]
- Rautenbach, R.; Albrecht, R.; Albrecht, R.; Rautenbach, R. Membrane Processes; Reprinted; Wiley: Chichester, UK, 1994; ISBN 978-0-471-91110-4. [Google Scholar]
- Jacob, F. MEBAK Wort, Beer, Beer-Based Beverages; MEBAK Freising-Weihenstephan: Freising, Germany, 2013; ISBN 978-3-9805814-7-9. [Google Scholar]
- Müller, M.; Bellut, K.; Tippmann, J.; Becker, T. Physical Methods for Dealcoholization of Beverage Matrices and Their Impact on Quality Attributes. ChemBioEng Rev. 2017, 4, 310–326. [Google Scholar] [CrossRef]
- Maltol. C6H6O3. CID 8369-PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Maltol#section=LogP (accessed on 13 September 2024).
- Ferulic Acid. C10H10O4. CID 445858-PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ferulic-acid#section=Melting-Point (accessed on 13 September 2024).
- De Francesco, G.; Marconi, O.; Sileoni, V.; Freeman, G.; Lee, E.G.; Floridi, S.; Perretti, G. Influence of the Dealcoholisation by Osmotic Distillation on the Sensory Properties of Different Beer Types. J. Food Sci. Technol. 2021, 58, 1488–1498. [Google Scholar] [CrossRef]
- Liguori, L.; De Francesco, G.; Russo, P.; Perretti, G.; Albanese, D.; Di Matteo, M. Quality Attributes of Low-Alcohol Top-Fermented Beers Produced by Membrane Contactor. Food Bioprocess Technol. 2016, 9, 191–200. [Google Scholar] [CrossRef]
- Ramsey, I.; Yang, Q.; Fisk, I.; Ayed, C.; Ford, R. Assessing the Sensory and Physicochemical Impact of Reverse Osmosis Membrane Technology to Dealcoholize Two Different Beer Styles. Food Chem. X 2021, 10, 100121. [Google Scholar] [CrossRef]
- Leskošek, I.; Mitrović, M.; Nedović, V. Factors Influencing Alcohol and Extract Separation in Beer Dialysis. World J. Microbiol. Biotechnol. 1995, 11, 512–514. [Google Scholar] [CrossRef]
- Potěšil, V.; Zedek, V. Alcohol-Free Beer Production by Vacuum Distillation. Kvasný Průmysl 2008, 54, 149–151. [Google Scholar] [CrossRef]
Time of the Process [h] | Ferulic Acid [mg/dm3] | Ethanol [vol.%] | Maltol [mg/dm3] | |
---|---|---|---|---|
Permeate | 1 | 0.0 | 5.79 ± 0.06 | 3.5 ± 0.2 |
2 | 0.0 | 5.54 ± 0.06 | 3.9 ± 0.2 | |
3 | 0.0 | 4.54 ± 0.06 | 5.8 ± 0.3 | |
4 | 0.0 | 3.12 ± 0.06 | 8.8 ± 0.5 | |
5 | 0.0 | 2.40 ± 0.06 | 7.2 ± 0.4 | |
Retentate | 1 | 7.7 ± 0.2 | 3.46 ± 0.06 | 21.0 ± 0.3 |
2 | 7.5 ± 0.3 | 2.27 ± 0.06 | 23.2 ± 0.3 | |
3 | 8.0 ± 0.2 | 2.04 ± 0.06 | 25.6 ± 0.2 | |
4 | 8.5 ± 0.3 | 0.58 ± 0.06 | 35.4 ± 0.4 | |
5 | 9.1 ± 0.3 | 0.57 ± 0.06 | 38.0 ± 0.4 | |
Raw beer | 11.5 ± 0.4 | 3.62 ± 0.06 | 22.0 ± 0.2 |
Time of the Process [h] | βEt [-] | RM [%] | RFA [%] |
---|---|---|---|
1 | 0.59 | 83.3 | 100 |
2 | 0.62 | 83.2 | 100 |
3 | 0.76 | 77.3 | 100 |
4 | 1.13 | 75.1 | 100 |
5 | 1.47 | 81.1 | 100 |
Time of the Process [h] | Colour [EBC] | |
---|---|---|
Permeate | 1 | 0 |
2 | 0 | |
3 | 0 | |
4 | 0 | |
5 | 0 | |
Retentate | 1 | 7 |
2 | 6 | |
3 | 6 | |
4 | 7 | |
5 | 6 | |
Raw beer | 7 |
Parameter | Ethanol [vol.%] | Colour [EBC] | Ferulic Acid [mg/dm3] | Maltol [mg/dm3] | Reference | ||
---|---|---|---|---|---|---|---|
Dealcoholisation method | Pervaporation (presented work) | Raw beer | 3.62 | 7 | 11.5 | 22.0 | |
Dealcoholised beer | 0.57 | 6 | 9.1 | 38.0 | |||
Osmotic distillation | Raw beer | 4.8 | 7.6 | n/d | n/d | [34] | |
Dealcoholised beer | 0.6 | 7.9 | n/d | n/d | |||
Membrane contactor | Raw beer | 5.7 | 9.8 | n/d | n/d | [35] | |
Dealcoholised beer | 1.0 | 10.7 | n/d | n/d | |||
Pervaporation | Raw beer | 4.71 | 4.3 | 2.12 | n/d | [23] | |
Dealcoholised beer | 1.11 | 3.9 | 1.77 | n/d | |||
Reverse osmosis | Raw beer | 5.09 | n/d | n/d | n/d | [36] | |
Dealcoholised beer | 0.40 | n/d | n/d | n/d | |||
Dialysis | Raw beer | 3.8 | n/d | n/d | n/d | [37] | |
Dealcoholised beer | From 0.1 to 0.83 | n/d | n/d | n/d | |||
Vacuum distillation | Raw beer | 4.11 | 10.1 | n/d | n/d | [38] | |
Dealcoholised beer | 0.0004 | 10.1 | n/d | n/d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackowski, M.; Lech, M.; Wnukowski, M.; Trusek, A. The Influence of Pervaporation on Ferulic Acid and Maltol in Dealcoholised Beer. ChemEngineering 2024, 8, 101. https://doi.org/10.3390/chemengineering8050101
Jackowski M, Lech M, Wnukowski M, Trusek A. The Influence of Pervaporation on Ferulic Acid and Maltol in Dealcoholised Beer. ChemEngineering. 2024; 8(5):101. https://doi.org/10.3390/chemengineering8050101
Chicago/Turabian StyleJackowski, Mateusz, Magdalena Lech, Mateusz Wnukowski, and Anna Trusek. 2024. "The Influence of Pervaporation on Ferulic Acid and Maltol in Dealcoholised Beer" ChemEngineering 8, no. 5: 101. https://doi.org/10.3390/chemengineering8050101
APA StyleJackowski, M., Lech, M., Wnukowski, M., & Trusek, A. (2024). The Influence of Pervaporation on Ferulic Acid and Maltol in Dealcoholised Beer. ChemEngineering, 8(5), 101. https://doi.org/10.3390/chemengineering8050101