Synthesis of Alkyl Levulinates from α-Angelica Lactone Using Methanesulfonic Acid as a Catalyst: A Sustainable and Solvent-Free Route
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. General Procedure for the Synthesis of Alkyl Levulinates (ALs)
2.3. Characterization of Alkyl Levulinates (ALs)
3. Results
3.1. Influence of MSA Catalytic Activity
3.2. Mechanistic Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, T.; Zhang, D. A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told so Far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Rehman, A.; Alam, M.M.; Ozturk, I.; Alvarado, R.; Murshed, M.; Işık, C.; Ma, H. Globalization and Renewable Energy Use: How Are They Contributing to Upsurge the CO2 Emissions? A Global Perspective. Environ. Sci. Pollut. Res. 2023, 30, 9699–9712. [Google Scholar] [CrossRef] [PubMed]
- Tardy, B.L.; Lizundia, E.; Guizani, C.; Hakkarainen, M.; Sipponen, M.H. Prospects for the Integration of Lignin Materials into the Circular Economy. Mater. Today 2023, 65, 122–132. [Google Scholar] [CrossRef]
- Lazaridou, D.C.; Michailidis, A.; Trigkas, M. Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review. Forests 2021, 12, 436. [Google Scholar] [CrossRef]
- Jarre, M.; Petit-Boix, A.; Priefer, C.; Meyer, R.; Leipold, S. Transforming the Bio-Based Sector towards a Circular Economy—What Can We Learn from Wood Cascading? For. Policy Econ. 2020, 110, 101872. [Google Scholar] [CrossRef]
- Fernandes, F.; Matos, S.; Gaspar, D.; Silva, L.; Paulo, I.; Vieira, S.; Pinto, P.C.R.; Bordado, J.; dos Santos, R.G. Boosting the Higher Heating Value of Eucalyptus Globulus via Thermochemical Liquefaction. Sustainability 2021, 13, 3717. [Google Scholar] [CrossRef]
- Silva, L.; Orišková, S.; Gonçalves, D.; Paulo, I.; Condeço, J.; Monteiro, M.; Xavier, N.M.; Rauter, A.P.; Bordado, J.M.; Galhano dos Santos, R. Quantification of Hydrolytic Sugars from Eucalyptus Globulus Bio-Oil Aqueous Solution after Thermochemical Liquefaction. Forests 2023, 14, 799. [Google Scholar] [CrossRef]
- Ncube, A.; Mtetwa, S.; Bukhari, M.; Fiorentino, G.; Passaro, R. Circular Economy and Green Chemistry: The Need for Radical Innovative Approaches in the Design for New Products. Energies 2023, 16, 1752. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, F.; Wang, J.; Cao, L.; Han, Q. A Review on Solid Acid Catalysis for Sustainable Production of Levulinic Acid and Levulinate Esters from Biomass Derivatives. Bioresour. Technol. 2021, 342, 125977. [Google Scholar] [CrossRef]
- Gautam, P.; Barman, S.; Ali, A. A Comparative Study on the Performance of Acid Catalysts in the Synthesis of Levulinate Ester Using Biomass-derived Levulinic Acid: A Review. Biofuels Bioprod. Biorefining 2022, 16, 1095–1115. [Google Scholar] [CrossRef]
- Hafidz Hassan, A.; Mohammad Zainol, M.; Ridwan Zainuddin, K.; Adlan Rosmadi, H.; Asmadi, M.; Abd Rahman, N.; Aishah Saidina Amin, N. A Review on Alkyl Levulinates Synthesis from Renewable Levulinic Acid Using Various Modified Carbon-Based Catalysts. Malays. J. Chem. 2022, 24, 264–282. [Google Scholar]
- Yamanaka, N.; Shimazu, S. Conversion of Biomass-Derived Molecules into Alkyl Levulinates Using Heterogeneous Catalysts. Reactions 2023, 4, 667–678. [Google Scholar] [CrossRef]
- Yi, X.; Al-Shaal, M.G.; Ciptonugroho, W.; Delidovich, I.; Wang, X.; Palkovits, R. Synthesis of Butyl Levulinate Based on A-Angelica Lactone in the Presence of Easily Separable Heteropoly Acid Catalysts. ChemSusChem 2017, 10, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Negus, M.P.; Mansfield, A.C.; Leadbeater, N.E. The Preparation of Ethyl Levulinate Facilitated by Flow Processing: The Catalyzed and Uncatalyzed Esterification of Levulinic Acid. J. Flow. Chem. 2015, 5, 148–150. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Tong, H.; Fan, X.; Fang, X.; Sha, Y.; Sun, Z.; Chu, W. Design and Synthesis of SO3H-Functionalized Acidic Ionic Liquids for Catalytic Conversion of Wheat Straw to Ethyl Levulinate. Fuel 2023, 333, 1–8. [Google Scholar] [CrossRef]
- Antonetti, C.; Gori, S.; Licursi, D.; Pasini, G.; Frigo, S.; López, M.; Parajó, J.C.; Galletti, A.M.R. One-Pot Alcoholysis of the Lignocellulosic Eucalyptus Nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel. Catalysts 2020, 10, 509. [Google Scholar] [CrossRef]
- Galletti, A.M.R.; Licursi, D.; Ciorba, S.; Di Fidio, N.; Coccia, V.; Cotana, F.; Antonetti, C. Sustainable Exploitation of Residual Cynara Cardunculus l. To Levulinic Acid and n-Butyl Levulinate. Catalysts 2021, 11, 1082. [Google Scholar] [CrossRef]
- Chio, C.; Sain, M.; Qin, W. Lignin Utilization: A Review of Lignin Depolymerization from Various Aspects. Renew. Sustain. Energy Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Verma, P. Pretreatment of Rice Straw Using Microwave Assisted FeCl3-H3PO4 System for Ethanol and Oligosaccharides Generation. Bioresour. Technol. Rep. 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Badgujar, K.C.; Badgujar, V.C.; Bhanage, B.M. Synthesis of Alkyl Levulinate as Fuel Blending Agent by Catalytic Valorization of Carbohydrates via Alcoholysis: Recent Advances and Challenges. Catal. Today 2023, 408, 9–21. [Google Scholar] [CrossRef]
- Ramírez, E.; Bringué, R.; Fité, C.; Iborra, M.; Tejero, J.; Cunill, F. Assessment of Ion Exchange Resins as Catalysts for the Direct Transformation of Fructose into Butyl Levulinate. Appl. Catal. A Gen. 2021, 612, 1–17. [Google Scholar] [CrossRef]
- Dookheh, M.; Najafi Chermahini, A.; Saraji, M. Preparation of Alkyl Levulinates from Xylose Over Modified Bifunctional Mesoporous Zirconium Phosphate Catalysts. Catal. Lett. 2022, 152, 2141–2154. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, X.; Zhang, Z.; Sun, K.; Gao, G.; Wei, T.; Zhang, S.; Xiang, J.; Wang, Y. Direct conversion of furfural to levulinic acid/ester in dimethoxymethane: Understanding the mechanism for polymerization. Green. Energy Environ. 2019, 4, 400–413. [Google Scholar] [CrossRef]
- Babaei, Z.; Najafi Chermahini, A.; Dinari, M. Synthesis of N-Butyl Levulinate as a Fuel Additive Using Bimetallic Zr/Al Catalysts Supported on Mesoporous Silica: Applying Experimental Design to Optimize the Reaction Conditions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 1–10. [Google Scholar] [CrossRef]
- Al-Shaal, M.G.; Ciptonugroho, W.; Holzhäuser, F.J.; Mensah, J.B.; Hausoul, P.J.C.; Palkovits, R. Catalytic Upgrading of α-Angelica Lactone to Levulinic Acid Esters under Mild Conditions over Heterogeneous Catalysts. Catal. Sci. Technol. 2015, 5, 5168–5173. [Google Scholar] [CrossRef]
- Latos, P.; Szelwicka, A.; Boncel, S.; Jurczyk, S.; Swadźba-Kwaśny, M.; Chrobok, A. Highly Efficient Synthesis of Alkyl Levulinates from α-Angelica Lactone, Catalyzed with Lewis Acidic Trifloaluminate Ionic Liquids Supported on Carbon Nanotubes. ACS Sustain. Chem. Eng. 2019, 7, 5184–5191. [Google Scholar] [CrossRef]
- Onkarappa, S.B.; Bhat, N.S.; Dutta, S. Preparation of Alkyl Levulinates from Biomass-Derived 5-(Halomethyl)Furfural (X = Cl, Br), Furfuryl Alcohol, and Angelica Lactone Using Silica-Supported Perchloric Acid as a Heterogeneous Acid Catalyst. Biomass Convers. Biorefin. 2020, 10, 849–856. [Google Scholar] [CrossRef]
- Ciptonugroho, W.; Mensah, J.B.; Al-Shaal, G.; Palkovits, R. WOx/ZrO2 Catalysts for the Conversion of α-Angelica Lactone with Butanol to Butyl Levulinates. Chem. Pap. 2023, 77, 3769–3778. [Google Scholar] [CrossRef]
- Szelwicka, A.; Kolanowska, A.; Latos, P.; Jurczyk, S.; Boncel, S.; Chrobok, A. Carbon Nanotube/PTFE as a Hybrid Platform for Lipase B From Candida Antarcticain Transformation of α-Angelica Lactone into Alkyl Levulinates. Catal. Sci. Technol. 2020, 10, 3255–3264. [Google Scholar] [CrossRef]
- Lima, C.G.S.; Monteiro, J.L.; de Melo Lima, T.; Weber Paixão, M.; Corrêa, A.G. Angelica Lactones: From Biomass-Derived Platform Chemicals to Value-Added Products. ChemSusChem 2018, 11, 25–47. [Google Scholar] [CrossRef]
- Wang, H.; Yang, B.; Zhang, Q.; Zhu, W. Catalytic Routes for the Conversion of Lignocellulosic Biomass to Aviation Fuel Range Hydrocarbons. Renew. Sustain. Energy Rev. 2020, 120, 1–18. [Google Scholar] [CrossRef]
- Yamanaka, N.; Abe, D.; Miwaka-Saiga, M.; Yasunaga, K.; Yamada, H.; Shimazu, S. One-pot two-step synthesis of alkyl levulinates directly from furfural by combining Ni3Sn2 alloy nanoparticles and montmorillonite K10. Sustain. Energy Fuels 2022, 6, 5153–5159. [Google Scholar] [CrossRef]
- Park, M.R.; Kim, S.K.; Jeong, G.T. Optimization of the Levulinic Acid Production from the Red Macroalga, Gracilaria Verrucosa Using Methanesulfonic Acid. Algal Res. 2018, 31, 116–121. [Google Scholar] [CrossRef]
- De Marco, P.; Murrell, J.C.; Bordalo, A.A.; Moradas-Ferreira, P. Isolation and Characterization of Two New Methanesulfonic Acid-Degrading Bacterial Isolates from a Portuguese Soil Sample. Arch. Microbiol. 2000, 173, 146–153. [Google Scholar] [CrossRef]
- Mthembu, L.D.; Gupta, R.; Dziike, F.; Lokhat, D.; Deenadayalu, N. Conversion of Biomass-Derived Levulinic Acid into γ-Valerolactone Using Methanesulfonic Acid: An Optimization Study Using Response Surface Methodology. Fermentation 2023, 9, 288. [Google Scholar] [CrossRef]
- Kulkarni, P. Methane Sulphonic Acid Is Green Catalyst in Organic Synthesis. Orient. J. Chem. 2015, 31, 447–451. [Google Scholar] [CrossRef]
- Vinod, N.; Bandibairanahalli Onkarappa, S.; Madhwaraj Girija, V.; Dutta, S. A Straightforward Preparation of Levulinic Esters from Biorenewable Levulinic Acid Using Methanesulfonic Acid Supported on Silica Gel (MSA-SG) as an Efficient Heterogeneous Catalyst. Mater. Today Proc. 2022, 76, 18–24. [Google Scholar] [CrossRef]
- Sangsiri, P.; Laosiripojana, N.; Daorattanachai, P. Synthesis of Sulfonated Carbon-Based Catalysts from Organosolv Lignin and Methanesulfonic Acid: Its Activity toward Esterification of Stearic Acid. Renew. Energy 2022, 193, 113–127. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Methanesulfonic Acid (MSA) in Hydrometallurgy. J. Sustain. Metall. 2023, 9, 26–45. [Google Scholar] [CrossRef]
- Manzer, L.E. Preparation of Levulinic Acid Esters from Alpha-Angelicalactone and Olefins: Use of Ester Compositions as Fuel Additives. U.S. Patent 2005/017374 A1, 4 August 2004. [Google Scholar]
- Manzer, L. Preparation of Levulinic Acid Esters from α-Angelica Lactone and Alcohols. U.S Patent WO 2005/097723 A2, 20 October 2005. [Google Scholar]
- Langlois, D.P.; Wolff, H. Pseudo Esters of Levulinic Acid. U.S. Patent 2,493,676, 3 January 1950. [Google Scholar]
- Langlois, D.P.; Wolff, H. Pseudo Esters of Levulinic Acid. J. Am. Chem. Soc. 1948, 70, 2624–2626. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L. Methanesulfonic Acid-Catalyzed One-Pot Synthesis of 12-Aryl or 12-Alkyl-8,9,10,12-tetrahydrobenzo[α]xanthen-11-one Derivatives. J. Heterocycl. Chem. 2012, 49, 861–864. [Google Scholar] [CrossRef]
Entry | MSA Loading (mol%) | Time (min) | Yield (%) |
---|---|---|---|
1 | 0.1 | 30 | 58.5 |
2 | 0.1 | 60 | 65.3 |
3 | 0.1 | 90 | 74.5 |
4 | 0.1 | 120 | 85.2 |
5 | 0.1 | 150 | 91.5 |
6 | 0.1 | 180 | 99.1 |
7 | 0.2 | 30 | 65.5 |
8 | 0.2 | 60 | 70.1 |
9 | 0.2 | 90 | 81.5 |
10 | 0.2 | 120 | 92.5 |
11 | 0.2 | 150 | 99.3 |
12 | 0.3 | 20 | 67.3 |
13 | 0.3 | 30 | 69.5 |
14 | 0.3 | 60 | 78.4 |
15 | 0.3 | 90 | 85.3 |
16 | 0.3 | 120 | 99.5 |
17 | 0.4 | 10 | 60.3 |
18 | 0.4 | 20 | 72.5 |
19 | 0.4 | 30 | 75.5 |
20 | 0.4 | 60 | 82.5 |
21 | 0.4 | 90 | 99.6 |
22 | 0.5 | 10 | 66.5 |
23 | 0.5 | 20 | 79.6 |
24 | 0.5 | 30 | 83.4 |
25 | 0.5 | 40 | 89.5 |
26 | 0.5 | 60 | 99.8 |
Entry | Alcohol | Time (min) | Yield (%) |
---|---|---|---|
1 | MeOH | 5 | 62.3 |
2 | MeOH | 10 2 | 76.5 2 |
3 | MeOH | 15 | 85.4 |
4 | MeOH | 20 | 99.1 |
5 | EtOH | 5 | 63.5 |
6 | EtOH | 10 2 | 78.2 2 |
7 | EtOH | 20 | 86.5 |
8 | EtOH | 30 | 99.3 |
9 | PrOH | 10 | 66.1 |
10 | PrOH | 20 2 | 75.3 2 |
11 | PrOH | 30 | 84.5 |
12 | PrOH | 40 | 99.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.; Xavier, N.; Rauter, A.; Galhano dos Santos, R. Synthesis of Alkyl Levulinates from α-Angelica Lactone Using Methanesulfonic Acid as a Catalyst: A Sustainable and Solvent-Free Route. ChemEngineering 2024, 8, 103. https://doi.org/10.3390/chemengineering8050103
Silva L, Xavier N, Rauter A, Galhano dos Santos R. Synthesis of Alkyl Levulinates from α-Angelica Lactone Using Methanesulfonic Acid as a Catalyst: A Sustainable and Solvent-Free Route. ChemEngineering. 2024; 8(5):103. https://doi.org/10.3390/chemengineering8050103
Chicago/Turabian StyleSilva, Luciana, Nuno Xavier, Amélia Rauter, and Rui Galhano dos Santos. 2024. "Synthesis of Alkyl Levulinates from α-Angelica Lactone Using Methanesulfonic Acid as a Catalyst: A Sustainable and Solvent-Free Route" ChemEngineering 8, no. 5: 103. https://doi.org/10.3390/chemengineering8050103
APA StyleSilva, L., Xavier, N., Rauter, A., & Galhano dos Santos, R. (2024). Synthesis of Alkyl Levulinates from α-Angelica Lactone Using Methanesulfonic Acid as a Catalyst: A Sustainable and Solvent-Free Route. ChemEngineering, 8(5), 103. https://doi.org/10.3390/chemengineering8050103