A Review of Air Pollution from Petroleum Refining and Petrochemical Industrial Complexes: Sources, Key Pollutants, Health Impacts, and Challenges
Abstract
:1. Introduction
2. Sources of Air Pollution from Petroleum Refining Industries
2.1. Process Emissions
2.2. Combustion Emissions
2.3. Fugitive Emissions
2.4. Feedstock and Product Handling Emissions
2.5. Auxiliary Emissions
3. Main Air Pollutants from Petroleum Refining and Their Health Impacts
3.1. Volatile Organic Compounds (VOCs)
3.2. Sulfur Dioxide (SO2)
3.3. Nitrogen Dioxide (NO2)
3.4. Ground-Level Ozone (O3)
3.5. Particulate Matter (PM)
3.6. Carbon Monoxide (CO)
3.7. Hydrogen Sulfide (H2S)
3.8. Hydrogen Cyanide (HCN)
3.9. Lead (Pb)
4. Health Outcomes of Petroleum Refining for Local Populations: Insights from an Umbrella Review of Systematic Reviews and Meta-Analyses
4.1. The Rationale and Framework
4.2. The Search Strategy
4.3. The Study Selection and Eligibility Criteria
4.4. Quality Assessment and Data Extraction
4.5. Results and Discussion of the Umbrella Review
4.6. Limitations of the Umbrella Review
5. Challenges and Perspectives
5.1. Cross-Sector Collaboration: Necessity, Challenges, and Potential
5.2. Technological and Operational Strategies for Mitigating Air Pollution
5.3. Strengthening Policy and Regulatory Frameworks
5.4. Addressing Socioeconomic Disparities and Environmental Justice
5.5. Future Research Directions and Knowledge Gaps
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Health Effects Institute (HEI). State of Global Air 2024. 2024. Available online: www.stateofglobalair.org (accessed on 18 September 2024).
- Brauer, M.; A Roth, G.; Aravkin, A.Y.; Zheng, P.; Abate, K.H.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasi, M.A.; Abbasian, M.; et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2162–2203. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 2017, 22, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Fakhruddin, A.N.M. A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int. J. Environ. Sci. Nat. Resour. 2018, 11, 63–69. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Yan, X.; Gao, S.; Cui, X.; Cui, Z. Life cycle assessment of petroleum refining process: A case study in China. J. Clean. Prod. 2020, 256, 120422. [Google Scholar] [CrossRef]
- Brender, J.D.; Maantay, J.A.; Chakraborty, J. Residential proximity to environmental hazards and adverse health outcomes. Am. J. Public Health. 2011, 101, S37–S52. [Google Scholar] [CrossRef] [PubMed]
- Simayi, M.; Hao, Y.; Li, J.; Shi, Y.; Ren, J.; Xi, Z.; Xie, S. Historical volatile organic compounds emission performance and reduction potentials in China’s petroleum refining industry. J. Clean. Prod. 2021, 292, 125810. [Google Scholar] [CrossRef]
- Zhong, Q.; Shen, H.; Yun, X.; Chen, Y.; Ren, Y.; Xu, H.; Shen, G.; Du, W.; Meng, J.; Li, W.; et al. Global sulfur dioxide emissions and the driving forces. Environ. Sci. Technol. 2020, 54, 6508–6517. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, L.A.; AlDosary, A.S.; Al-Matar, A.K.; Mudallah, O.A. An optimization model to improve gas emission mitigation in oil refineries. J. Clean. Prod. 2016, 118, 29–36. [Google Scholar] [CrossRef]
- Rodriguez-Espinosa, P.F.; Flores-Rangel, R.M.; Mugica-Alvarez, V.; Morales-Garcia, S.S. Sources of trace metals in PM 10 from a petrochemical industrial complex in Northern Mexico. Air Qual. Atmos. Health 2017, 10, 69–84. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X.; Zhang, J.; Xiao, Y.; Wang, Z.; Zhou, Y.; Wang, W. PM2.5 pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment. Atmos. Res. 2018, 212, 285–295. [Google Scholar] [CrossRef]
- Khatatbeh, M.; Alzoubi, K.; Khabour, O.; Al-Delaimy, W. Adverse health impacts of living near an oil refinery in Jordan. Environ. Health Insights 2020, 14, 1178630220985794. [Google Scholar] [CrossRef] [PubMed]
- US EPA. AP-42: Compilation of Air Pollutant Emissions Factors from Stationary Sources—Chapter 5: Petroleum Industry. Fifth Edition, Volume I. United States Environmental Protection Agency. 2015. Available online: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors-stationary-sources (accessed on 18 September 2024).
- US EPA. 2020 Air Emissions Data—2020 National Emissions Inventory (NEI)—Data Retrieval Tools. 2023. Available online: https://www.epa.gov/air-emissions-inventories/2020-air-emissions-data (accessed on 28 December 2024).
- Sojinu, S.O.; Ejeromedoghene, O. Environmental challenges associated with processing of heavy crude oils. In Processing of Heavy Crude Oils; InTechOpen: Houston, TX, USA, 2019; Volume 241. [Google Scholar] [CrossRef]
- Ragothaman, A.; Anderson, W.A. Air quality impacts of petroleum refining and petrochemical industries. Environments 2017, 4, 66. [Google Scholar] [CrossRef]
- Alnahdi, A.; Elkamel, A.; Shaik, M.A.; Al-Sobhi, S.A.; Erenay, F.S. Optimal production planning and pollution control in petroleum refineries using mathematical programming and dispersion models. Sustainability 2019, 11, 3771. [Google Scholar] [CrossRef]
- Adebiyi, F.M. Air quality and management in petroleum refining industry: A review. Environ. Chem. Ecotoxicol. 2022, 4, 89–96. [Google Scholar] [CrossRef]
- US EPA. Integrated Science Assessments (ISAs). 2024. Available online: https://www.epa.gov/isa (accessed on 28 December 2024).
- ATSDR. Agency for Toxic Substances and Disease Registry—Toxicological Profiles. 2024. Available online: https://www.atsdr.cdc.gov/toxicological-profiles/about/index.html (accessed on 28 December 2024).
- Wei, W.; Lv, Z.; Yang, G.; Cheng, S.; Li, Y.; Wang, L. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: A case study on a petroleum refinery in Northern China. Environ. Pollut. 2016, 218, 681–688. [Google Scholar] [CrossRef]
- Dehghani, M.; Fazlzadeh, M.; Sorooshian, A.; Tabatabaee, H.R.; Miri, M.; Baghani, A.N.; Delikhoon, M.; Mahvi, A.H.; Rashidi, M. Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol. Environ. Saf. 2018, 155, 133–143. [Google Scholar] [CrossRef]
- Latif, M.T.; Hamid, H.H.A.; Ahamad, F.; Khan, F.; Nadzir, M.S.M.; Othman, M.; Sahani, M.; Wahab, M.I.A.; Mohamad, N.; Uning, R.; et al. BTEX compositions and its potential health impacts in Malaysia. Chemosphere 2019, 237, 124451. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Geppert, H.; Fischer, T.; Wieprecht, W.; Möller, D. Determination of volatile organic and polycyclic aromatic hydrocarbons in crude oil with efficient gas-chromatographic methods. J. Chromatogr. Sci. 2015, 53, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Baltrėnas, P.; Baltrėnaitė, E.; Šerevičienė, V.; Pereira, P. Atmospheric BTEX concentrations in the vicinity of the crude oil refinery of the Baltic region. Environ. Monit. Assess. 2011, 182, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Khoshakhlagh, A.H.; Yazdanirad, S.; Mousavi, M.; Gruszecka-Kosowska, A.; Shahriyari, M.; Rajabi-Vardanjani, H. Summer and winter variations of BTEX concentrations in an oil refinery complex and health risk assessment based on Monte-Carlo simulations. Sci. Rep. 2023, 13, 10670. [Google Scholar] [CrossRef] [PubMed]
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on human health. In Air Pollution and Control; Springer: Singapore, 2018; pp. 119–142. [Google Scholar] [CrossRef]
- Alford, K.L.; Kumar, N. Pulmonary health effects of indoor volatile organic compounds—A meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 1578. [Google Scholar] [CrossRef] [PubMed]
- Halios, C.H.; Landeg-Cox, C.; Lowther, S.D.; Middleton, A.; Marczylo, T.; Dimitroulopoulou, S. Chemicals in European residences–Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total Environ. 2022, 839, 156201. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Bu, Z.; Liu, W.; Kan, H.; Zhao, Z.; Deng, F.; Huang, C.; Zhao, B.; Zeng, X.; Sun, Y.; et al. Health effects of exposure to indoor volatile organic compounds from 1980 to 2017: A systematic review and meta-analysis. Indoor Air 2022, 32, e13038. [Google Scholar] [CrossRef] [PubMed]
- IARC. List of Classifications—Agents Classified by the IARC Monographs, Volumes 1–136. 2024. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 18 September 2024).
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Grmasha, R.A.; Stenger-Kovács, C.; Bedewy, B.A.H.; Al-Sareji, O.J.; Al-Juboori, R.A.; Meiczinger, M.; Hashim, K.S. Ecological and human health risk assessment of polycyclic aromatic hydrocarbons (PAH) in Tigris river near the oil refineries in Iraq. Environ. Res. 2023, 227, 115791. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Chen, T.M.; Kuschner, W.G.; Gokhale, J.; Shofer, S. Outdoor air pollution: Nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am. J. Med. Sci. 2007, 333, 249–256. [Google Scholar] [CrossRef]
- Khalaf, E.M.; Mohammadi, M.J.; Sulistiyani, S.; Ramírez-Coronel, A.A.; Kiani, F.; Jalil, A.T.; Almulla, A.F.; Asban, P.; Farhadi, M.; Derikondi, M. Effects of sulfur dioxide inhalation on human health: A review. Rev. Environ. Health 2024, 39, 331–337. [Google Scholar] [CrossRef]
- O’brien, E.; Masselot, P.; Sera, F.; Roye, D.; Breitner, S.; Ng, C.F.S.; Coelho, M.d.S.Z.S.; Madureira, J.; Tobias, A.; Vicedo-Cabrera, A.M.; et al. Short-term association between sulfur dioxide and mortality: A multicountry analysis in 399 cities. Environ. Health Perspect. 2023, 131, 037002. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.K.; Kumar, S. Sulfur dioxide: Risk assessment, environmental, and health hazard. In Hazardous Gases; Academic Press: Cambridge, MA, USA, 2021; pp. 375–389. [Google Scholar] [CrossRef]
- Hodan, W.M.; Barnard, W.R. Evaluating the Contribution of PM2.5 Precursor Gases and Re-Entrained Road Emissions to Mobile Source PM2.5 Particulate Matter Emissions. MACTEC Federal Programs, Research Triangle Park, NC. 2004. Available online: https://www3.epa.gov/ttnchie1/conference/ei13/mobile/hodan.pdf (accessed on 18 September 2024).
- Mannucci, P.M.; Harari, S.; Martinelli, I.; Franchini, M. Effects on health of air pollution: A narrative review. Intern. Emerg. Med. 2015, 10, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Ritz, B.; Hoffmann, B.; Peters, A. The effects of fine dust, ozone, and nitrogen dioxide on health. Dtsch. Ärzteblatt Int. 2019, 116, 881. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.D. Human health effects of exposure to nitrate, nitrite, and nitrogen dioxide. In Just Enough Nitrogen: Perspectives on How to Get There for Regions with too Much and too Little Nitrogen; Springer: Cham, Switzerland, 2020; pp. 283–294. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Butland, B.K.; Anderson, H.R.; Maynard, R.L. Long-term concentrations of nitrogen dioxide and mortality: A meta-analysis of cohort studies. Epidemiology 2018, 29, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, H.; Wang, M.; Qian, Y.; Steenland, K.; Caudle, W.M.; Liu, Y.; Sarnat, J.; Papatheodorou, S.; Shi, L. Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Sci. Total Environ. 2021, 776, 145968. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, N.; Tang, H.; Gao, X.; Zhang, Y.; Kan, H.; Deng, F.; Zhao, B.; Zeng, X.; Sun, Y.; et al. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. Indoor Air 2022, 32, e13170. [Google Scholar] [CrossRef] [PubMed]
- Fabian, P.; Dameris, M. Ozone in the Atmosphere; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–137. [Google Scholar] [CrossRef]
- Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Tavella, R.A.; da Silva Júnior, F.M.R. Watch out for trends: Did ozone increased or decreased during the COVID-19 pandemic? Environ. Sci. Pollut. Res. 2021, 28, 67880–67885. [Google Scholar] [CrossRef] [PubMed]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- Donzelli, G.; Suarez-Varela, M.M. Tropospheric Ozone: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. Atmosphere 2024, 15, 779. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Li, G.; Wang, W.; Wang, K.; Wang, J.; Wei, C.; Li, Y.; Deng, F.; A Baccarelli, A.; et al. Ozone pollution and hospital admissions for cardiovascular events. Eur. Heart J. 2023, 44, 1622–1632. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Agrawal, M. A global perspective of fine particulate matter pollution and its health effects. Rev. Environ. Contam. Toxicol. 2018, 244, 5–51. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.E. Airborne particulate matter: Human exposure and health effects. J. Occup. Environ. Med. 2018, 60, 392–423. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Hamanaka, R.B.; Mutlu, G.M. Particulate matter air pollution: Effects on the cardiovascular system. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Chen, Y.; Tang, J.; Lin, Z.; Zheng, F.; Zheng, C.; Zhou, J.; Su, Q.; Wu, S.; Li, H. Meta-analyses of maternal exposure to atmospheric particulate matter and risk of congenital anomalies in offspring. Environ. Sci. Pollut. Res. 2021, 28, 55869–55887. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Zhang, Y.; Hu, H.; Hu, W.; Li, L.; Pang, Y.; Ma, S.; Niu, Y.; Zhang, R. Association between ambient particulate matter exposure and metabolic syndrome risk: A systematic review and meta-analysis. Sci. Total Environ. 2021, 782, 146855. [Google Scholar] [CrossRef]
- Sacks, J.D.; Stanek, L.W.; Luben, T.J.; Johns, D.O.; Buckley, B.J.; Brown, J.S.; Ross, M. Particulate matter–induced health effects: Who is susceptible? Environ. Health Perspect. 2011, 119, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, W.H.; Kim, Y.Y.; Park, H.Y. Air pollution and central nervous system disease: A review of the impact of fine particulate matter on neurological disorders. Front. Public Health 2020, 8, 575330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-N.; Xu, Z.; Wu, G.-C.; Mao, Y.-M.; Liu, L.-N.; Wu, Q.; Dan, Y.-L.; Tao, S.-S.; Zhang, Q.; Sam, N.B.; et al. Emerging role of air pollution in autoimmune diseases. Autoimmun. Rev. 2019, 18, 607–614. [Google Scholar] [CrossRef]
- Yu, P.; Guo, S.; Xu, R.; Ye, T.; Li, S.; Sim, M.R.; Abramson, M.J.; Guo, Y. Cohort studies of long-term exposure to outdoor particulate matter and risks of cancer: A systematic review and meta-analysis. Innovation 2021, 2, 100143. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Clower, J.H.; Hernandez, S.A.; Damon, S.A.; Yip, F.Y. A review of disaster-related carbon monoxide poisoning: Surveillance, epidemiology, and opportunities for prevention. Am. J. Public Health 2012, 102, 1957–1963. [Google Scholar] [CrossRef]
- Stucki, D.; Stahl, W. Carbon monoxide–beyond toxicity? Toxicol. Lett. 2020, 333, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.J.; Wang, L.; Xu, Q.; McTiernan, C.F.; Shiva, S.; Tejero, J.; Gladwin, M.T. Carbon monoxide poisoning: Pathogenesis, management, and future directions of therapy. Am. J. Respir. Crit. Care Med. 2017, 195, 596–606. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 28 December 2024).
- National Institute for Occupational Safety and Health (NIOSH). Carbon Monoxide. 2024. Available online: https://www.cdc.gov/niosh/idlh/630080.html (accessed on 28 December 2024).
- Levy, R.J. Carbon monoxide pollution and neurodevelopment: A public health concern. Neurotoxicol. Teratol. 2015, 49, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Mbowe, O.; Lee, A.S.; Davis, J. Effect of environmental exposure to hydrogen sulfide on central nervous system and respiratory function: A systematic review of human studies. Int. J. Occup. Environ. Health 2016, 22, 80–90. [Google Scholar] [CrossRef]
- Rubright, S.L.M.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Guidotti, T.L. Hydrogen sulfide: Advances in understanding human toxicity. Int. J. Toxicol. 2010, 29, 569–581. [Google Scholar] [CrossRef]
- Occupational Safety and Health Administration (OSHA). Hidrogen Sulfide. 2024. Available online: https://www.osha.gov/hydrogen-sulfide/hazards (accessed on 28 December 2024).
- Batterman, S.; Grant-Alfieri, A.; Seo, S.H. Low level exposure to hydrogen sulfide: A review of emissions, community exposure, health effects, and exposure guidelines. Crit. Rev. Toxicol. 2023, 53, 244–295. [Google Scholar] [CrossRef]
- National Institute for Occupational Safety and Health (NIOSH). Hidrogen Sulfide. 2024. Available online: https://www.cdc.gov/niosh/npg/npgd0337.html (accessed on 28 December 2024).
- Roth, S.H. Toxicological and environmental impacts of hydrogen sulfide. In Signal Transduction and the Gasotransmitters: NO, CO, and H2S in Biology and Medicine; Humana Press: Totowa, NJ, USA, 2004; pp. 293–313. [Google Scholar] [CrossRef]
- Salih, M.Q.; Hamadamin, R.R.; Hama, J.R. Emission and exposure of hydrogen sulfide in the air from oil refinery: Spatiotemporal field monitoring. Int. J. Environ. Sci. Technol. 2023, 20, 4727–4736. [Google Scholar] [CrossRef]
- Concawe. An Overview of HCN Emissions from FCCU’s and Their Potential Impacts on Human Health. Environmental Science for European Refining. Report 1/19. 2019. Available online: https://www.concawe.eu/wp-content/uploads/Rpt_19-1.pdf (accessed on 18 September 2024).
- Simeonova, F.P.; Fishbein, L.; World Health Organization. Hydrogen Cyanide and Cyanides: Human Health Aspects. World Health Organization. 2004. Available online: https://iris.who.int/bitstream/handle/10665/42942/9241530618.pdf (accessed on 18 September 2024).
- Devi, P. Hydrogen cyanide: Risk assessment, environmental, and health hazard. In Hazardous Gases; Academic Press: Cambridge, MA, USA, 2021; pp. 183–195. [Google Scholar] [CrossRef]
- National Institute for Occupational Safety and Health (NIOSH). Hidrogen Cyanide. 2024. Available online: https://www.cdc.gov/niosh/npg/npgd0333.html (accessed on 28 December 2024).
- Tran, Q.B.; Lohitnavy, M.; Phenrat, T. Assessing potential hydrogen cyanide exposure from cyanide-contaminated mine tailing management practices in Thailand’s gold mining. J. Environ. Manag. 2019, 249, 109357. [Google Scholar] [CrossRef] [PubMed]
- Jimoda, L.A.; Olatunji, S.O.; Adeniran, J.A.; Fakinle, B.S.; Sonibare, J.A. Atmospheric loadings of lead from refined petroleum products consumption in Southwestern Nigeria. Pet. Sci. Technol. 2014, 32, 2921–2929. [Google Scholar] [CrossRef]
- Yao, P.H.; Shyu, G.S.; Chang, Y.F.; Chou, Y.C.; Shen, C.C.; Chou, C.S.; Chang, T.K. Lead isotope characterization of petroleum fuels in Taipei, Taiwan. Int. J. Environ. Res. Public Health 2015, 12, 4602–4616. [Google Scholar] [CrossRef] [PubMed]
- Ajarem, J.S.; Hegazy, A.K.; Allam, G.A.; Allam, A.A.; Maodaa, S.N.; Mahmoud, A.M. Heavy metal accumulation, tissue injury, oxidative stress, and inflammation in dromedary camels living near petroleum industry sites in Saudi Arabia. Animals 2022, 12, 707. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Raj, K.; Das, A.P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- World Health Organization. Lead Poisoning. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 18 September 2024).
- Yuan, T.H.; Shen, Y.C.; Shie, R.H.; Hung, S.H.; Chen, C.F.; Chan, C.C. Increased cancers among residents living in the neighborhood of a petrochemical complex: A 12-year retrospective cohort study. Int. J. Hyg. Environ. Health 2018, 221, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.K.; Hung, H.Y.; Christiani, D.C.; Forastiere, F.; Lin, R.T. Lung cancer mortality of residents living near petrochemical industrial complexes: A meta-analysis. Environ. Health 2017, 16, 101. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.K.; Hsu, Y.T.; Christiani, D.C.; Hung, H.Y.; Lin, R.T. Risks and burden of lung cancer incidence for residential petrochemical industrial complexes: A meta-analysis and application. Environ. Int. 2018, 121, 404–414. [Google Scholar] [CrossRef]
- Boonhat, H.; Lin, R.T. Association between leukemia incidence and mortality and residential petrochemical exposure: A systematic review and meta-analysis. Environ. Int. 2020, 145, 106090. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.W.; Boonhat, H.; Lin, R.T. Incidence of respiratory symptoms for residents living near a petrochemical industrial complex: A meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 2474. [Google Scholar] [CrossRef] [PubMed]
- Jephcote, C.; Brown, D.; Verbeek, T.; Mah, A. A systematic review and meta-analysis of haematological malignancies in residents living near petrochemical facilities. Environ. Health 2020, 19, 53. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.K.; Hsu, Y.T.; Brown, K.D.; Pokharel, B.; Wei, Y.; Chen, S.T. Residential exposure to petrochemical industrial complexes and the risk of leukemia: A systematic review and exposure-response meta-analysis. Environ. Pollut. 2020, 258, 113476. [Google Scholar] [CrossRef]
- Onyije, F.M.; Hosseini, B.; Togawa, K.; Schüz, J.; Olsson, A. Cancer incidence and mortality among petroleum industry workers and residents living in oil producing communities: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 4343. [Google Scholar] [CrossRef]
- Okoye, O.C.; Carnegie, E.; Mora, L. Air pollution and chronic kidney disease risk in oil and gas-situated communities: A systematic review and meta-analysis. Int. J. Public Health 2022, 67, 1604522. [Google Scholar] [CrossRef]
- Boonhat, H.; Lin, R.T.; Lin, J.T. Association between residential exposure to petrochemical industrial complexes and pancreatic cancer: A systematic review and meta-analysis. Int. J. Environ. Health Res. 2023, 33, 116–127. [Google Scholar] [CrossRef]
- Sopian, N.A.; Jalaludin, J.; Bahri, M.T.S. Risk of respiratory health impairment among susceptible population living near petrochemical industry—A review article. Iran J. Public Health 2016, 45 (Suppl. S1), 9–16. [Google Scholar]
- Domingo, J.L.; Marquès, M.; Nadal, M.; Schuhmacher, M. Health risks for the population living near petrochemical industrial complexes. 1. Cancer risks: A review of the scientific literature. Environ. Res. 2020, 186, 109495. [Google Scholar] [CrossRef]
- Marquès, M.; Domingo, J.L.; Nadal, M.; Schuhmacher, M. Health risks for the population living near petrochemical industrial complexes. 2. Adverse health outcomes other than cancer. Sci. Total Environ. 2020, 730, 139122. [Google Scholar] [CrossRef]
- Boonhat, H.; Guo, Y.L.; Chan, C.C.; Lin, R.T. Estimates of the global burden of cancer-related deaths attributable to residential exposure to petrochemical industrial complexes from 2020 to 2040. Environ. Pollut. 2024, 350, 123955. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, J.J.; Reka, S.; Yang, D.; Chang, C.; Roy, A.; Thompson, T.; Lyon, D.; McVay, R.; Michanowicz, D.; Arunachalam, S. Air pollution and health impacts of oil & gas production in the United States. Environ. Res. Health 2023, 1, 021006. [Google Scholar] [CrossRef]
- Fan, Z.T.; Zhu, X.; Jung, K.H.; Ohman-Strickland, P.; Weisel, C.P.; Lioy, P.J. Exposures to volatile organic compounds (VOCs) and associated health risks of socio-economically disadvantaged population in a “hot spot” in Camden, New Jersey. Atmos. Environ. 2012, 57, 72–79. [Google Scholar] [CrossRef]
- Flores, A.B.; Castor, A.; Grineski, S.E.; Collins, T.W.; Mullen, C. Petrochemical releases disproportionately affected socially vulnerable populations along the Texas Gulf Coast after Hurricane Harvey. Popul. Environ. 2021, 42, 279–301. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Collaboration Key to Securing Clean Air for All, Experts Say. 2023. Available online: https://www.unep.org/news-and-stories/story/collaboration-key-securing-clean-air-all-experts-say (accessed on 3 October 2024).
- Clean Air Fund. 6 Cross-Sector Collaborations Tackling Air Pollution. 2023. Available online: https://www.cleanairfund.org/news-item/cross-sector-collaborations/ (accessed on 3 October 2024).
- World Economic Forum. Why Cross-Sector Collaboration Is Key to Building More Resilient Communities. 2024. Available online: https://www.weforum.org/agenda/2024/01/collaboration-key-resilient-communities-davos/ (accessed on 3 October 2024).
- Gaba, A.; Iordache, S.F. Reduction of air pollution by combustion processes. In The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources; InTech: London, UK, 2011; pp. 119–142. [Google Scholar]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Larki, I.; Zahedi, A.; Asadi, M.; Forootan, M.M.; Farajollahi, M.; Ahmadi, R.; Ahmadi, A. Mitigation approaches and techniques for combustion power plants flue gas emissions: A comprehensive review. Sci. Total Environ. 2023, 903, 166108. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Xiong, Y.; Wang, Y.; Yin, W.; Tian, G.; Wang, Z.; Cheng, Y.; Ji, S. Enhancing combustion efficiency and reducing nitrogen oxide emissions from ammonia combustion: A comprehensive review. Process. Saf. Environ. Prot. 2024, 183, 514–543. [Google Scholar] [CrossRef]
- Gai, H.; Wang, A.; Fang, J.; Lou, H.H.; Chen, D.; Li, X.; Martin, C. Clean combustion and flare minimization to reduce emissions from process industry. Curr. Opin. Green Sustain. Chem. 2020, 23, 38–45. [Google Scholar] [CrossRef]
- Asadi, J.; Yazdani, E.; Dehaghani, Y.H.; Kazempoor, P. Technical evaluation and optimization of a flare gas recovery system for improving energy efficiency and reducing emissions. Energy Convers. Manag. 2021, 236, 114076. [Google Scholar] [CrossRef]
- Gai, H.; Beath, J.; Fang, J.; Lou, H.H. Alternative emission monitoring technologies and industrial internet of things–based process monitoring technologies for achieving operational excellence. Curr. Opin. Green Sustain. Chem. 2020, 23, 31–37. [Google Scholar] [CrossRef]
- Gao, J.; Tian, G.; Sorniotti, A.; Karci, A.E.; Di Palo, R. Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up. Appl. Therm. Eng. 2019, 147, 177–187. [Google Scholar] [CrossRef]
- Idris, N.F.; Le-Minh, N.; Hayes, J.E.; Stuetz, R.M. Performance of wet scrubbers to remove VOCs from rubber emissions. J. Environ. Manag. 2022, 305, 114426. [Google Scholar] [CrossRef]
- Afshari, A.; Ekberg, L.; Forejt, L.; Mo, J.; Rahimi, S.; Siegel, J.; Chen, W.; Wargocki, P.; Zurami, S.; Zhang, J. Electrostatic precipitators as an indoor air cleaner—A literature review. Sustainability 2020, 12, 8774. [Google Scholar] [CrossRef]
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef] [PubMed]
- Asif, Z.; Chen, Z.; Wang, H.; Zhu, Y. Update on air pollution control strategies for coal-fired power plants. Clean Technol. Environ. Policy 2022, 24, 2329–2347. [Google Scholar] [CrossRef]
- Ke, J.; Li, S.; Zhao, D. The application of leak detection and repair program in VOCs control in China’s petroleum refineries. J. Air Waste Manag. Assoc. 2020, 70, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Worrell, E.; Bernstein, L.; Roy, J.; Price, L.; Harnisch, J. Industrial energy efficiency and climate change mitigation. In Renewable Energy; Routledge: London, UK, 2018; pp. Vol1_548–Vol1_568. [Google Scholar]
- Pickl, M.J. The renewable energy strategies of oil majors—From oil to energy? Energy Strategy Rev. 2019, 26, 100370. [Google Scholar] [CrossRef]
- Pinheiro Pires, A.P.; Arauzo, J.; Fonts, I.; Domine, M.E.; Fernández Arroyo, A.; Garcia-Perez, M.E.; Montoya, J.; Chejne, F.; Pfromm, P.; Garcia-Perez, M. Challenges and opportunities for bio-oil refining: A review. Energy Fuels 2019, 33, 4683–4720. [Google Scholar] [CrossRef]
- Su, J.; van Dyk, S.; Saddler, J. Repurposing oil refineries to “stand-alone units” that refine lipids/oleochemicals to produce low-carbon intensive, drop-in biofuels. J. Clean. Prod. 2022, 376, 134335. [Google Scholar] [CrossRef]
- Bergman-Fonte, C.; da Silva, G.N.; Império, M.; Draeger, R.; Coutinho, L.; Cunha, B.S.; Rochedo, P.R.; Szklo, A.; Schaeffer, R. Repurposing, co-processing and greenhouse gas mitigation–The Brazilian refining sector under deep decarbonization scenarios: A case study using integrated assessment modeling. Energy 2023, 282, 128435. [Google Scholar] [CrossRef]
Health Outcomes Analyzed | Number of Studies Included | Number of Residents Investigated | Location of Studies | Key Findings | Date of Study [Reference] |
---|---|---|---|---|---|
Systematic reviews and meta-analyses | |||||
Lung cancer mortality | 13 | 2,017,365 | Italy, Taiwan, the United Kingdom, the United States | The pooled analysis showed a slightly elevated risk of lung cancer mortality among residents near petrochemical complexes (RR = 1.03; 95% CI = 0.98–1.09), though this association did not reach statistical significance. | 2017 [90] |
Lung cancer incidence | 6 | 466,066 | Ecuador, Israel, Italy, Serbia, Sweden, the United States | Residents living near petrochemical industrial complexes had a 19% higher risk of lung cancer compared to those who lived farther away (95% CI = 1.06–1.32). By sex, the risks were higher and more significant for females (RR = 1.29; 95% CI = 1.09–1.54) than males (RR = 1.12; 95% CI = 0.95–1.33). | 2018 [91] |
Leukemia incidence and mortality | 13 | 125,580 | Croatia, Finland, Italy, Serbia, Spain, Sweden, Taiwan, the United Kingdom, the United States | The moderate certainty of the evidence indicated an increased risk of leukemia incidence (RR = 1.18; 95% CI = 1.03–1.35) and mortality (RR = 1.26; 95% CI = 1.10–1.45) in residents near petrochemical complexes. The subgroup analysis showed a higher risk in distance-based exposure studies (RR = 1.11; 95% CI = 1.00–1.23) and in those with longer follow-up periods (RR = 1.24; 95% CI = 1.06–1.45). | 2020 [92] |
Nonmalignant respiratory symptoms. | 16 | 14,532 | Argentina, Brazil, Italy, Spain, Taiwan, Thailand, the United Kingdom | Significant associations between residential exposure to petrochemical industrial complexes and higher incidences of cough (OR = 1.35), wheezing (OR = 1.28), bronchitis (OR = 1.26), and rhinitis (OR = 1.17). The association with asthma (OR = 1.15) did not reach statistical significance. | 2020 [93] |
Hematological malignancies: leukemia, Hodgkin’s lymphoma, Non-Hodgkin’s lymphoma, and multiple myeloma | 16 | 187,585 | Israel, Finland, Italy, Serbia, Spain, Sweden, Taiwan, the United States, the United Kingdom | Residents of fenceline communities, living less than 5 km from a petrochemical facility, had a 30% higher risk of developing leukemia compared to residents from communities without petrochemical activity (pooled RR = 1.30; 95% CI = 1.09–1.55). However, the association between exposure and rarer forms of hematological malignancies remains uncertain, requiring further research. Hodgkin’s lymphoma (pooled RR = 1.03; 95% CI = 0.81 to 1.30), Non-Hodgkin’s lymphoma (RR = 1.06; 95% CI = 0.97 to 1.17), and multiple myeloma (RR = 0.97; 95% CI = 0.78 to 1.20). | 2020 [94] |
Leukemia risk and its subtypes | 7 | 2322 | Croatia, Finland, Sweden, Taiwan, the United States, the United Kingdom | Residential exposure within 8 km of petrochemical industrial complexes increased leukemia risk by 36% (pooled RR = 1.36; 95% CI = 1.14–1.62). For the subtypes, the risks were as follows: acute myeloid leukemia (RR = 1.61; 95% CI = 1.12–2.31), chronic lymphocytic leukemia (RR = 1.85; 95% CI = 1.11–6.42), and acute lymphoblastic leukemia (RR = 1.50; 95% CI = 0.97–1.69). | 2020 [95] |
Cancer—multiple types | 14 * | ~2,595,931 | Ecuador, Italy, South Korea, Spain, Sweden, Taiwan, the United Kingdom, the United States | Residential proximity to petroleum facilities was associated with childhood leukemia (ES = 1.90; CI: 1.34–2.70). | 2021 [96] |
Kidney-related outcomes: chronic kidney disease (CKD), end-stage renal disease (ESRD), proteinuria/albuminuria, reduced renal function (based on estimated glomerular filtration rate—eGFR), kidney cancer, hypertension, and diabetes | 14 | - | Brazil, Ecuador, Estonia, Italy, Nigeria, Spain, Taiwan, the United States | Residents of exposed communities had an increased risk of chronic kidney disease (OR = 1.70; 95% CI 1.44–2.01), a lower eGFR (OR = 0.55; 95% CI 0.48–0.67), and higher serum creatinine (OR = 1.39; 95% CI 1.06–1.82) compared to less exposed or unexposed populations. The risks for hypertension and kidney cancer were not significantly different between the groups. | 2022 [97] |
Pancreatic cancer and mortality | 7 | 1,605,568 | Italy, Serbia, Taiwan, the United States | The pooled analysis revealed a significantly higher risk of pancreatic cancer among residents living near petrochemical complexes (RR = 1.31; 95% CI = 1.21–1.42), with a higher effect observed in female residents (RR = 1.34; 95% CI = 1.18–1.53) compared to male residents (RR = 1.26; 95% CI = 1.12–1.41). | 2023 [98] |
Critical reviews | |||||
Respiratory health outcomes in children | 9 | ~10,830 | Argentina, Brazil, Canada, Italy, Puerto Rico, South Africa, Taiwan, the United States | Short-term exposure to petrochemical air pollutants was associated with increased respiratory symptoms in children, reduced lung function, and higher asthma incidence, especially for those living within 5 km of the industry. | 2016 [99] |
Cancer or cancer mortality | 23 | - | Italy, Nigeria, Spain, Taiwan, the United Kingdom, the United States | Leukemia and other hematological malignancies were the most reported cancers among populations living near petrochemical industries. Other studies noted a high incidence of lung and bladder cancers, as well as excess mortality from bone, brain, liver, pleural, larynx, and pancreas cancers, in those living near petrochemical complexes in different countries. | 2020 [100] |
Adverse health effects, focusing on non-cancer outcomes | 27 | - | Argentina, Brazil, Canada, China, Italy, Spain, South Africa, Taiwan, Thailand | Increased prevalence of asthma and other respiratory problems (acute lower respiratory infections and chronic obstructive pulmonary disease) in both children and adults living near petrochemical complexes, along with reproductive outcomes like low birth weight, preterm births, and small-for-gestational-age births. Very few studies addressed other health outcomes. | 2020 [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavella, R.A.; da Silva Júnior, F.M.R.; Santos, M.A.; Miraglia, S.G.E.K.; Pereira Filho, R.D. A Review of Air Pollution from Petroleum Refining and Petrochemical Industrial Complexes: Sources, Key Pollutants, Health Impacts, and Challenges. ChemEngineering 2025, 9, 13. https://doi.org/10.3390/chemengineering9010013
Tavella RA, da Silva Júnior FMR, Santos MA, Miraglia SGEK, Pereira Filho RD. A Review of Air Pollution from Petroleum Refining and Petrochemical Industrial Complexes: Sources, Key Pollutants, Health Impacts, and Challenges. ChemEngineering. 2025; 9(1):13. https://doi.org/10.3390/chemengineering9010013
Chicago/Turabian StyleTavella, Ronan Adler, Flavio Manoel Rodrigues da Silva Júnior, Mariany Almeida Santos, Simone Georges El Khouri Miraglia, and Renato Dutra Pereira Filho. 2025. "A Review of Air Pollution from Petroleum Refining and Petrochemical Industrial Complexes: Sources, Key Pollutants, Health Impacts, and Challenges" ChemEngineering 9, no. 1: 13. https://doi.org/10.3390/chemengineering9010013
APA StyleTavella, R. A., da Silva Júnior, F. M. R., Santos, M. A., Miraglia, S. G. E. K., & Pereira Filho, R. D. (2025). A Review of Air Pollution from Petroleum Refining and Petrochemical Industrial Complexes: Sources, Key Pollutants, Health Impacts, and Challenges. ChemEngineering, 9(1), 13. https://doi.org/10.3390/chemengineering9010013