Drought in the Breadbasket of America and the Influence of Oceanic Teleconnections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Teleconnection Data
2.1.2. Drought Data
2.2. Study Area
2.3. Statistical Methods
- (1)
- For each climate division, drought periods were first identified based on their respective PDSI values. For each period, the average strength, maximum strength, and duration were calculated.
- (2)
- Next, monthly teleconnection indices for ENSO, PDO, and AMO were introduced, and positive and negative phases were identified.
- (3)
- To determine the relationships between drought and teleconnection phases, the difference in means test (t-test) was used. Monthly PDSI values and their associated monthly teleconnection values were then sorted into two sections: drought and non-drought, meaning all months of drought and months of non-drought from 1950 to 2019 were separated into two sections. The two-sample t-test assuming unequal variances in Excel was used to determine if the mean teleconnection value for ENSO, AMO, and PDO, respectively, were different during periods of drought versus non-drought.
3. Results
3.1. Drought
3.1.1. Illinois
3.1.2. Iowa
3.1.3. Kansas
3.1.4. Minnesota
3.1.5. Nebraska
3.1.6. Texas
3.2. Teleconnections
3.2.1. Illinois
3.2.2. Iowa
3.2.3. Kansas
3.2.4. Minnesota
3.2.5. Nebraska
3.2.6. Texas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The High Cost of Drought. Available online: https://www.drought.gov/news/high-cost-drought (accessed on 19 June 2023).
- U.S. Billion-Dollar Weather & Climate Disasters 1980–2020. Available online: https://www.ncdc.noaa.gov/billions/summary-stats/US/1980-2020 (accessed on 19 June 2023).
- Rodziewiez, D.; Dice, J. Drought risk to the agriculture sector. Econ. Rev. 2020, 105, 61–86. [Google Scholar]
- Quiring, S.M.; Goodrich, G.B. Nature and causes of the 2002 to 2004 drought in the southwestern United States compared with the historic 1953 to 1957 drought. Clim. Res. 2008, 36, 41–52. [Google Scholar] [CrossRef]
- Schubert, S.D.; Suarez, M.J.; Pegion, P.J.; Koster, R.D.; Bachmeister, J.T. Causes of long-term drought in the U.S. Great Plains. J. Clim. 2004, 17, 485–503. [Google Scholar] [CrossRef]
- Craft, K.E.; Mahmood, R.; King, S.A.; Goodrich, G.B.; Yan, J. Drought and corn in Kentucky. Appl. Geogr. 2013, 45, 353–362. [Google Scholar] [CrossRef]
- Goodrich, G.B.; Thompson, J.K.; Wingard, S.D.; Batson, K.J. The 2007 Mid-South summer drought and heat wave in historical perspective. Southeast Geogr. 2011, 51, 411–421. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X. Two types of flash drought and their connections with seasonal drought. Adv. Atmos. Sci. 2018, 35, 1478–1490. [Google Scholar] [CrossRef]
- Livneh, B.; Hoerling, M.P. The physics of drought in the U.S. Central Great Plains. J. Clim. 2016, 29, 6783–6804. [Google Scholar] [CrossRef]
- Teleconnections. Available online: https://www.ncdc.noaa.gov/teleconnections/ (accessed on 19 June 2023).
- Rajagopalan, B.; Cook, E.; Lall, U.; Ray, B.K. Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the Twentieth Century. J. Clim. 2000, 13, 4244–4255. [Google Scholar] [CrossRef]
- Okumura, Y.M.; DiNezio, P.; Deser, C. Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophys. Res. Lett. 2017, 44, 11614–11623. [Google Scholar] [CrossRef]
- Cole, J.E.; Overpeck, J.T. Multiyear La Niña events and persistent drought in the contiguous United States. Geophys. Res. Lett. 2002, 29, 25-1–25-4. [Google Scholar] [CrossRef]
- Hu, Z.-Z.; Huang, B. Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Clim. 2009, 22, 6047–6065. [Google Scholar] [CrossRef]
- Nigam, S.; Guan, B.; Ruiz-Barradas, A. Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains. Geophys. Res. Lett. 2011, 38, L16713. [Google Scholar] [CrossRef]
- Veres, M.C.; Hu, Q. AMO-forced regional processes affecting summertime precipitation. J. Clim. 2013, 26, 276–290. [Google Scholar] [CrossRef]
- Goodrich, G.B. Multidecadal climate variability and drought in the United States. Geogr. Compass 2007, 1, 713–738. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA 2004, 101, 4136–4141. [Google Scholar] [CrossRef] [PubMed]
- Pu, B.; Fu, R.; Dickinson, R.E.; Fernando, D.N. Why do summer droughts in the Southern Great Plains occur in some La Niña years but not others? J. Geophys. Res. Atmos. 2016, 121, 1120–1137. [Google Scholar] [CrossRef]
- Goodrich, G.B.; Walker, J.M. The influence of the PDO on winter precipitation during high- and low-index ENSO conditions in the eastern United States. Phys. Geogr. 2011, 32, 295–312. [Google Scholar] [CrossRef]
- El Niño–Southern Oscillation (ENSO). Available online: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml (accessed on 19 June 2023).
- Pacific Decadal Oscillation. Available online: https://www.ncdc.noaa.gov/teleconnections/pdo/ (accessed on 19 June 2023).
- Linear Correlations in Atmospheric Seasonal/Monthly Averages. Available online: https://psl.noaa.gov/data/correlation/ (accessed on 19 June 2023).
- Equatorial Pacific Sea Surface Temperatures. Available online: https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/ (accessed on 19 June 2023).
- Create a Monthly or Seasonal Time Series of Climate Variables. Available online: https://psl.noaa.gov/data/timeseries/ (accessed on 19 June 2023).
- Heim, R.R., Jr. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef]
- Svoboda, M.; Le Comte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; U.S. Department of Commerce: Washington, DC, USA, 1965; pp. 1–56. [Google Scholar]
- Palmer Drought Severity Index. Available online: https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi (accessed on 19 June 2023).
- Craft, K.E.; Mahmood, R.; King, S.A.; Goodrich, G.B.; Yan, J. Twentieth century droughts and agriculture: Examples from impacts on soybean production in Kentucky, USA. Ambio 2015, 44, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Field Crops Usual Planting and Harvesting Dates. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/fcdate10.pdf (accessed on 19 June 2023).
- Alley, W.M. The Palmer Drought Severity Index: Limitations and assumptions. J. Appl. Meteorol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef]
- Agricultural Productivity in the U.S. Available online: https://ers.usda.gov/data-products/agricultural-productivity-in-the-us/ (accessed on 19 June 2023).
- Balling, R.C., Jr.; Goodrich, G.B. Analysis of drought determinants for the Colorado River Basin. Clim. Chang. 2007, 82, 179–194. [Google Scholar] [CrossRef]
- Guttmann, N.B.; Quayle, R.G. A historical perspective of U.S. climate divisions. Bull. Am. Meteorol. Soc. 1996, 77, 293–303. [Google Scholar] [CrossRef]
- Karl, T.R.; Riebsame, W.E. The identification of 10- to 20-year temperature and precipitation fluctuations in the contiguous United States. J. Appl. Meteorol. 1984, 23, 950–966. [Google Scholar] [CrossRef]
- Jong, B.-T.; Ting, M.; Seager, R.; Anderson, W.B. ENSO teleconnections and impacts on U.S. summertime temperature during a multiyear La Niña life cycle. J. Clim. 2020, 33, 6009–6024. [Google Scholar] [CrossRef]
- Birk, K.; Lupo, A.R.; Guinan, P.; Barbieri, C.E. The interannual variability of midwestern temperatures and precipitation as related to the ENSO and PDO. Atmosfera 2010, 23, 95–128. [Google Scholar]
- Mann, M.E.; Steinman, B.A.; Miller, S.K. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Commun. 2020, 11, 49. [Google Scholar] [CrossRef]
PDO | AMO | NIÑO 3.4 | |
---|---|---|---|
PDO | 1.00 | −0.09 | 0.44 |
AMO | 1.00 | 0.05 | |
NIÑO 3.4 | 1.00 |
Illinois | ||||||
---|---|---|---|---|---|---|
Total Droughts | Avg. Strength | Avg. Duration | Cool Season | Warm Season | Multiyear | |
CD1 | 11 | −3.17 | 10.82 | 5 | 6 | 3 |
CD2 | 12 | −3.30 | 8.58 | 6 | 6 | 3 |
CD3 | 12 | −2.91 | 13.92 | 6 | 6 | 4 |
CD4 | 10 | −2.95 | 11.40 | 7 | 3 | 3 |
CD5 | 10 | −2.96 | 11.50 | 5 | 5 | 2 |
CD6 | 10 | −2.82 | 16.90 | 5 | 5 | 5 |
CD7 | 12 | −2.80 | 10.50 | 6 | 6 | 2 |
CD8 | 9 | −2.89 | 14.00 | 5 | 4 | 3 |
CD9 | 9 | −2.77 | 12.89 | 5 | 4 | 2 |
Iowa | ||||||
Total Droughts | Avg. Strength | Avg. Duration | Cool Season | Warm Season | Multiyear | |
CD1 | 9 | −3.60 | 17.11 | 5 | 4 | 7 |
CD2 | 9 | −3.11 | 14.44 | 6 | 3 | 3 |
CD3 | 10 | −2.85 | 12.30 | 5 | 5 | 4 |
CD4 | 10 | −3.20 | 12.00 | 5 | 5 | 4 |
CD5 | 12 | −3.25 | 11.08 | 5 | 7 | 4 |
CD6 | 12 | −3.13 | 11.67 | 6 | 6 | 4 |
CD7 | 11 | −2.86 | 11.18 | 6 | 5 | 3 |
CD8 | 10 | −3.09 | 13.60 | 6 | 4 | 2 |
CD9 | 11 | −2.85 | 15.09 | 5 | 6 | 5 |
Kansas | ||||||
Total Droughts | Avg. Strength | Avg. Duration | Cool Season | Warm Season | Multiyear | |
CD1 | 10 | −3.04 | 14.90 | 2 | 8 | 4 |
CD2 | 11 | −2.71 | 18.55 | 2 | 9 | 4 |
CD3 | 11 | −3.12 | 14.82 | 5 | 6 | 5 |
CD4 | 11 | −2.60 | 16.82 | 2 | 9 | 4 |
CD5 | 12 | −3.10 | 12.67 | 3 | 9 | 3 |
CD6 | 12 | −3.09 | 11.17 | 2 | 10 | 1 |
CD7 | 7 | −2.73 | 25.14 | 0 | 7 | 5 |
CD8 | 10 | −2.93 | 15.40 | 5 | 6 | 4 |
CD9 | 10 | −3.23 | 13.40 | 5 | 5 | 2 |
Minnesota | ||||||
---|---|---|---|---|---|---|
Total Droughts | Avg. Strength | Avg. Duration | Cool Season | Warm Season | Multiyear | |
CD1 | 12 | −3.17 | 11.17 | 6 | 6 | 5 |
CD2 | 13 | −3.02 | 10.23 | 7 | 6 | 5 |
CD3 | 14 | −3.14 | 8.93 | 5 | 9 | 4 |
CD4 | 8 | −3.13 | 11.63 | 3 | 5 | 2 |
CD5 | 9 | −2.93 | 14.44 | 6 | 3 | 4 |
CD6 | 12 | −3.03 | 11.00 | 6 | 6 | 4 |
CD7 | 11 | −2.98 | 15.64 | 7 | 4 | 5 |
CD8 | 7 | −3.28 | 15.86 | 3 | 4 | 3 |
CD9 | 9 | −3.11 | 12.67 | 4 | 5 | 4 |
Nebraska | ||||||
Total Droughts | Avg. Strength | Avg. Duration | Cool Season | Warm Season | Multiyear | |
CD1 | 11 | −3.05 | 18.64 | 2 | 9 | 7 |
CD2 | 10 | −3.20 | 14.80 | 3 | 7 | 5 |
CD3 | 7 | −3.63 | 15.86 | 3 | 4 | 2 |
CD5 | 7 | −3.24 | 22.00 | 0 | 7 | 4 |
CD6 | 10 | −3.08 | 13.00 | 4 | 6 | 3 |
CD7 | 10 | −2.93 | 16.40 | 2 | 8 | 5 |
CD8 | 7 | −2.86 | 20.00 | 2 | 5 | 4 |
CD9 | 12 | −2.82 | 14.17 | 5 | 7 | 5 |
Texas | ||||||
Total Droughts | Avg. Strength | Avg. Duration | Cool Season | Warm Season | Multiyear | |
CD1 | 14 | −2.73 | 15.14 | 9 | 5 | 4 |
CD2 | 15 | −2.87 | 15.73 | 10 | 5 | 3 |
CD3 | 16 | −3.06 | 13.56 | 11 | 5 | 5 |
CD4 | 13 | −2.90 | 16.46 | 6 | 7 | 6 |
CD5 | 13 | −2.70 | 22.15 | 8 | 5 | 5 |
CD6 | 14 | 3.04 | 16.86 | 8 | 6 | 5 |
CD7 | 11 | −3.47 | 22.27 | 7 | 4 | 6 |
CD8 | 11 | −3.06 | 17.55 | 6 | 5 | 5 |
CD9 | 14 | −2.88 | 20.00 | 5 | 9 | 7 |
CD10 | 15 | −2.85 | 19.87 | 8 | 7 | 8 |
Illinois | |||||||||
---|---|---|---|---|---|---|---|---|---|
ENSO | PDO | AMO | |||||||
Drought | ND | p-Value | Drought | ND | p-Value | Drought | ND | p-Value | |
Mean | Mean | Mean | Mean | Mean | Mean | ||||
CD1 | 0.12 | −0.55 | −0.33 | 0.05 | 0.39 | ||||
CD2 | −0.13 | 0.06 | 0.03 | 0.21 | 0.96 | ||||
CD3 | 0.12 | 0.10 | 0.06 | ||||||
CD4 | 0.20 | 0.75 | 0.65 | ||||||
CD5 | −0.23 | 0.07 | 0.00 | −0.57 | −0.33 | 0.04 | 0.64 | ||
CD6 | −0.21 | 0.09 | 0.00 | −0.54 | −0.32 | 0.03 | 0.04 | −0.02 | 0.00 |
CD7 | 0.75 | 0.19 | 0.23 | ||||||
CD8 | −0.19 | 0.07 | 0.00 | −0.76 | −0.29 | 0.00 | 0.40 | ||
CD9 | −0.17 | 0.06 | 0.01 | −0.77 | −0.30 | 0.00 | 0.13 | ||
Iowa | |||||||||
ENSO | PDO | AMO | |||||||
Drought | ND | p-Value | Drought | ND | p-Value | Drought | ND | p-Value | |
Mean | Mean | Mean | Mean | Mean | Mean | ||||
CD1 | −0.22 | 0.09 | 0.00 | −0.62 | −0.31 | 0.00 | 0.08 | ||
CD2 | −0.12 | 0.06 | 0.04 | −0.63 | −0.32 | 0.01 | 0.17 | ||
CD3 | −0.17 | 0.07 | 0.01 | −0.61 | −0.32 | 0.01 | 0.56 | ||
CD4 | −0.28 | 0.08 | 0.00 | −0.65 | −0.31 | 0.00 | 0.95 | ||
CD5 | −0.32 | 0.10 | 0.00 | −0.67 | −0.30 | 0.00 | 0.20 | ||
CD6 | −0.19 | 0.08 | 0.00 | −0.58 | −0.31 | 0.01 | 0.77 | ||
CD7 | −0.26 | 0.09 | 0.00 | −0.61 | −0.32 | 0.01 | 0.26 | ||
CD8 | −0.13 | 0.07 | 0.01 | 0.12 | 0.05 | −0.02 | 0.00 | ||
CD9 | −0.16 | 0.08 | 0.00 | −0.64 | −0.30 | 0.00 | 0.02 | −0.02 | 0.03 |
Kansas | |||||||||
ENSO | PDO | AMO | |||||||
Drought | ND | p-Value | Drought | ND | p-Value | Drought | ND | p-Value | |
Mean | Mean | Mean | Mean | Mean | Mean | ||||
CD1 | −0.18 | 0.08 | 0.00 | −0.66 | −0.30 | 0.00 | 0.03 | −0.02 | 0.01 |
CD2 | −0.17 | 0.08 | 0.00 | −0.67 | −0.29 | 0.00 | 0.20 | ||
CD3 | −0.15 | 0.08 | 0.00 | −0.55 | −0.32 | 0.02 | −0.04 | 0.01 | 0.00 |
CD4 | −0.13 | 0.07 | 0.00 | −0.72 | −0.27 | 0.00 | 0.02 | −0.02 | 0.03 |
CD5 | −0.20 | 0.09 | 0.00 | −0.86 | −0.24 | 0.00 | 0.04 | −0.02 | 0.00 |
CD6 | −0.12 | 0.07 | 0.01 | −0.68 | −0.29 | 0.00 | 0.20 | ||
CD7 | −0.11 | 0.06 | 0.01 | −0.90 | −0.24 | 0.00 | 0.03 | −0.02 | 0.01 |
CD8 | −0.16 | 0.09 | 0.00 | −0.83 | −0.24 | 0.00 | 0.02 | −0.02 | 0.03 |
CD9 | −0.16 | 0.07 | 0.00 | −0.83 | −0.27 | 0.00 | 0.04 | −0.02 | 0.00 |
Minnesota | |||||||||
---|---|---|---|---|---|---|---|---|---|
ENSO | PDO | AMO | |||||||
Drought | ND | p-Value | Drought | ND | p-Value | Drought | ND | p-Value | |
Mean | Mean | Mean | Mean | Mean | Mean | ||||
CD1 | 0.09 | −0.59 | −0.32 | 0.01 | 0.39 | ||||
CD2 | 0.75 | 0.21 | 0.09 | ||||||
CD3 | 0.12 | 0.83 | 0.06 | −0.02 | 0.00 | ||||
CD4 | −0.15 | 0.06 | 0.01 | 0.58 | 0.06 | ||||
CD5 | 0.30 | 0.60 | 0.80 | ||||||
CD6 | 0.78 | 0.98 | 0.23 | ||||||
CD7 | −0.37 | 0.12 | 0.00 | −0.74 | −0.28 | 0.00 | −0.04 | 0.00 | 0.05 |
CD8 | −0.24 | 0.07 | 0.00 | −0.81 | −0.29 | 0.00 | 0.62 | ||
CD9 | −0.23 | 0.07 | 0.00 | −0.71 | −0.31 | 0.00 | 0.31 | ||
Nebraska | |||||||||
ENSO | PDO | AMO | |||||||
Drought | ND | p-Value | Drought | ND | p-Value | Drought | ND | p-Value | |
Mean | Mean | Mean | Mean | Mean | Mean | ||||
CD1 | −0.08 | 0.06 | 0.01 | 0.51 | 0.28 | ||||
CD2 | −0.14 | 0.07 | 0.00 | −0.64 | −0.30 | 0.00 | 1.00 | ||
CD3 | −0.35 | 0.09 | 0.00 | −0.78 | −0.30 | 0.00 | 0.21 | ||
CD5 | −0.09 | 0.06 | 0.02 | −0.69 | −0.29 | 0.00 | 0.08 | −0.02 | 0.00 |
CD6 | −0.26 | 0.09 | 0.00 | −0.59 | −0.32 | 0.01 | 0.93 | ||
CD7 | −0.11 | 0.07 | 0.00 | −0.73 | −0.28 | 0.00 | 0.03 | −0.02 | 0.00 |
CD8 | −0.14 | 0.07 | 0.00 | −0.77 | −0.28 | 0.00 | 0.04 | −0.02 | 0.00 |
CD9 | −0.29 | 0.10 | 0.00 | −0.68 | −0.30 | 0.00 | 0.08 | ||
Texas | |||||||||
ENSO | PDO | AMO | |||||||
Drought | ND | p-Value | Drought | ND | p-Value | Drought | ND | p-Value | |
Mean | Mean | Mean | Mean | Mean | Mean | ||||
CD1 | −0.26 | 0.13 | 0.00 | −0.99 | −0.16 | 0.00 | 0.03 | −0.02 | 0.00 |
CD2 | −0.26 | 0.14 | 0.00 | −0.97 | −0.15 | 0.00 | 0.05 | −0.03 | 0.00 |
CD3 | −0.23 | 0.12 | 0.00 | −0.94 | −0.17 | 0.00 | 0.03 | −0.02 | 0.00 |
CD4 | −0.35 | 0.16 | 0.00 | −0.91 | −0.19 | 0.00 | 0.08 | ||
CD5 | −0.18 | 0.14 | 0.00 | −0.92 | −0.10 | 0.00 | 0.05 | −0.03 | 0.00 |
CD6 | −0.27 | 0.16 | 0.00 | −0.95 | −0.12 | 0.00 | 0.05 | −0.03 | 0.00 |
CD7 | −0.32 | 0.18 | 0.00 | −0.98 | −0.11 | 0.00 | 0.04 | −0.03 | 0.00 |
CD8 | −0.32 | 0.14 | 0.00 | −1.04 | −0.16 | 0.00 | 0.02 | −0.02 | 0.04 |
CD9 | −0.26 | 0.17 | 0.00 | −0.87 | −0.12 | 0.00 | 0.05 | −0.04 | 0.00 |
CD10 | −0.16 | 0.13 | 0.00 | −0.90 | −0.09 | 0.00 | 0.07 | −0.05 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, O.G.; Goodrich, G.B. Drought in the Breadbasket of America and the Influence of Oceanic Teleconnections. Hydrology 2023, 10, 215. https://doi.org/10.3390/hydrology10120215
Campbell OG, Goodrich GB. Drought in the Breadbasket of America and the Influence of Oceanic Teleconnections. Hydrology. 2023; 10(12):215. https://doi.org/10.3390/hydrology10120215
Chicago/Turabian StyleCampbell, Olivia G., and Gregory B. Goodrich. 2023. "Drought in the Breadbasket of America and the Influence of Oceanic Teleconnections" Hydrology 10, no. 12: 215. https://doi.org/10.3390/hydrology10120215
APA StyleCampbell, O. G., & Goodrich, G. B. (2023). Drought in the Breadbasket of America and the Influence of Oceanic Teleconnections. Hydrology, 10(12), 215. https://doi.org/10.3390/hydrology10120215