Assessing Groundwater Quality and Diagnosing Nitrate Pollution in the Sidi Allal Region: A GIS-Based Approach Utilizing the Groundwater Pollution Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Study Area
- The upper layer is a sandy-grassy surface layer with a thickness ranging from 5 to 10 m in the inner dunes and 20 to 30 m in the dune cordon. Within this layer, the water table is relatively shallow in the interior dunes, ranging from 2 to 10 m in depth, and deeper in the littoral cord, reaching depths of 10 to 40 m.
- The second layer, situated at greater depths (>50 m), is significantly thicker compared to the first layer and mainly comprises clays. Hydraulic communication between these two layers occurs through a red clay-sandy screen, with a thickness that varies from 10 to 20 m.
2.2. Well Samples
2.3. Determination of Groundwater Pollution Index
2.4. Determination of Nitrate Pollution Index (NPI)
2.5. Gibbs Diagram
3. Results and Discussion
3.1. Hydrochemistry
3.2. Piper Plot
3.3. Gibbs Plot
3.4. Nitrate Pollution Index (NPI)
Sources of Nitrate
3.5. Groundwater Pollution Index (GPI)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrade, L.; Kelly, M.; Hynds, P.; Weatherill, J.; Majury, A.; O’Dwyer, J. Groundwater Resources as a Global Reservoir for Antimicrobial-Resistant Bacteria. Water Res. 2020, 170, 115360. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.F.; Karim, Z. World’s Demand for Food and Water: The Consequences of Climate Change. In Desalination: Challenges and Opportunities; IntechOpen: London, UK, 2019; pp. 1–27. [Google Scholar]
- Cuadrado-Quesada, G.; Rayfuse, R. Towards Sustainability in Groundwater Use: An Exploration of Key Drivers Motivating the Adoption and Implementation of Policy and Regulation. J. Environ. Law 2020, 32, 111–137. [Google Scholar] [CrossRef]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef]
- De Giglio, O.; Quaranta, A.; Barbuti, G.; Napoli, C.; Caggiano, G.; Montagna, M.T. Factors Influencing Groundwater Quality: Towards an Integrated Management Approach. Ann. Ig. 2015, 27, 52–57. [Google Scholar] [PubMed]
- Belhassan, K. Water Scarcity Management. In Water Safety. Security and Sustainability: Threat Detection and Mitigation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 443–462. [Google Scholar]
- Hamed, Y.; Hadji, R.; Redhaounia, B.; Zighmi, K.; Bâali, F.; El Gayar, A. Climate Impact on Surface and Groundwater in North Africa: A Global Synthesis of Findings and Recommendations. Euro-Mediterr. J. Environ. Integr. 2018, 3, 25. [Google Scholar] [CrossRef]
- Chowdhary, P.; Bharagava, R.N.; Mishra, S.; Khan, N. Role of Industries in Water Scarcity and Its Adverse Effects on Environment and Human Health. In Environmental Concerns and Sustainable Development: Volume 1: Air, Water and Energy Resources; Springer: Berlin/Heidelberg, Germany, 2020; pp. 235–256. [Google Scholar]
- Haseena, M.; Malik, M.F.; Javed, A.; Arshad, S.; Asif, N.; Zulfiqar, S.; Hanif, J. Water Pollution and Human Health. Environ. Risk Assess. Remediat. 2017, 1, 16–19. [Google Scholar] [CrossRef]
- Elder, A.D. The Green Morocco Plan in Boudnib: Examining Effects on Rural Livelihoods. J. Environ. Dev. 2022, 31, 275–299. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S.K. A Critical Review on Water Quality Index Tool: Genesis. Evolution and Future Directions. Ecol. Inform. 2021, 63, 101299. [Google Scholar] [CrossRef]
- Udeshani, W.A.C.; Dissanayake, H.; Gunatilake, S.K.; Chandrajith, R. Assessment of Groundwater Quality Using Water Quality Index (WQI): A Case Study of a Hard Rock Terrain in Sri Lanka. Groundw. Sustain. Dev. 2020, 11, 100421. [Google Scholar] [CrossRef]
- Sheikh Khozani, Z.; Iranmehr, M.; Wan Mohtar, W.H.M. Improving Water Quality Index Prediction for Water Resources Management Plans in Malaysia: Application of Machine Learning Techniques. Geocarto. Int. 2022, 37, 10058–10075. [Google Scholar] [CrossRef]
- Yu, C.; Yin, X.; Li, H.; Yang, Z. A Hybrid Water-Quality-Index and Grey Water Footprint Assessment Approach for Comprehensively Evaluating Water Resources Utilization Considering Multiple Pollutants. J. Clean. Prod. 2020, 248, 119225. [Google Scholar] [CrossRef]
- Al-Qawati, M.; El-Qaysy, M.; Darwesh, N.; Sibbari, M.; Hamdaoui, F.; Kherrati, I.; El Kharrim, K.; Belghyti, D. Hydrogeochemical Study of Groundwater Quality in the West of Sidi Allal Tazi, Gharb Area, Morocco. J. Mater. Environ. Sci. 2018, 9, 293–304. [Google Scholar] [CrossRef]
- Mohammed, A.-Q.; Naser, R.S.; Farid, H.; Abderrahman, A.; Khadija, E.K.; Achaouch, A.; Driss, B. Hydro-Chemical Monitoring of Groundwater Quality for Irrigation in Sidi Allal Tazi Area, Kenitra, Morocco. Res. J. Chem. Environ. 2018, 22, 36–44. [Google Scholar]
- APHA/AWWA/WEF Standard Methods for the Examination of Water and Waste Water, 20th ed.; American Public Health Association/American Water Works Association, Water Environment Federation: Washington, DC, USA, 1998; pp. 235–237.
- Subba Rao, N. PIG: A Numerical Index for Dissemination of Groundwater Contamination Zones: POLLUTION INDEX OF GROUNDWATER (PIG). Hydrol. Process. 2012, 26, 3344–3350. [Google Scholar] [CrossRef]
- Edition, F. Guidelines for Drinking-Water Quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Damu, C.I.; Nganje, T.N.; Edet, A. Heavy Metal Contamination and Health Risk Assessment Associated with Abandoned Barite Mines in Cross River State, Southeastern Nigeria. Environ. Nanotechnol. Monit. Manag. 2015, 3, 10–21. [Google Scholar]
- Ravikumar, P.; Aneesul Mehmood, M.; Somashekar, R.K. Water Quality Index to Determine the Surface Water Quality of Sankey Tank and Mallathahalli Lake, Bangalore Urban District, Karnataka, India. Appl. Water Sci. 2013, 3, 247–261. [Google Scholar] [CrossRef]
- Guettaf, M.; Maoui, A.; Ihdene, Z. Assessment of Water Quality: A Case Study of the Seybouse River (North East of Algeria). Appl. Water Sci. 2017, 7, 295–307. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Karuppannan, S.; Muniraj, K. Evaluation of Drinking and Irrigation Suitability of Groundwater with Special Emphasizing the Health Risk Posed by Nitrate Contamination Using Nitrate Pollution Index (NPI) and Human Health Risk Assessment (HHRA). Hum. Ecol. Risk Assess. Int. J. 2021, 27, 1324–1348. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Muniraj, K.; Pande, C.; Ravichandran, N.; Thomas, M.; Karuppannan, S. Geochemical Evaluation and Human Health Risk Assessment of Nitrate-Contaminated Groundwater in an Industrial Area of South India. Environ. Sci. Pollut. Res. 2022, 29, 86202–86219. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Lalumbe, L.; Kanyerere, T. Characterisation of hydro-geochemical processes influencing groundwater quality in rural areas: A case study of Soutpansberg Region, Limpopo Province, South Africa. Water 2022, 14, 1972. [Google Scholar] [CrossRef]
- Pop, M.S.; Cheregi, D.C.; Onose, G.; Munteanu, C.; Popescu, C.; Rotariu, M.; Turnea, M.-A.; Dogaru, G.; Ionescu, E.V.; Oprea, D. Exploring the Potential Benefits of Natural Calcium-Rich Mineral Waters for Health and Wellness: A Systematic Review. Nutrients 2023, 15, 3126. [Google Scholar] [CrossRef]
- Faryadi, Q. The Magnificent Effect of Magnesium to Human Health: A Critical Review. Int. J. Appl. 2012, 2, 118–126. [Google Scholar]
- El-Amier, Y.A.; Kotb, W.K.; Bonanomi, G.; Fakhry, H.; Marraiki, N.A.; Abd-ElGawad, A.M. Hydrochemical assessment of the irrigation water quality of the El-Salam canal, Egypt. Water 2021, 13, 2428. [Google Scholar] [CrossRef]
- Rao, N.S.; Chaudhary, M. Hydrogeochemical Processes Regulating the Spatial Distribution of Groundwater Contamination. Using Pollution Index of Groundwater (PIG) and Hierarchical Cluster Analysis (HCA): A Case Study. Groundw. Sustain. Dev. 2019, 9, 100238. [Google Scholar]
- Singh, A.K.; Raj, B.; Tiwari, A.K.; Mahato, M.K. Evaluation of Hydrogeochemical Processes and Groundwater Quality in the Jhansi District of Bundelkhand Region. India. Environ. Earth Sci. 2013, 70, 1225–1247. [Google Scholar] [CrossRef]
- Egbueri, J.C.; Mgbenu, C.N.; Chukwu, C.N. Investigating the Hydrogeochemical Processes and Quality of Water Resources in Ojoto and Environs Using Integrated Classical Methods. Model. Earth Syst. Environ. 2019, 5, 1443–1461. [Google Scholar] [CrossRef]
- Johnson, C.J.; Kross, B.C. Continuing Importance of Nitrate Contamination of Groundwater and Wells in Rural Areas. Am. J. Ind. Med. 1990, 18, 449–456. [Google Scholar] [CrossRef]
- Al-Aizari, H.S.; Aslaou, F.; Al-Aizari, A.R.; Al-Odayni, A.-B.; Al-Aizari, A.-J.M. Evaluation of Groundwater Quality and Contamination Using the Groundwater Pollution Index (GPI), Nitrate Pollution Index (NPI), and GIS. Water 2023, 15, 3701. [Google Scholar] [CrossRef]
- Bernhard, A. The Nitrogen Cycle: Processes. Players. and Human Impact. Nat. Educ. Knowl. 2010, 3, 25. [Google Scholar]
- Trenkel, M.E. Controlled-Release and Stabilized Fertilizers in Agriculture; International Fertilizer Industry Association: Paris, France, 1997; Volume 11. [Google Scholar]
- Simha, P. Alkaline Urine Dehydration: How to Dry Source-Separated Human Urine and Recover Nutrients? Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2021; p. 93. [Google Scholar]
- Butler, S.M.; Melillo, J.M.; Johnson, J.E.; Mohan, J.; Steudler, P.A.; Lux, H.; Burrows, E.; Smith, R.M.; Vario, C.L.; Scott, L.; et al. Soil Warming Alters Nitrogen Cycling in a New England Forest: Implications for Ecosystem Function and Structure. Oecologia 2012, 168, 819–828. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Method Used |
---|---|---|
Electrical Conductivity EC | (µs/cm) | Conductivity meter (INOLAB cond720) |
pH | _ | pH meter (INOLAB pH7110) |
Calcium | (meq/L) | Photometry a flame |
Sodium | (meq/L) | Volumetric dosage |
Potassium | (meq/L) | Volumetric dosage |
Magnesium | (meq/L) | Photometry aflame |
Chloride | (meq/L) | Nephelometric method |
Bicarbonate | (meq/L) | Conductivity meter (INOLAB cond720) |
Sulfate | (meq/L) | pH meter (INOLAB pH7110) |
Nitrate | (meq/L) | Sulphanilamide method |
Chemical Parameter | Unit | WHO Standard (2011) | Relative Weight | Weight Parameter |
---|---|---|---|---|
WI = ∑ni = 1 wi | ||||
pH | 7 | 3 | 0.10 | |
Ca2+ | mg/L | 75 | 2 | 0.07 |
Mg2+ | mg/L | 50 | 2 | 0.07 |
Na+ | mg/L | 200 | 4 | 0.14 |
K+ | mg/L | 12 | 1 | 0.03 |
HCO3− | mg/L | 120 | 3 | 0.10 |
Cl− | mg/L | 250 | 4 | 0.14 |
SO42− | mg/L | 250 | 5 | 0.17 |
NO3− | mg/L | 50 | 5 | 0.17 |
∑wi = 29 | ∑wi = 1.00 |
Values of NPI | Type of Pollution |
---|---|
<0 | Clean |
0–1 | Light |
1–2 | Moderate |
2–3 | Significant |
>3 | Very significant |
Variable | Minimum | Maximum | Mean | Standard Deviation | Variation Coefficient | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
EC [µS/cm] | 874 | 7640 | 2582 | 1704 | 67.95 | 1.5 | 1.51 |
pH | 6.6600 | 8.0000 | 7.2413 | 0.2517 | 3.48 | 0.09 | 1.22 |
Ca2+ [mg/L] | 89.20 | 300.80 | 171.86 | 50.9 | 29.62 | 0.4 | −0.32 |
Mg2+ [mg/L] | 10.69 | 293.30 | 41.07 | 42.37 | 103.16 | 5.03 | 29.6 |
Na+ [mg/L] | 63.7 | 1274.8 | 306.2 | 325.2 | 106.23 | 1.66 | 2.04 |
K+ [mg/L] | 3.590 | 13.050 | 8.138 | 2.646 | 32.51 | −0.12 | −1.19 |
HCO3− [mg/L] | 200.0 | 848.5 | 403.7 | 138 | 34.18 | 1.57 | 3.05 |
Cl− [mg/L] | 98.0 | 1900.1 | 524.8 | 540 | 102.91 | 1.42 | 0.82 |
SO42− [mg/L] | 47.9 | 661.2 | 128.9 | 101.8 | 78.99 | 3.84 | 17.58 |
NO3− [mg/L] | 5.3 | 229.5 | 114.6 | 71.9 | 62.75 | 0.07 | −1.18 |
PIG | 0.731 | 7.063 | 1.883 | 1.137 | 55.25 | 2.64 | 10.37 |
PNI | −0.738 | 10.476 | 4.729 | 3.555 | 75.17 | 0.07 | −1.13 |
EC (µS/cm) Range | Water Type | Classification | No. of Samples | % of Samples |
---|---|---|---|---|
0–250 | Low | Excellent | 0 | 0% |
251–750 | Medium | Good | 0 | 0% |
751–2250 | High | Permissible | 29 | 64.4% |
2251–6000 | Very high | Doubtful | 13 | 28.9% |
6001–10,000 | Extensively high | Poor | 3 | 6.7% |
Classification of NPI | Type of Pollution | Number of Wells | % |
---|---|---|---|
<0 | Clean | 4 | 8 |
0–1 | Light | 7 | 16 |
1–2 | Moderate | 3 | 6 |
2–3 | Significant | 2 | 4 |
>3 | Very significant | 29 | 64 |
Range of GPI | Classification | N | % | Purpose |
---|---|---|---|---|
<1.0 | Insignificant pollution | 3 | 7 | Drinking and irrigation |
1.0–1.5 | Low pollution | 12 | 26.5 | Drinking and irrigation |
1.5–2.0 | Moderate pollution | 12 | 26.5 | Irrigation |
2.0–2.5 | High pollution | 8 | 18 | Irrigation |
>2.5 | Very high pollution | 10 | 22 | Proper treatment is required for any kind of usage |
Name | NPI | GPI | Name | NPI | GPI |
---|---|---|---|---|---|
We1 | 2.60 | 1.34 | We23 | 7.00 | 2.23 |
We2 | 5.00 | 1.28 | We24 | 5.39 | 1.79 |
We3 | 10.48 | 1.64 | We25 | 0.39 | 1.14 |
We4 | 4.76 | 1.58 | We26 | 4.38 | 2.58 |
We5 | −0.74 | 2.46 | We27 | 0.09 | 2.12 |
We6 | −0.24 | 1.25 | We28 | 0.39 | 1.01 |
We7 | 7.00 | 1.43 | We29 | 6.50 | 2.86 |
We8 | 4.00 | 1.80 | We30 | 1.51 | 1.39 |
We9 | −0.21 | 0.86 | We31 | 10.06 | 1.70 |
We10 | 0.36 | 0.86 | We32 | 9.01 | 1.73 |
We11 | 0.39 | 0.94 | We33 | 0.26 | 7.42 |
We12 | 7.85 | 1.66 | We34 | 7.61 | 2.45 |
We13 | 0.15 | 1.36 | We35 | 5.15 | 4.10 |
We14 | 10.36 | 3.34 | We36 | 4.03 | 3.22 |
We15 | 5.14 | 1.13 | We37 | −0.24 | 2.13 |
We16 | 10.28 | 2.40 | We38 | 10.14 | 1.89 |
We17 | 4.11 | 3.80 | We39 | 5.29 | 1.60 |
We18 | 6.63 | 3.24 | We40 | 7.75 | 2.08 |
We19 | 10.04 | 2.05 | We41 | 5.39 | 3.14 |
We20 | 2.86 | 1.23 | We42 | 10.46 | 1.84 |
We21 | 6.78 | 1.54 | We43 | 1.51 | 1.20 |
We22 | 6.61 | 1.85 | We44 | 1.51 | 1.28 |
We45 | 5.05 | 2.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Aizari, H.S.; Ghfar, A.A.; Al-Aizari, A.R.; Al-Aizari, A.-J.M.; Moshab, M.S.; Sillanpää, M. Assessing Groundwater Quality and Diagnosing Nitrate Pollution in the Sidi Allal Region: A GIS-Based Approach Utilizing the Groundwater Pollution Index. Hydrology 2023, 10, 227. https://doi.org/10.3390/hydrology10120227
Al-Aizari HS, Ghfar AA, Al-Aizari AR, Al-Aizari A-JM, Moshab MS, Sillanpää M. Assessing Groundwater Quality and Diagnosing Nitrate Pollution in the Sidi Allal Region: A GIS-Based Approach Utilizing the Groundwater Pollution Index. Hydrology. 2023; 10(12):227. https://doi.org/10.3390/hydrology10120227
Chicago/Turabian StyleAl-Aizari, Hefdhallah S., Ayman A. Ghfar, Ali R. Al-Aizari, Abdul-Jaleel M. Al-Aizari, Mohamed Sheikh Moshab, and Mika Sillanpää. 2023. "Assessing Groundwater Quality and Diagnosing Nitrate Pollution in the Sidi Allal Region: A GIS-Based Approach Utilizing the Groundwater Pollution Index" Hydrology 10, no. 12: 227. https://doi.org/10.3390/hydrology10120227
APA StyleAl-Aizari, H. S., Ghfar, A. A., Al-Aizari, A. R., Al-Aizari, A. -J. M., Moshab, M. S., & Sillanpää, M. (2023). Assessing Groundwater Quality and Diagnosing Nitrate Pollution in the Sidi Allal Region: A GIS-Based Approach Utilizing the Groundwater Pollution Index. Hydrology, 10(12), 227. https://doi.org/10.3390/hydrology10120227