Revisiting of a Three-Parameter One-Dimensional Vertical Infiltration Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Porous Media
2.2. Non Linear Optimization Method Using the Solver Tool in Excel
2.3. The Effect of Infiltration Time on Ks and S Estimation
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Range of the c Parameter Value
3.2. Results from Non Linear Optimization for Estimation of Ks and S. Fixed c = 0.500 vs. Variable c Generated from Non Linear Optimization
3.3. Assessment of Ks and S through Infiltration Time Using Non Linear Optimization
3.4. The Equation of Infiltration Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishra, S.K.; Kumar, S.R.; Singh, V.P. Calibration of a general infiltration model. Hydrol. Process. 1999, 13, 1691–1718. [Google Scholar] [CrossRef]
- Parhi, P.K.; Mishra, S.K.; Singh, R. A modification to Kostiakov and modified Kostiakov infiltration models. Water Resour. Manag. 2007, 21, 1973–1989. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G.A. Studies on Soil Physics. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci. 1957, 84, 257–264. [Google Scholar] [CrossRef]
- Philip, J.R. Theory of infiltration. Adv. Hydrosci. 1969, 5, 215–296. [Google Scholar]
- Swartzendruber, D. A quasi-solution of Richards’ equation for the downward infiltration of water into soil. Water Resour. Res. 1987, 23, 809–817. [Google Scholar] [CrossRef]
- Horton, R.I. The interpretation and application of runoff plot experiments with reference to soil erosion problems. Proc. Soil Sci. Soc. Am. 1938, 3, 340–349. [Google Scholar] [CrossRef]
- Holtan, H.N. A Concept of Infiltration Estimates in Watershed Engineering; URS41–41; US Department of Agriculture Service: Washington, DC, USA, 1961. [Google Scholar]
- Singh, V.P.; Yu, F.X. Derivation of infiltration equation using systems approach. J. Irrig. Drain. Eng. ASCE 1990, 116, 837–857. [Google Scholar] [CrossRef]
- Kostiakov, A.N. On the dynamics of the coefficients of water percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Trans. 6th Commission. Int. Soc. Soil Sci. 1932, Part A, 15–21. [Google Scholar]
- Philip, J.R. The theory of infiltration: 6 Effect of water depth over soil. Soil Sci. 1958, 85, 278–286. [Google Scholar] [CrossRef]
- Haverkamp, R.; Kutilek, M.; Parlange, J.Y.; Rendon, L.; Krejca, M. Infiltration under ponded conditions: 2. infiltration equations tested for parameter time-dependence and predictive use. Soil Sci. 1988, 145, 317–329. [Google Scholar] [CrossRef]
- Poulovassilis, A.; Elmaloglou, S.; Kerkides, P.; Argyrokastritis, I. A variable sorptivity infiltration equation. Water Resour. Manag. 1989, 3, 287–298. [Google Scholar] [CrossRef]
- Rahmati, M.; Latorre, B.; Lassabatere, L.; Angulo-Jaramillo, R.; Moret-Fernández, D. The relevance of Philip theory to Haverkamp quasi-exact implicit analytical formulation and its uses to predict soil hydraulic properties. J. Hydrol. 2019, 570, 816–826. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.A. Comparison of two-parameter vertical ponded infiltration equations. Environ. Model. Assess. 2021, 26, 179–186. [Google Scholar] [CrossRef]
- Kargas, G.; Koka, D.; Londra, P.A. Determination of Soil Hydraulic Properties from Infiltration Data Using Various Methods. Land 2022, 11, 779. [Google Scholar] [CrossRef]
- Poulovassilis, A.; Argyrokastritis, I. A new approach for studying vertical infiltration. Soil Res. 2020, 58, 509–518. [Google Scholar] [CrossRef]
- Brutsaert, W. Vertical infiltration in dry soil. Water Resour. Res. 1977, 13, 363–368. [Google Scholar] [CrossRef]
- Parlange, J.Y.; Lisle, I.; Braddock, R.D.; Smith, R.E. The three-parameter infiltration equation. Soil Sci. 1982, 133, 337–341. [Google Scholar] [CrossRef]
- Talsma, T.; Parlange, J.-Y. One-dimensional vertical infiltration. Aust. J. Soil Res. 1972, 10, 143. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Gao, Y. On the three-parameter infiltration equation of Parlange et al. (1982): Numerical solution, experimental design, and parameter estimation. Vadose Zone J. 2022, 21, e20167. [Google Scholar] [CrossRef]
- Rahmati, M.; Vanderborght, J.; Simunek, J.; Vrugt, J.A.; Moret-Fernández, D.; Latorre, B.; Lassabatere, L.; Vereecken, H. Soil hydraulic properties estimation from one-dimensional infiltration experiments using characteristic time concept. Vadose Zone J. 2020, 19, e20068. [Google Scholar] [CrossRef]
- Smiles, D.E.; Knight, J.H. Anote on the use of the Philip infiltration equation. Aust. J. Soil Res. 1976, 14, 103–108. [Google Scholar] [CrossRef]
- Vandervaere, J.P.; Vauclin, M.; Elrick, D.E. Transient flow from tension infiltrometers: II. Four methods to determine sorptivity and conductivity. Soil Sci. Soc. Am. J. 2000, 64, 1272–1284. [Google Scholar] [CrossRef]
- Valiantzas, J.D. New linearized two-parameter infiltration equation for direct determination of conductivity and sorptivity. J. Hydrol. 2010, 384, 1–13. [Google Scholar] [CrossRef]
- Šimůnek, J.; Van Genuchten, M.T. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res. 1996, 32, 2683–2696. [Google Scholar] [CrossRef]
- Šimůnek, J.; Angulo-Jaramillo, R.; Schaap, M.G.; Vandervaere, J.P.; Van Genuchten, M.T. Using an inverse method to estimate the hydraulic properties of crusted soils from tension-disc infiltrometer data. Geoderma 1998, 86, 61–81. [Google Scholar] [CrossRef]
- Simunek, J.; Hopmans, J.W. Parameter Optimisation and Nonlinear Fitting. In Methods of Soil Analysis, 3rd ed.; Dane, J.H., Topp, G.C., Eds.; Part 1, Physical Methods; SSSA: Madison, WI, USA, 2002; Chapter 1.7. [Google Scholar]
- Lassabatere, L.; Angulo-Jaramillo, R.; Soria-Ugalde, J.M.; Šimůnek, J.; Haverkamp, R. Numerical evaluation of a set of analytical infiltration equations. Water Resour. Res. 2009, 45, W12415. [Google Scholar] [CrossRef]
- Latorre, B.; Peña, C.; Lassabatere, L.; Angulo-Jaramillo, R.; Moret-Fernández, D. Estimate of soil hydraulic properties from disc infiltrometer three-dimensional infiltration curve. Numerical analysis and field application. J. Hydrol. 2015, 527, 1–12. [Google Scholar] [CrossRef]
- Clothier, B.E.; Scotter, D. Unsaturated water transmission parameters obtained from infiltration. In Methods of Soil Analysis: Part 4; Dane, J.H., Topp, G.C., Eds.; Physical Methods, SSSA Book Series 5; SSSA: Madison, WI, USA, 2002; pp. 879–888. [Google Scholar]
- Latorre, B.; Moret-Fernández, D.; Lassabatere, L.; Rahmati, M.; López, M.V.; Angulo-Jaramillo, R.; Sorando, R.; Comin, F.; Jiménez, J.J. Influence of the β parameter of the Haverkamp model on the transient soil water infiltration curve. J. Hydrol. 2018, 564, 222–229. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Wraith, J.M.; Or, D. Nonlinear parameter estimation using spreadsheet software. J. Nat. Resour. Life Sci. Educ. 1998, 27, 13–19. [Google Scholar] [CrossRef]
- Lasdon, L.S.; Fox, R.L.; Ratner, M.W. Nonlinear optimization using the generalized reduced gradient method. Revue française d’automatique, informatique, recherche opérationnelle. Rech. Opérationnelle 1974, 8, 73–103. [Google Scholar] [CrossRef]
- Haverkamp, R.; Parlange, J.Y.; Starr, J.L.; Schmitz, G.; Fuentes, C. Infiltration under ponded conditions: 3. A predictive equation based on physical parameters. Soil Sci. 1990, 149, 292–300. [Google Scholar] [CrossRef]
Porous Medium | H (cm) | S (cmmin−0.5) | Ks (cmmin−1) |
---|---|---|---|
Sand [13] | 0 | 1.375 | 0.3 |
Soil and Sand mixture [13] | 0 | 0.223 | 0.012 |
Sandy Soil-Grenoble [12] | 2.25 | 1.319 | 0.255 |
Silty Soil [13] | 0 | 0.849 | 0.038 |
Yolo Light Clay [13] | 0 | 0.095 | 0.0007 |
Silty Loam GE3 [33] | 0 | 0.3162 | 0.0034 |
Guelph Loam [33] | 0 | 0.6181 | 0.0219 |
Sandy Loam [16] | 3 | 1.445 | 0.11 |
Soil | RMSE (cm) |
---|---|
Sand | 0.901 |
Soil and Sand Mixture | 0.083 |
Sandy Soil-Grenoble | 0.133 |
Silty Soil | 1.126 |
Yolo Light Clay | 0.405 |
Silty Loam GE3 | 0.302 |
Guelph Loam | 0.327 |
Sandy Loam | 0.166 |
Soil | Predicted Values (Equation (1) with Adjusted c) | Predicted Values (Equation (1) with Fixed c) | Measured Values | |||||
---|---|---|---|---|---|---|---|---|
S (cmmin−0.5) | Ks (cmmin−1) | c | S (cmmin−0.5) | Ks (cmmin−1) | c | S (cmmin−0.5) | Ks (cmmin−1) | |
Sand | 1.505 | 0.369 | 0.752 | 1.342 | 0.352 | 0.500 | 1.375 | 0.3 |
Soil and Sand Mixture | 0.241 | 0.014 | 0.907 | 0.209 | 0.013 | 0.500 | 0.223 | 0.012 |
Sandy Soil-Grenoble | 1.375 | 0.337 | 0.881 | 1.224 | 0.294 | 0.500 | 1.319 | 0.255 |
Silty Soil | 1.132 | 0.051 | 1.841 | 0.737 | 0.041 | 0.500 | 0.849 | 0.038 |
Yolo Light Clay | 0.100 | 0.00079 | 0.826 | 0.093 | 0.00066 | 0.500 | 0.095 | 0.0007 |
Silty Loam GE3 | 0.311 | 0.0021 | 0.188 | 0.314 | 0.0030 | 0.500 | 0.316 | 0.0034 |
Guelph Loam | 0.611 | 0.0206 | 0.580 | 0.603 | 0.0194 | 0.500 | 0.6181 | 0.0219 |
Sandy Loam | 1.596 | 0.1432 | 0.939 | 1.513 | 0.097 | 0.500 | 1.445 | 0.11 |
RE% | ||||||||
Sand | 9.43 | 22.96 | 2.38 | 17.42 | ||||
Soil and Sand Mixture | 8.04 | 18.02 | 6.49 | 6.07 | ||||
Sandy Soil-Grenoble | 4.22 | 32.31 | 7.18 | 15.35 | ||||
Silty Soil | 33.29 | 33.41 | 13.25 | 8.05 | ||||
Yolo Light Clay | 4.85 | 12.18 | 2.57 | 5.64 | ||||
Silty Loam GE3 | 1.56 | 39.53 | 0.77 | 12.53 | ||||
Guelph Loam | 1.19 | 6.01 | 2.37 | 11.53 | ||||
Sandy Loam | 10.46 | 30.17 | 4.71 | 11.96 | ||||
Max |RE|= | 33.29 | 39.53 | 13.25 | 17.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kargas, G.; Koka, D.; Londra, P.A. Revisiting of a Three-Parameter One-Dimensional Vertical Infiltration Equation. Hydrology 2023, 10, 43. https://doi.org/10.3390/hydrology10020043
Kargas G, Koka D, Londra PA. Revisiting of a Three-Parameter One-Dimensional Vertical Infiltration Equation. Hydrology. 2023; 10(2):43. https://doi.org/10.3390/hydrology10020043
Chicago/Turabian StyleKargas, George, Dimitrios Koka, and Paraskevi A. Londra. 2023. "Revisiting of a Three-Parameter One-Dimensional Vertical Infiltration Equation" Hydrology 10, no. 2: 43. https://doi.org/10.3390/hydrology10020043
APA StyleKargas, G., Koka, D., & Londra, P. A. (2023). Revisiting of a Three-Parameter One-Dimensional Vertical Infiltration Equation. Hydrology, 10(2), 43. https://doi.org/10.3390/hydrology10020043