Application of the Iber Two-Dimensional Model to Recover the Water Quality in the Lurín River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Topographical Characterization
2.3. Two-Dimensional Iber Model
- Temperature: four processes of heat transfer are considered, modeling the heat transfer between water and the atmosphere.
- Dissolved Oxygen (DO) and Biological Oxygen Demand (BOD): Cea et al. [8] indicated that one of the main uses of DO in a body of water is the degradation of organic matter (BOD); see Equation (6).
- 3.
- E. coli: a bacterium found in the gastrointestinal tract of homeothermic animals, such as humans, and therefore in urban wastewater.
2.4. Hydrodynamic Characterization
2.5. Characterization of Water Quality
2.6. Climate Characterization
2.7. Model Calibration
2.8. Simulation of Scenarios for the Recovery of the River
3. Results and Discussion
3.1. Hydraulic and Water Quality Characterization
- The T and CE comply with current Peruvian regulations.
- The TSSs have higher values (114.49 ± 159.31 mg ) at station L1 due to TSSs and higher Q value of the San Bartolo WWTP discharge. In contrast, station L13 shows the lowest values of TSS (29.24 ± 48.91 mg ) caused by a lower flow.
- In the river, from the Mototaxi bridge up to 50 m after the collect point of the Lurín irrigation commission (L13, L12, L10, L7, L6, and L5), the DO complies with ECA even in the dry period (lower flow), probably due to the photosynthetic activity of the algae present; for example, in the Quebrada Verde Bridge, and the Guayabo bridge (L6 and L7). In sections of the river from L4 to L1, there are uncontrolled discharges (diffuse contamination from Pachacamac) at km 5 + 400. In addition, discharge from San Bartolo WWTP (L3−EF) that does not meet the LMP causes a decrease in DO. This is more evident in the dry period and fails to comply with the ECA.
- The discharge of agricultural drainage (L8−C) with a high content of organic matter shows values of BOD5 (97.23 ± 139.75 mg ), which does not comply with the LMP on some dates. It causes an increase in BOD5 values (22.06 ± 22.52 mg ) downstream (L7) that does not comply with ECA. Similarly, the discharge from San Bartolo WWTP (L3−EF) does not meet the LMPs, due to an irregular process and lack of quality control.
- The San Bartolo WWTP (L3−EF) does not comply with LMP for all parameters and dates of evaluation, while the Julio C. Tello, Manchay, and Cieneguilla WWTPs did not comply with the LMP for E. coli in April, May, and July.
- The discharge of agricultural drainage (L8−C) has E. coli values of (271, 142.86 ± 453, 937.74 NMP/100 mL), which does not comply with LMP. This causes an increase in E. coli downstream at (L7) and does not comply with ECA. Similarly, discharge from San Bartolo WWTP (L3−EF) that does not comply with LMP causes failure to comply with the ECA for E. coli downstream at (L1).
3.2. Model Calibration Results
3.3. Simulation in Present Conditions
3.4. Simulation of Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osorio-Diaz, K.; Ramos-Fernández, L.; Velásquez-Bejarano, T. Projection of the impacts of climate change on the flow of the Lurín river basin-Peru, under CMIP5-RCP scenarios. Idesia 2022, 40, 101–114. [Google Scholar]
- Momblanch, A.; Paredes-Arquiola, J.; Andreu, J.; Ramos-Fernández, L.; Baldeón, W.; Garcia Hernandez, J. Analysis of measures to improve water quality in the lower section of the Lurín River (Peru). In Proceedings of the IV Conference on Water Engineering, Córdoba, España, 21–22 October 2015; Volume B29. Available online: https://riunet.upv.es/handle/10251/138908 (accessed on 23 February 2020).
- MINAM Peru. Environmental Quality Standard (ECA) for water. ECAs. D.S. 04-2017-MINAM. 2017. Available online: http://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf (accessed on 6 August 2020).
- MINAM Peru. Maximum Permissible Limits (LMP) for effluents. LMP. D. S. 03-2010-MINAM. 2010. Available online: https://sinia.minam.gob.pe/normas/limites-maximos-permisibles-lmp-efluentes-plantas-tratamiento-aguas) (accessed on 6 August 2020).
- Cea, L.; Bermúdez, M.; Puertas, J.; Bladé, E.; Corestein, G.; Escolano, E.; Conde, A.; Bockelmann-Evans, B.; Ahmadian, R. IberWQ: New simulation tool for 2D water quality modelling in rivers and shallow estuaries. J. Hydroinform. 2016, 18, 816–830. [Google Scholar] [CrossRef] [Green Version]
- Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J.; Coll, A. Iber: River modelling simulation tool. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2012, 30, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cea, L.; Puertas, J.; Vázquez-Cendón, M.-E. Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts. Arch. Comput. Methods Eng. 2007, 14, 303–341. [Google Scholar] [CrossRef]
- Cea, L.; Bermúdez, M.; Puertas, J. Two-dimensional water quality model for shallow flows in free sheet. Application to the mouth of the Ulla River. In Proceedings of the I Conference on Water Engineering, Madrid, Spain, 20–24 April 2009; pp. 27–28. [Google Scholar]
- Mancini, J.L. Numerical Estimates of Coliform Mortality Rates under Various Conditions. Water Pollut. Control. Fed. 1978, 50, 2477–2484. Available online: https://www.jstor.org/stable/25040179 (accessed on 29 December 2020).
- Cea, L.; Bermúdez, M.; Puertas, J. Uncertainty and sensitivity analysis of a depth-averaged water quality model for evaluation of Escherichia Coli concentration in shallow estuaries. Environ. Model. Softw. 2011, 26, 1526–1539. [Google Scholar] [CrossRef]
- Parkhill, K.L.; Gulliver, J.S. Effect of inorganic sediment on whole-stream productivity. Hydrobiologia 2002, 472, 5–17. [Google Scholar] [CrossRef]
- Chow, V.; Maidment, D.; Mays, L. Open Channel Hydraulics; McGraw-Hill Publisher: New York, NY, USA, 2004. [Google Scholar]
- Bodelón, O.G.; Bernués, M.; Baltanás, A.; Montes, C. Conductivity and Salinity in the Aquatic Ecosystems of the Doñana National Park (SO, Spain); Limnética Spanish Association of Limnology: Madrid, Spain, 1994; Volume 10, pp. 27–31. Available online: https://repositorio.uam.es (accessed on 14 October 2020).
- Holliday, C.P.; Rasmussen, T.C.; Miller, W.P. Establishing the Relationship between Turbidity and Total Suspended Sediment Concentration. In Proceedings of the Georgia Water Resources Conference, The University of Georgia, Athens, Georgia, 23–24 April 2003; Available online: http://hdl.handle.net/1853/48455 (accessed on 6 December 2020).
- Brown, L.C.; Barnwell, T.O. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS; University of California: Oakland, CA, USA, 1987. [Google Scholar]
- Thomman, R.V. System Analysis and Water Quality Management; McGrawm-Hill: New York, NY, USA, 1972; Available online: https://indico.ictp.it/event/a02286/contribution/64/material/0/0.pdf (accessed on 7 April 2021).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.; Harmel, R.; Veith, T. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007; Volume 50, pp. 885–900. Available online: http://elibrary.asabe.org/abstract.asp??JID=3&AID=23153&CID=t2007&v=50&i=3&T=1 (accessed on 6 February 2021).
- Garcia-Feal, O.; Cea, L.; Gonzalez-Cao, J.; Domínguez, J.M.; Gomez-Gesteira, M. IberWQ: A GPU accelerated tool for 2D water quality modeling in rivers and estuaries. Water 2020, 12, 413. [Google Scholar] [CrossRef] [Green Version]
- García-Feal, O.; González-Cao, J.; Gómez-Gesteira, M.; Cea, L.; Domínguez, J.M.; Formella, A. An accelerated tool for flood modelling based on Iber. Water 2018, 10, 1459. [Google Scholar] [CrossRef] [Green Version]
Depth (h) in m Water Speed ( ) | Formula | Equation |
---|---|---|
If h ≤ 0.61 m | Owens-Gibbs | |
If and | O’Connor-Dobbins | |
In other cases | Churchill |
Stations | T (°C) | EC | TSS | DO | BOD5 | E. Coli (NMP/100 mL) |
---|---|---|---|---|---|---|
L13 | 23.31 ± 2.58 | 363.80 ± 195.90 | 29.24 ± 48.91 | 7.23 ± 0.97 | 1.93 ± 0.48 | 143 ± 378 |
L12 | 24.37 ± 2.29 | 388.51 ± 222.50 | 27.9 ± 44.37 | 7.45 ± 1.61 | 4.22 ± 4.85 | 286 ± 488 |
L11−EF | 25.00 ± 2.51 | 906.71 ± 156.05 | 3.70 ± 2.90 | 4.67 ± 0.35 | 2.83 ± 1.12 | 1714 ± 4536 |
L10 | 23.51 ± 3.92 | 430.84 ± 244.42 | 44.58 ± 74.48 | 6.41 ± 0.93 | 8.37 ± 9.25 | 143 ± 378 |
L9−EF | 25.10 ± 12.31 | 1588.50 ± 775.11 | 20.82 ± 13.57 | 6.29 ± 3.07 | 45.83 ± 30.85 | 27,000 ± 20,410 |
L8−C | 22.44 ± 3.76 | 1264.83 ± 908.29 | 56.93 ± 75.55 | 6.23 ± 1.69 | 97.23 ± 139.75 | 271,143 ± 453,938 |
L7 | 23.54 ± 3.24 | 757.49 ± 582.90 | 55.73 ± 84.51 | 5.75 ± 0.95 | 22.06 ± 22.52 | 60,714 ± 105,855 |
L6 | 23.06 ± 3.29 | 571.39 ± 373.53 | 56.51 ± 93.64 | 8.73 ± 2.87 | 21.19 ± 14.92 | 6143 ± 12,090 |
L5 | 24.78 ± 13.34 | 288.68 ± 192.83 | 163.92 ± 131.78 | 6.58 ± 3.54 | 7.97 ± 7.38 | 1500 ± 1069 |
L4 | 20.73 ± 2.44 | 1080.44 ± 892.35 | 107.74 ± 165.59 | 5.48 ± 1.51 | 142.12 ± 147.77 | 23,857 ± 36,108 |
L3−EF | 21.80 ± 11.08 | 2440.00 ± 1195.64 | 28.76 ± 18.24 | 0.83 ± 0.61 | 307.31 ± 198.08 | 101,800 ± 61,576 |
L2−EF | 23.59 ± 3.25 | 1843.00 ± 156.38 | 12.50 ± 6.22 | 5.57 ± 0.65 | 41.81 ± 18.93 | 5000 ± 7234 |
L1 | 21.27 ± 2.44 | 1549.43 ± 974.96 | 114.49 ± 159.31 | 3.77 ± 2.69 | 243.66 ± 225.86 | 72,428 ± 55,220 |
Parameters | L4: 50 m before WWTP San Bartolo | L1: South Pan−American Bridge | L4 and L1 | ||||||
---|---|---|---|---|---|---|---|---|---|
E | RSR | R | E | RSR | R | E | RSR | R | |
DO | 0.546 | 0.674 | 0.805 | 0.806 | 0.440 | 0.974 | 0.813 | 0.433 | 0.940 |
BOD5 | 0.932 | 0.260 | 0.989 | 0.995 | 0.070 | 0.998 | 0.959 | 0.202 | 0.983 |
E. coli | 0.999 | 0.005 | 0.999 | 0.823 | 0.421 | 0.994 | 0.944 | 0.237 | 0.989 |
T | 0.250 | 0.866 | 0.965 | 0.790 | 0.458 | 0.941 | 0.518 | 0.690 | 0.917 |
EC | 0.999 | 0.003 | 0.999 | 0.988 | 0.108 | 0.994 | 0.994 | 0.076 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori-Sánchez, O.L.; Ramos-Fernández, L.; Lluén-Chero, W.E.; Pino-Vargas, E.; Flores del Pino, L. Application of the Iber Two-Dimensional Model to Recover the Water Quality in the Lurín River. Hydrology 2023, 10, 84. https://doi.org/10.3390/hydrology10040084
Mori-Sánchez OL, Ramos-Fernández L, Lluén-Chero WE, Pino-Vargas E, Flores del Pino L. Application of the Iber Two-Dimensional Model to Recover the Water Quality in the Lurín River. Hydrology. 2023; 10(4):84. https://doi.org/10.3390/hydrology10040084
Chicago/Turabian StyleMori-Sánchez, Omayra Luzmila, Lia Ramos-Fernández, Willy Eduardo Lluén-Chero, Edwin Pino-Vargas, and Lisveth Flores del Pino. 2023. "Application of the Iber Two-Dimensional Model to Recover the Water Quality in the Lurín River" Hydrology 10, no. 4: 84. https://doi.org/10.3390/hydrology10040084
APA StyleMori-Sánchez, O. L., Ramos-Fernández, L., Lluén-Chero, W. E., Pino-Vargas, E., & Flores del Pino, L. (2023). Application of the Iber Two-Dimensional Model to Recover the Water Quality in the Lurín River. Hydrology, 10(4), 84. https://doi.org/10.3390/hydrology10040084