Simulation of Surface and Subsurface Water Quality in Hyper-Arid Environments
Abstract
:1. Introduction
2. Material and Methods
2.1. Geology and Hydrogeology
2.2. Climate
2.3. Sampling and Laboratory Methods
2.4. Sodium Absorption Ratio (SAR)
2.5. Soluble Sodium Percentage (SSP)
2.6. Chloride Mass Balance (CMB)
3. Results and Discussion
3.1. Hydrogeochemical Classification Major Ions Correlations
3.2. Major Ions Correlations
3.3. Chloride Mass Balance (CMB)
3.4. Evaluation of Water for Irrigation
3.5. Evaluation of Water for Livestock and Poultry
3.6. Quality Criteria for Industrial Purposes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2001—Impacts, Adaptation and Vulnerability. 3rd Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Güntner, A. Large-Scale Hydrological Modelling in the Semi-Arid North-East of Brazil. Ph.D. Thesis, Potsdam Institute for Climate Impact Research, Potsdam, Germany, 2002; p. 128. [Google Scholar]
- Duran-Encalada, J.A.; Paucar-Caceres, A.; Bandala, E.R.; Wright, G.H. The Impact of Global Climate Change on Water Quantity and Quality: A System Dynamics Approach to the US–Mexican Transborder Region. Eur. J. Oper. Res. 2017, 256, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wu, D. Adapting ecological risk valuation for natural resource damage assessment in water pollution. Environ. Res. 2018, 164, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, M.; Li, X.; Qi, J.; Zhang, Q.; Guo, J.; Yu, L.; Zhao, R. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water 2018, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Guo, X.; Lv, C.; Wang, H.; Di, D. Study on the quantification method of water pollution ecological compensation standard based on emergy theory. Ecol. Indic. 2018, 92, 189–194. [Google Scholar] [CrossRef]
- Ling, H.; Yan, J.; Xu, H.; Guo, B.; Zhang, Q. Estimates of shifts in ecosystem service values due to changes in key factors in the Manas River basin, northwest China. Sci. Total Environ. 2019, 659, 177–187. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Kadhum, S.A.; Abed, S.A.; Salih, R.M. Development and evaluation of irrigation water quality guide using IWQG V.1 software: A case study of Al-Gharraf Canal, Southern Iraq. Environ. Technol. Innov. 2019, 13, 224–232. [Google Scholar] [CrossRef]
- Jahin, H.S.; Abuzaid, A.S.; Abdellatif, A.D. Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environ. Technol. Innov. 2020, 17, 100532. [Google Scholar] [CrossRef]
- Tanui, F.; Olago, D.; Dulo, S.; Ouma, G.; Kuria, Z. Hydrogeochemistry of a strategic alluvial aquifer system in a semi-arid setting and its implications for potable urban water supply: The Lodwar Alluvial Aquifer System (LAAS). Groundw. Sustain. Dev. 2020, 11, 100451. [Google Scholar] [CrossRef]
- Devi, G.; Goswami, L.; Kushwaha, A.; Sathe, S.S.; Sen, B.; Sarma, H.P. Fluoride distribution and groundwater hydrogeochemistry for drinking, domestic and irrigation in an area interfaced near Brahmaputra floodplain of North-Eastern India. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100500. [Google Scholar] [CrossRef]
- Yuan, Q.-S.; Wang, P.-F.; Chen, J.; Wang, C.; Liu, S.; Wang, X. Influence of cascade reservoirs on spatiotemporal variations of hydrogeochemistry in Jinsha River. Water Sci. Eng. 2021, 14, 97–108. [Google Scholar] [CrossRef]
- Rayan, M.A.; Djebedjian, B. Egypt’s water demand, supply and management policies. Int. Water Demand Manag. Conf. Jordan 2004, 30, 1–24. [Google Scholar]
- Moghazy, N.H.; Kaluarachchi, J.J. Assessment of groundwater resources in Siwa Oasis, Western Desert, Egypt. Alex. Eng. J. 2019, 59, 149–163. [Google Scholar] [CrossRef]
- CAPMAS. Annual Bulletin of Statistical Crop Area and Plant Production, Cent. Agency Public Mobilization Stat, 2000–2011. 2019. Available online: https://www.capmas.gov.eg/Pages/Publications.aspx?page_id=5104&Year=23439 (accessed on 10 August 2019).
- Nour El-Din, M.M. Proposed Climate Change Adaptation Strategy for the Ministry of Water Resources & Irrigation in Egypt. Report of the UNESCO Cairo Office. Joint Programme for Climate Change Risk Management in Egypt, January 2013. 2017. Available online: https://www.eeaa.gov.eg/Uploads/Project/Files/20221123101650781.pdf (accessed on 10 May 2017).
- CAPMAS. Population Estimates by Sex and Governorate 1/1/2015. Archived (PDF) from the original on 19 October 2015.
- UNICEF; World Health Organization. Progress on Sanitation and Drinking Water—2015 Update and MDG Assessment; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Salman, S.A.; Asmoay, A.A.; El-Gohary, A.; Sabet, H. Evaluation of human risks of surface water and groundwater contaminated with Cd and Pb in the southern El-Minya Governorate, Egypt. Drink. Water Eng. Sci. 2019, 12, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.G.M.; Korany, E.A.; Tempelc, R.N.; Gomaa, M.A. Processes of water–rock interactions and their impacts upon the groundwater composition in Assiut area, Egypt: Applications of hydrogeochemical and multivariate analysis. J. Afr. Earth Sci. 2019, 149, 72–83. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Al-Falahi, A. Extent, characterization, and causes of soil salinity in central and southern Iraq and possible reclamation strategies. Int. J. Eng. Res. Appl. 2015, 5, 84–94. [Google Scholar]
- Bortolini, L.; Maucieri, C.; Borin, M. A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions. Agronomy 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Rahi, K.A.; Halihan, T. Salinity evolution of the Tigris River. Reg. Environ. Chang. 2018, 18, 2117–2127. [Google Scholar] [CrossRef]
- Asmoay, A.S.A. Hydrogeochemical Studies on the Water Resources and Soil Characteristics in the Western Bank of the River Nile between Abu Qurqas and Dayr Mawas, El Minya Governorate, Egypt. Ph.D. Thesis, Al-Azhar University, Cairo, Egypt, 2017. [Google Scholar]
- Sabet, H.; El-Gohary, A.; Salman, S.; Asmoay, A. Evaluation of Surface Water for Different Uses in the Area Between Abu Qurqas—Dyer Mawas Districts, El Minya Governorate, Egypt. IJISET Int. J. Innov. Sci. Eng. Technol. 2017, 4, 120–128. [Google Scholar]
- El-Gohary, A.M.; Sabet, H.S.; Salman, S.A.; Asmoay, A.S. Hydrogeochemistry of groundwater quality in the area between of Abu Qurqas—Dayer Mawas districts, El Minya Governorate, Upper Egypt. Int. J. Recent Adv. Multidiscip. Res. 2017, 4, 2493–2497. [Google Scholar]
- Zeid, S.A.; Seleem, E.M.; Salman, S.A.; Abdel-Hafiz, M.A. Water quality index of shallow groundwater and assessment for different usages in El-Obour city Egypt. J. Mater. Environ. Sci. 2018, 9, 1957–1968. [Google Scholar]
- Centers for Disease Control and Prevention; U.S. Department of Housing and Urban Development. Healthy Housing Reference Manual; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2006.
- Mohamed, A.; Asmoay, A.; Alshehri, F.; Abdelrady, A.; Othman, A. Hydro-Geochemical Applications and Multivariate Analysis to Assess the Water–Rock Interaction in Arid Environments. Appl. Sci. 2022, 12, 6340. [Google Scholar] [CrossRef]
- Said, R. The Geological Evolution of the River Nile; Springer: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Conoco. Egyptian general authority for petroleum. In Scale (1:500,000) between El-Minia and Sohag; Conoco: Ponca City, OK, USA, 1987. [Google Scholar]
- Said, R. The Geology of Egypt; Balkema Publishing Company: Rotterdam, The Netherlands; Brookfield, WI, USA, 1990; 734p. [Google Scholar]
- RIGW. Hydrogeological Map of Egypt, Assuit and Manfalut, Scale 1:100,000, 1st ed.; 1994.
- Sadek, M.A. Isotopic criteria for upward leakage in the alluvial aquifer in north El Minia district, Egypt. Ann. Geol. Surv. Egypt 2001, XXIV, 585–596. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- USSL. Diagnosis and improvement of saline and alkaline soils. In United State Science Laboratory Department, Agriculture Handbook; USDA: Washington, DC, USA, 1954; Volume 60, 147p. [Google Scholar]
- Todd, D.K. Groundwater Hydrology, 2nd ed.; John Wiley: New York, NY, USA, 1980; 535p. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Wilcox, L.V. Classification and Use of Irrigation Waters, USDA, Circular 969; United States Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Miller, H.J. The amounts of nitrogen as ammonia and as nitric acid and chlorine in the rainwater collected at Rothamsted. J. Agric. Sci. 1902, 1, 280–303. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, E. Composition of Atmospheric Precipitation. Tellus 1952, 4, 280–303. [Google Scholar] [CrossRef]
- Uugulu, S.; Wanke, H. Estimation of groundwater recharge in savannah aquifers along a precipitation gradient using chloride mass balance method and environmental isotopes, Namibia. Phys. Chem. Earth Parts A/B/C 2020, 116, 102844. [Google Scholar] [CrossRef]
- Segobaetso, T.K.; Tafesse, N.T.; Mapeo, R.; Laletsang, K. Groundwater recharge using the chloride mass balance method in the Kanye area, in southeast Botswana. J. Afr. Earth Sci. 2022, 193, 104534. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality: An Introduction; Kluwer Academic Publisher: New York, NY, USA, 2000; 330p. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Bai, X.; Tian, X.; Li, J.; Wang, X.; Li, Y.; Zhou, Y. Assessment of the Hydrochemical Characteristics and Formation Mechanisms of Groundwater in A Typical Alluvial-Proluvial Plain in China: An Example from Western Yongqing County. Water 2022, 14, 2395. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcott, D.W. Water Quality for Agriculture. Irrigation and Drainage; Paper No. 29; FAO: Rome, Italy, 1985. [Google Scholar]
- Fipps, G. Irrigation Water Quality Standards and Salinity Management; Texas A & M University System: College Station, TX, USA, 1998. [Google Scholar]
- He, Y.; DeSutter, T.; Casey, F.; Clay, D.; Franzen, D.; Steele, D. Field capacity water as influenced by Na and EC: Implications for subsurface drainage. Geoderma 2015, 245–246, 83–88. [Google Scholar] [CrossRef]
- FAO. Water for Animal; Report AGL/MISC/4/85; FAO: Rome, Italy, 1986. [Google Scholar]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water, 3rd ed.; U.S. Geological Survey: Reston, VA, USA, 1985; 264p. [Google Scholar]
Surface Water Samples | ||||||||||||
T (°C) | pH | EC (µS/cm) | TDS (ppm) | TH (ppm) | Ca2+ (ppm) | Mg2+ (ppm) | Na+ (ppm) | K+ (ppm) | HCO3− (ppm) | Cl− (ppm) | SO42− (ppm) | |
safe limit [38] | - | 6.5–8.5 | 1500 | 1000 | 500 | 75 | 100 | 250 | 12 | - | 250 | 250 |
Valid | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Minimum | 22.600 | 6.390 | 264.000 | 204.000 | 120.000 | 18.000 | 21.870 | 20.700 | 7.038 | 175.680 | 38.998 | 1.440 |
Maximum | 26.100 | 7.510 | 1060.000 | 854.000 | 400.000 | 60.000 | 89.910 | 195.500 | 74.287 | 488.000 | 248.171 | 110.400 |
Median | 24.600 | 7.115 | 277.500 | 213.000 | 155.000 | 38.000 | 29.767 | 30.450 | 9.192 | 249.490 | 48.417 | 16.500 |
Mean | 24.483 | 7.116 | 375.222 | 290.778 | 181.111 | 34.722 | 33.264 | 53.176 | 16.023 | 266.875 | 67.506 | 30.524 |
Variance | 1.163 | 0.082 | 47,696.889 | 30,576.418 | 4610.458 | 146.330 | 246.275 | 2305.191 | 347.419 | 6942.959 | 2365.838 | 1050.773 |
Std. Deviation | 1.078 | 0.286 | 218.396 | 174.861 | 67.900 | 12.097 | 15.693 | 48.012 | 18.639 | 83.324 | 48.640 | 32.416 |
Skewness | −0.090 | −0.866 | 2.419 | 2.517 | 2.431 | 0.304 | 3.113 | 1.993 | 2.762 | 1.244 | 3.380 | 1.634 |
Groundwater Samples | ||||||||||||
T (°C) | pH | EC (µS/cm) | TDS (ppm) | TH (ppm) | Ca2+ (ppm) | Mg2+ (ppm) | Na+ (ppm) | K+ (ppm) | HCO3− (ppm) | Cl− (ppm) | SO42− (ppm) | |
Valid | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Minimum | 23.000 | 6.400 | 207.000 | 156.000 | 120.000 | 30.000 | 20.655 | 23.000 | 5.474 | 189.100 | 49.634 | 7.200 |
Maximum | 32.900 | 7.000 | 1452.000 | 1069.000 | 1120.000 | 240.000 | 170.100 | 575.000 | 22.677 | 915.000 | 886.325 | 912.000 |
Median | 25.500 | 6.720 | 638.000 | 496.500 | 325.000 | 76.000 | 52.974 | 84.550 | 11.534 | 375.150 | 89.365 | 90.900 |
Mean | 25.973 | 6.717 | 713.233 | 548.500 | 380.667 | 85.733 | 61.394 | 128.170 | 11.238 | 431.087 | 148.640 | 151.669 |
Variance | 5.707 | 0.022 | 136,597.082 | 78,828.259 | 43,896.092 | 2202.409 | 1083.732 | 16,521.013 | 15.528 | 28,793.641 | 29,072.525 | 37,122.799 |
Std. Deviation | 2.389 | 0.148 | 369.590 | 280.764 | 209.514 | 46.930 | 32.920 | 128.534 | 3.941 | 169.687 | 170.507 | 192.673 |
Skewness | 1.544 | −0.302 | 0.548 | 0.512 | 1.736 | 1.612 | 1.473 | 2.187 | 0.663 | 1.036 | 3.425 | 2.719 |
Salinity (EC μs/cm) | Characters | Water Samples |
---|---|---|
<1500 | Excellent | All the studied water samples |
1500–5000 | Very satisfactory | - |
5000–8000 | Satisfactory for livestock, unfit for poultry | - |
8000–11,000 | Limited for livestock, unfit for poultry | - |
11,000–16,000 | Very limited use | - |
˃16,000 | Not recommended | - |
Parameter | Industries | |||||||
---|---|---|---|---|---|---|---|---|
Fruit & Vegetable | Paper | Textile | Petroleum | Wood Chemicals | Synthetic Rubber | Hydraulic Cement | Leather Tanning | |
pH | 6.5–8.5 | 6–10 | 6.5–8.5 | 6–9 | 6.5–8 | 6.2–8.3 | 6.5–8.5 | 6–8 |
TDS | 500 | - | 100 | 1000 | 1000 | - | 600 | - |
TH | 250 | 100 | 25 | 350 | 900 | 350 | - | - |
Ca2+ | - | 20 | - | 75 | 100 | 80 | - | - |
Mg2+ | - | 12 | - | 30 | 50 | 36 | - | - |
HCO3− | - | - | - | - | 250 | - | - | - |
Cl− | 250 | 200 | - | 300 | 500 | - | 250 | 250 |
SO42− | 250 | - | - | - | 100 | - | 250 | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.; Asmoay, A.; Alarifi, S.S.; Mohammed, M.A.A. Simulation of Surface and Subsurface Water Quality in Hyper-Arid Environments. Hydrology 2023, 10, 86. https://doi.org/10.3390/hydrology10040086
Mohamed A, Asmoay A, Alarifi SS, Mohammed MAA. Simulation of Surface and Subsurface Water Quality in Hyper-Arid Environments. Hydrology. 2023; 10(4):86. https://doi.org/10.3390/hydrology10040086
Chicago/Turabian StyleMohamed, Ahmed, Ahmed Asmoay, Saad S. Alarifi, and Musaab A. A. Mohammed. 2023. "Simulation of Surface and Subsurface Water Quality in Hyper-Arid Environments" Hydrology 10, no. 4: 86. https://doi.org/10.3390/hydrology10040086
APA StyleMohamed, A., Asmoay, A., Alarifi, S. S., & Mohammed, M. A. A. (2023). Simulation of Surface and Subsurface Water Quality in Hyper-Arid Environments. Hydrology, 10(4), 86. https://doi.org/10.3390/hydrology10040086