Search for a Relevant Scale to Optimize the Quality Monitoring of Groundwater Bodies in the Occitanie Region (France)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Occitanie Administrative Region
2.2. Databases
2.3. Data Processing
- The first step was an extraction of data from SISE-EAUX, keeping only raw groundwater, i.e., not having undergone any disinfection or other treatment;
- These data were then processed by basic univariate statistics, in order to detect possible data entry errors or other anomalies. Extraction of data acquired between 1 January 2007 and 1 December 2018 thus yielded a full matrix of 8110 observations with 15 parameters, namely Enterococcus, Escherichia Coli, electrical conductivity (EC), Na, K, Ca, Mg, Cl, SO4, HCO3, NO3, Fe, Mn, As, and H+;
- In agreement with previous work [21], the data were then conditioned in logarithmic form, which makes their distribution closer to normality and decreases the weight of extreme values;
- Each water sample was then assigned to a GWB based on its geographic coordinates and depth;
- A principal component analysis (PCA) was then performed on the log-transformed data to reduce the dimensionality of the data space and to identify and rank the sources of variability in the database. The PCA was based on the correlation matrix and thus considered the reduced centered variables, which allowed to integrate parameters of very diverse natures and units. Furthermore, it was carried out by diagonalization of the correlation matrix in order to identify, quantify, and classify the different sources of variability within the data set. Under these conditions, the factorial axes were perpendicular to each other, and were therefore associated with independent processes responsible for the variability of water quality. The last factorial axes, explaining a small percentage of the variance, and generally considered as statistical noise [25], were eliminated;
- For each of the selected factorial axes, the average value for the GWB on the factorial axis was calculated. At this stage, each GWB was thus characterized by an X-dimensional vector if X factorial axes were selected. In the Adour-Garonne basin, 10 GWB with few water analyses (less than 10) were not taken into account because they were not sufficiently detailed. They were excluded from the calculation. An ascending unsupervised hierarchical clustering (AHC) was carried out on all remaining GWB by assigning an identical weight to each factorial axis. The objective of this clustering was to partition all the GWB into groups or subgroups and to gather them according to a similarity criteria, all parameters considered. The choice of the number of groups was guided by the variation of the ratio between the inter-group and intra-group variability in order to maximize the intra-group homogeneity and the inter-group heterogeneity. The results are iteratively collated to produce a dendrogram;
- The result of the classification was then mapped in a GIS;
- Finally, the last step consisted of the detailed study of each homogeneous group of GWB, a step that was not presented in detail in this article because it is too voluminous.
2.4. Clustering and Quantification of the Information Lost
2.5. Spatial and Temporal Study for 3 Groups of GWB
3. Results
3.1. Database and Observation Density
3.2. Principal Component Analysis
3.3. Clustering
3.4. Characteristics and Distribution of GWB Groups
3.5. ANOVA and Explained Variance
3.6. Processes Responsible for the Quality of Some GWB Groups
4. Discussion
4.1. Physico-Chemical and Bacteriological Variability of Groundwater in Occitanie
4.2. The GWB Grouping, a Relevant Management Scale
4.3. More homogeneous GWB Groups
4.4. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Guidance on Groundwater Status and Trend Assessment, Guidance Document #18; European Communities: Luxembourg, 2009; ISBN 978-92-79-11374-1. [Google Scholar]
- European Commission. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off. J. Eur. Union 2006, 372, 19–31. [Google Scholar]
- Martínez Navarrete, C.; Grima Olmedo, J.; Durán Valsero, J.J.; Gómez Gómez, J.D.; Luque Espinar, J.A.; de la Orden Gómez, J.A. Groundwater protection in Mediterranean countries after the European water framework directive. Environ. Geol. 2008, 54, 537–549. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 22, 2000. [Google Scholar]
- European Commission. Directive 2014/80/EU of 20 June 2014 amending Annex II to Directive 2006/118/EC of the European 579 Parliament and of the Council on the protection of groundwater against pollution and deterioration. Off. J. Eur. Union 2014, 580, 182/52. [Google Scholar]
- De Stefano, L.; Fornés, J.M.; López-Geta, J.A.; Villarroya, F. Groundwater use in Spain: An overview in light of the EU Water Framework Directive. Int. J. Water Resour. Dev. 2015, 31, 640–656. [Google Scholar] [CrossRef] [Green Version]
- Pantaleone, D.V.; Vincenzo, A.; Fulvio, C.; Silvia, F.; Cesaria, M.; Giuseppina, M.; Ilaria, M.; Vincenzo, P.; Rosa, S.A.; Gianpietro, S.; et al. Hydrogeology of continental southern Italy. J. Maps 2018, 14, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Danielopol, D.L.; Griebler, C.; Gunatilaka, A.; Notenboom, J. Present state and future prospects for groundwater ecosystems. Environ. Conserv. 2003, 30, 104–130. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, W.M.; Shand, P.; Hart, P.; Ward, R.S. The natural (baseline) quality of groundwater: A UK pilot study. Sci. Total Environ. 2003, 310, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Hinsby, K.; Condesso de Melo, M.T.; Dahl, M. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci. Total Environ. 2008, 401, 1–20. [Google Scholar] [CrossRef]
- Masciale, R.; Amalfitano, S.; Frollini, E.; Ghergo, S.; Melita, M.; Parrone, D.; Preziosi, E.; Vurro, M.; Zoppini, A.; Passarella, G. Assessing Natural Background Levels in the Groundwater Bodies of the Apulia Region (Southern Italy). Water 2021, 13, 958. [Google Scholar] [CrossRef]
- Nakić, Z.; Kovač, Z.; Parlov, J.; Perković, D. Ambient Background Values of Selected Chemical Substances in Four Groundwater Bodies in the Pannonian Region of Croatia. Water 2020, 12, 2671. [Google Scholar] [CrossRef]
- Quevauviller, P.; Balabanis, P.; Fragakis, C.; Weydert, M.; Oliver, M.; Kaschl, A.; Arnold, G.; Kroll, A.; Galbiati, L.; Zaldivar, J.M.; et al. Science-policy integration needs in support of the implementation of the EU Water Framework Directive. Environ. Sci. Policy 2005, 8, 203–211. [Google Scholar] [CrossRef]
- Smith, J.W.N.; Bonell, M.; Gibert, J.; McDowell, W.H.; Sudicky, E.A.; Turner, J.V.; Harris, R.C. Groundwater–surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management. Hydrol. Process. 2008, 22, 151–157. [Google Scholar] [CrossRef]
- Urresti-Estala, B.; Carrasco-Cantos, F.; Vadillo-Pérez, I.; Jiménez-Gavilán, P. Determination of background levels on water quality of groundwater bodies: A methodological proposal applied to a Mediterranean River basin (Guadalhorce River, Málaga, southern Spain). J. Environ. Manag. 2013, 117, 121–130. [Google Scholar] [CrossRef]
- Wendland, F.; Hannappel, S.; Kunkel, R.; Schenk, R.; Voigt, H.J.; Wolter, R. A procedure to define natural groundwater conditions of groundwater bodies in Germany. Water Sci. Technol. 2005, 51, 249–257. [Google Scholar] [CrossRef]
- Frollini, E.; Preziosi, E.; Calace, N.; Guerra, M.; Guyennon, N.; Marcaccio, M.; Menichetti, S.; Romano, E.; Ghergo, S. Groundwater quality trend and trend reversal assessment in the European Water Framework Directive context: An example with nitrates in Italy. Environ. Sci. Pollut. Res. 2021, 28, 22092–22104. [Google Scholar] [CrossRef]
- Maréchal, J.-C.; Rouillard, J. Groundwater in France: Resources, Use and Management Issues. In Sustainable Groundwater Management: A Comparative Analysis of French and Australian Policies and Implications to Other Countries; Rinaudo, J.-D., Holley, C., Barnett, S., Montginoul, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 17–45. ISBN 978-3-030-32766-8. [Google Scholar]
- Martínez-Navarrete, C.; Jiménez-Madrid, A.; Sánchez-Navarro, I.; Carrasco-Cantos, F.; Moreno-Merino, L. Conceptual Framework for Protecting Groundwater Quality. Int. J. Water Resour. Dev. 2011, 27, 227–243. [Google Scholar] [CrossRef]
- Tiouiouine, A.; Jabrane, M.; Kacimi, I.; Morarech, M.; Bouramtane, T.; Bahaj, T.; Yameogo, S.; Rezende-Filho, A.T.; Dassonville, F.; Moulin, M.; et al. Determining the relevant scale to analyze the quality of regional groundwater resources while combining groundwater bodies, physicochemical and biological databases in southeastern france. Water 2020, 12, 3476. [Google Scholar] [CrossRef]
- Jabrane, M.; Touiouine, A.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; Valles, V.; Barbiero, L. Data Conditioning Modes for the Study of Groundwater Resource Quality Using a Large Physico-Chemical and Bacteriological Database, Occitanie Region, France. Water 2023, 15, 84. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Shelton, D.R. Escherichia Coli and Fecal Coliforms in Freshwater and Estuarine Sediments. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1067–1110. [Google Scholar] [CrossRef]
- John, D.E.; Rose, J.B. Review of Factors Affecting Microbial Survival in Groundwater. Environ. Sci. Technol. 2005, 39, 7345–7356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, P.K.; Kass, P.H.; Soupir, M.L.; Biswas, S.; Singh, V.P. Contamination of water resources by pathogenic bacteria. AMB Express 2014, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Rezende Filho, A.; Furian, S.; Victoria, R.; Mascré, C.; Valles, V.; Barbiero, L. Hydrochemical variability at the upper paraguay basin and pantanal wetland. Hydrol. Earth Syst. Sci. 2012, 16, 2723–2737. [Google Scholar] [CrossRef] [Green Version]
- Tiouiouine, A.; Yameogo, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Moulin, M.; Bouramtane, T.; Bahaj, T.; Morarech, M.; Kacimi, I. Dimension reduction and analysis of a 10-year physicochemical and biological water database applied to water resources intended for human consumption in the provence-alpes-cote d’azur region, France. Water 2020, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- Miles, J. R Squared, Adjusted R Squared. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; ISBN 9781118445112. [Google Scholar]
- El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. [Google Scholar] [CrossRef]
- Masoud, M.; El Osta, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Evaluation of groundwater quality for agricultural under different conditions using water quality indices, partial least squares regression models, and GIS approaches. Appl. Water Sci. 2022, 12, 244. [Google Scholar] [CrossRef]
- Rezende Filho, A.; Valles, V.; Furian, S.; Oliveira, C.M.S.C.; Ouardi, J.; Barbiero, L. Impacts of lithological and anthropogenic factors affecting water chemistry in the Upper Paraguay River Basin. J. Environ. Qual. 2015, 44, 1832–1842. [Google Scholar] [CrossRef]
- Barbel-Périneau, A.; Barbiero, L.; Danquigny, C.; Emblanch, C.; Mazzilli, N.; Babic, M.; Simler, R.; Valles, V. Karst flow processes explored through analysis of long-term unsaturated-zone discharge hydrochemistry: A 10-year study in Rustrel, France. Hydrogeol. J. 2019, 27, 1711–1723. [Google Scholar] [CrossRef]
- Mackay, A.W.; Davidson, T.; Wolski, P.; Mazebedi, R.; Masamba, W.R.L.; Huntsman-Mapila, P.; Todd, M. Spatial and Seasonal Variability in Surface Water Chemistry in the Okavango Delta, Botswana: A Multivariate Approach. Wetlands 2011, 31, 815. [Google Scholar] [CrossRef]
- DRAAF-Occitanie Cartothèque (Regularly Updated). Available online: https://draaf.occitanie.agriculture.gouv.fr/cartotheque-r101.html (accessed on 7 January 2023).
- Greven, M.; Green, S.; Robinson, B.; Clothier, B.; Vogeler, I.; Agnew, R.; Neal, S.; Sivakumaran, S. The impact of CCA-treated posts in vineyards on soil and ground water. Water Sci. Technol. 2007, 56, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Ko, B.-G.; Vogeler, I.; Bolan, N.S.; Clothier, B.; Green, S.; Kennedy, J. Mobility of copper, chromium and arsenic from treated timber into grapevines. Sci. Total Environ. 2007, 388, 35–42. [Google Scholar] [CrossRef]
- Bruez, E.; Larignon, P.; Bertsch, C.; Robert-Siegwald, G.; Lebrun, M.-H.; Rey, P.; Fontaine, F. Impacts of Sodium Arsenite on Wood Microbiota of Esca-Diseased Grapevines. J. Fungi 2021, 7, 498. [Google Scholar] [CrossRef]
- Favrot, J.C.; Bouzigues, R.; Tessier, D.; Valles, V. Contrasting structures in the subsoil of the boulbènes of the Garonne basin, France. Geoderma 1992, 53, 125–137. [Google Scholar] [CrossRef]
- Gavalda, D. Devenir des Eléments Traces Métalliques dans les Boulbenes (Luvi-Redoxisol) Après Epandage de Boues Granulées. Ph.D. Thesis, National Polytechnic Institute of Toulouse, Toulouse, France, 2001. [Google Scholar]
Title 1 | Number of Samples | Number of Sampling Points | Number of GWB Involved |
---|---|---|---|
Occitanie region | 8110 | 1972 | 106 |
AdG basin | 4115 | 620 | 46 |
RM basin | 3995 | 1352 | 60 |
Adour-Garonne | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
Enterococcus | 0.3597 | 0.6786 | −0.1726 | 0.3704 | −0.0764 | −0.2819 |
E. coli | 0.3968 | 0.7394 | −0.1526 | 0.2952 | −0.1184 | −0.2071 |
EC | 0.8325 | −0.4114 | −0.1636 | 0.1124 | 0.0986 | −0.0236 |
K | 0.7269 | 0.0936 | 0.3645 | −0.0211 | −0.1114 | 0.1886 |
Na | 0.5668 | −0.0038 | 0.4626 | −0.3770 | −0.0304 | −0.3254 |
Ca | 0.7950 | −0.3896 | −0.2814 | 0.1169 | 0.1000 | 0.0060 |
Mg | 0.7142 | −0.3540 | −0.1002 | 0.0523 | 0.1392 | 0.1936 |
Cl | 0.6951 | −0.0715 | 0.4663 | −0.0858 | −0.2910 | −0.0647 |
SO4 | 0.8170 | −0.0911 | 0.0530 | −0.1040 | −0.3168 | 0.0195 |
HCO3 | 0.7659 | −0.3031 | −0.3327 | 0.0439 | 0.0071 | 0.0857 |
NO3 | 0.3160 | −0.1793 | 0.5437 | 0.5722 | 0.4036 | −0.1119 |
Fe | 0.2399 | 0.8071 | 0.0491 | −0.0436 | 0.0448 | 0.2022 |
Mn | 0.3567 | 0.6217 | 0.1680 | 0.0027 | 0.1163 | 0.5006 |
As | 0.4117 | 0.3801 | −0.0573 | −0.5069 | 0.5455 | −0.1824 |
H+ | −0.6530 | −0.2187 | 0.4681 | 0.1481 | 0.0567 | 0.0700 |
Rhône-Méditerranée | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
Enterococcus | −0.2881 | 0.6905 | −0.4392 | 0.2580 | 0.2405 | 0.0776 |
E. coli | −0.3149 | 0.6670 | −0.4600 | 0.2577 | 0.2389 | 0.0373 |
EC | 0.9405 | 0.0618 | −0.1633 | −0.1629 | 0.0511 | 0.0662 |
K | 0.3522 | 0.1933 | 0.4710 | 0.5462 | −0.1248 | −0.2555 |
Na | 0.7342 | −0.0293 | 0.2402 | 0.3308 | 0.1182 | −0.0739 |
Ca | 0.8768 | 0.0636 | −0.2462 | −0.2349 | 0.0686 | 0.1124 |
Mg | 0.7502 | 0.2078 | −0.0677 | −0.2018 | −0.2252 | 0.0778 |
Cl | 0.8062 | −0.0050 | 0.0734 | 0.2561 | 0.1686 | −0.0882 |
SO4 | 0.7773 | 0.1077 | 0.0705 | 0.1384 | 0.0019 | −0.0103 |
HCO3 | 0.7747 | 0.1542 | −0.2525 | −0.3032 | −0.0862 | 0.1147 |
NO3 | 0.3935 | −0.3637 | −0.2675 | 0.5010 | 0.1810 | 0.0889 |
Fe | 0.0004 | 0.4098 | 0.5498 | −0.2210 | 0.3460 | −0.0087 |
Mn | 0.0692 | 0.4586 | 0.5104 | −0.3111 | 0.3051 | −0.0471 |
As | −0.0799 | 0.3431 | 0.3744 | 0.2629 | −0.4959 | 0.6248 |
H+ | −0.0668 | −0.4813 | 0.1819 | 0.0429 | 0.6034 | 0.4832 |
AdG | Enter. | E. coli | E.C. | K | Na | Ca | Mg | Cl | SO4 | HCO3 | NO3 | Fe | Mn | As | H+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.95 | 1.81 | 1.93 | −4.48 | −3.72 | −4.09 | −4.04 | −3.77 | −4.67 | −3.85 | −4.03 | −6.03 | −6.65 | −3.47 | −7.24 |
2 | 1.59 | 2.24 | 2.39 | −4.53 | −3.71 | −3.01 | −3.85 | −3.62 | −3.78 | −2.72 | −4.18 | −6.23 | −6.41 | −3.11 | −7.94 |
3 | 1.44 | 2.13 | 2.49 | −4.34 | −3.50 | −2.96 | −3.62 | −3.37 | −3.72 | −2.64 | −3.98 | −6.19 | −6.29 | −1.59 | −7.97 |
4 | 0.73 | 1.08 | 2.20 | −4.19 | −3.59 | −3.41 | −3.74 | −3.43 | −4.12 | −3.12 | −3.79 | −6.25 | −6.05 | −3.73 | −7.24 |
5 | 0.68 | 0.98 | 2.63 | −4.56 | −3.78 | −2.84 | −3.20 | −3.60 | −3.95 | −2.44 | −3.91 | −6.67 | −6.84 | −4.30 | −7.44 |
6 | 0.53 | 0.83 | 2.72 | −4.47 | −3.71 | −2.61 | −3.73 | −3.49 | −4.09 | −2.30 | −3.83 | −6.84 | −6.90 | −5.69 | −7.19 |
7 | 0.52 | 0.77 | 1.99 | −4.92 | −3.76 | −3.67 | −4.19 | −3.95 | −4.53 | −3.71 | −4.13 | −6.62 | −6.66 | −5.57 | −7.11 |
8 | 0.75 | 1.20 | 1.79 | −4.82 | −3.90 | −3.85 | −3.96 | −4.10 | −5.35 | −3.27 | −4.67 | −6.24 | −6.73 | −4.81 | −7.45 |
9 | 0.39 | 0.65 | 2.43 | −5.16 | −4.43 | −3.00 | −3.55 | −4.22 | −4.37 | −2.59 | −4.55 | −6.84 | −6.94 | −7.00 | −8.14 |
10 | 0.00 | 0.26 | 2.82 | −4.43 | −3.30 | −2.53 | −3.66 | −3.02 | −3.79 | −2.29 | −3.37 | −6.92 | −7.00 | −0.66 | −7.34 |
RM | Enter. | E. coli | E.C. | K | Na | Ca | Mg | Cl | SO4 | HCO3 | NO3 | Fe | Mn | As | H+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.09 | 0.12 | 2.68 | −4.61 | −3.11 | −2.80 | −3.32 | −3.04 | −3.38 | −2.48 | −4.06 | −6.85 | −6.94 | −4.18 | −7.33 |
2 | 0.32 | 0.37 | 2.19 | −4.77 | −3.65 | −3.38 | −3.84 | −4.15 | −4.05 | −3.03 | −4.78 | −6.84 | −6.89 | −3.77 | −7.36 |
3 | 0.34 | 0.45 | 2.52 | −5.34 | −3.61 | −2.95 | −3.24 | −3.97 | −3.96 | −2.55 | −4.76 | −6.91 | −6.95 | −4.95 | −7.44 |
4 | 0.28 | 0.23 | 2.70 | −4.47 | −3.23 | −2.65 | −3.50 | −3.04 | −3.24 | −2.42 | −4.20 | −6.69 | −6.66 | −3.35 | −7.43 |
5 | 0.09 | 0.09 | 2.71 | −4.74 | −3.38 | −2.69 | −3.20 | −3.30 | −3.35 | −2.36 | −4.46 | −6.87 | −6.93 | −3.60 | −7.40 |
6 | 0.45 | 0.59 | 2.70 | −5.38 | −3.60 | −2.61 | −3.54 | −3.69 | −3.82 | −2.31 | −4.48 | −6.89 | −6.82 | −5.63 | −7.25 |
7 | 0.21 | 0.30 | 2.73 | −5.04 | −3.39 | −2.59 | −3.67 | −3.22 | −3.67 | −2.31 | −4.10 | −6.87 | −6.94 | −6.06 | −7.21 |
8 | 0.24 | 0.38 | 1.78 | −5.11 | −3.93 | −3.83 | −4.31 | −5.17 | −4.55 | −3.70 | −4.77 | −6.83 | −6.98 | −3.50 | −7.30 |
9 | 0.27 | 0.28 | 1.90 | −5.38 | −3.66 | −3.83 | −4.69 | −4.11 | −5.09 | −4.24 | −4.57 | −6.81 | −6.93 | −3.94 | −6.72 |
10 | 0.18 | 0.22 | 2.51 | −5.54 | −4.11 | −2.83 | −3.85 | −5.03 | −4.17 | −2.65 | −4.57 | −7.00 | −6.96 | −6.64 | −7.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabrane, M.; Touiouine, A.; Valles, V.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; El Jarjini, Y.; Morarech, M.; Duran, Y.; Barbiero, L. Search for a Relevant Scale to Optimize the Quality Monitoring of Groundwater Bodies in the Occitanie Region (France). Hydrology 2023, 10, 89. https://doi.org/10.3390/hydrology10040089
Jabrane M, Touiouine A, Valles V, Bouabdli A, Chakiri S, Mohsine I, El Jarjini Y, Morarech M, Duran Y, Barbiero L. Search for a Relevant Scale to Optimize the Quality Monitoring of Groundwater Bodies in the Occitanie Region (France). Hydrology. 2023; 10(4):89. https://doi.org/10.3390/hydrology10040089
Chicago/Turabian StyleJabrane, Meryem, Abdessamad Touiouine, Vincent Valles, Abdelhak Bouabdli, Said Chakiri, Ismail Mohsine, Youssouf El Jarjini, Moad Morarech, Yannick Duran, and Laurent Barbiero. 2023. "Search for a Relevant Scale to Optimize the Quality Monitoring of Groundwater Bodies in the Occitanie Region (France)" Hydrology 10, no. 4: 89. https://doi.org/10.3390/hydrology10040089
APA StyleJabrane, M., Touiouine, A., Valles, V., Bouabdli, A., Chakiri, S., Mohsine, I., El Jarjini, Y., Morarech, M., Duran, Y., & Barbiero, L. (2023). Search for a Relevant Scale to Optimize the Quality Monitoring of Groundwater Bodies in the Occitanie Region (France). Hydrology, 10(4), 89. https://doi.org/10.3390/hydrology10040089