Impact of Gravel Pits on Water Quality in Alluvial Aquifers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Laboratory Analyses
2.3. Methodological Approach
3. Results and Discussion
3.1. In Situ Parameters and Nitrogen Species
3.2. Nitrate Attenuation in Gravel Pits
3.3. Metal Bio-Removal in Gravel Pits
4. Conclusions
- Highly active microbial systems are present in gravel pit lakes, where bacterial denitrification and nitrate uptake by algae are responsible for significant decreases in nitrate concentration, thus serving as a sink for nitrate within the studied aquifer system.
- These processes were more efficient in the inactive gravel pit that has a longer water residence time, resulting in increased nitrate uptake and decreases in nitrate concentrations.
- The bio-removal of dissolved metals from gravel pit water is mediated by cyanobacteria, probably by the biosorption of metal ions.
- All observed processes are more pronounced in the warm period when microbial biomass, abundance, and activity are high, which confirms that when favorable conditions are met, microorganisms are the key factor that governs the fate of nitrate and metals in the studied gravel pits.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Geological Survey. Mineral Commodity Summaries 2021; U.S. Geological Survey: Reston, VA, USA, 2021; 200p. [Google Scholar] [CrossRef]
- Mollema, P.N.; Antonellini, M. Water and (bio)chemical cycling in gravel pit lakes: A review and outlook. Earth Sci. Rev. 2016, 159, 247–270. [Google Scholar] [CrossRef]
- Muellegger, C.; Weilhartner, A.; Battin, T.J.; Hofmann, T. Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality. Sci. Total Environ. 2013, 443, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Carbonell, M. Assessment of groundwater contamination caused by uncontrolled dumping in old gravel quarries in the Besòs aquifers (Barcelona, Spain). Environ. Geochem. Health 2007, 30, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Urbanc, M.; Breg, M. Gravel plains in urban areas: Gravel pits as an element of degraded landscapes. Acta Geogr. Slov. 2005, 45, 35–61. [Google Scholar] [CrossRef]
- Søndergaard, M.; Lauridsen, T.L.; Johansson, L.S.; Jeppesen, E. Gravel pit lakes in Denmark: Chemical and biological state. Sci. Total Environ. 2018, 612, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Helmer, C.; Labroue, L. Denitrification in gravel-pit lakes. Hydrobiologia 1993, 251, 35–44. [Google Scholar] [CrossRef]
- Nizzoli, D.; Carraro, E.; Nigro, V.; Viaroli, P. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Res. 2010, 44, 2715–2724. [Google Scholar] [CrossRef]
- Weilhartner, A.; Muellegger, C.; Kainz, M.; Mathieu, F.; Hofmann, T.; Battin, T.J. Gravel pit lake ecosystems reduce nitrate and phosphate concentrations in the outflowing groundwater. Sci. Total Environ. 2012, 420, 222–228. [Google Scholar] [CrossRef]
- Nizzoli, D.; Welsh, D.T.; Viaroli, P. Denitrification and benthic metabolism in lowland pit lakes: The role of trophic conditions. Sci. Total Environ. 2020, 703, 134804. [Google Scholar] [CrossRef]
- Dedić, Ž.; Kruk, B.; Kruk, L.; Kovačević Galović, E. Rudarsko-Geološka Studija Varaždinske Županije; Croatian Geological Survey: Zagreb, Croatia, 2016; 372p. (In Croatian) [Google Scholar]
- Karlović, I. Origin, Fate and Transport Modelling of Nitrate in the Varaždin Aquifer. Doctoral Dissertation, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia, 14 July 2022. [Google Scholar]
- Karlović, I.; Posavec, K.; Larva, O.; Marković, T. Numerical groundwater flow and nitrate transport assessment in alluvial aquifer of Varaždin region, NW Croatia. J. Hydrol. Reg. Stud. 2022, 41, 101084. [Google Scholar] [CrossRef]
- Marković, T.; Karlović, I.; Orlić, S.; Kajan, K.; Smith, A. Tracking the nitrogen cycle in a vulnerable alluvial system using a multi proxy approach: Case study Varaždin alluvial aquifer, Croatia. Sci. Total Environ. 2022, 853, 158632. [Google Scholar] [CrossRef] [PubMed]
- Prelogović, E.; Velić, J. Quaternary tectonic activity in western part of Drava basin. Geol. Vjesn. 1988, 41, 237–253. [Google Scholar]
- Marković, T.; Karlović, I.; Perčec Tadić, M.; Larva, O. Application of Stable Water Isotopes to Improve Conceptual Model of Alluvial Aquifer in the Varaždin Area. Water 2020, 12, 379. [Google Scholar] [CrossRef]
- Karlović, I.; Marković, T.; Vujnović, T.; Larva, O. Development of a Hydrogeological Conceptual Model of the Varaždin Alluvial Aquifer. Hydrology 2021, 8, 19. [Google Scholar] [CrossRef]
- Kulaš, A.; Marković, T.; Žutinić, P.; Kajan, K.; Karlović, I.; Orlić, S.; Keskin, E.; Filipović, V.; Gligora Udovič, M. Succession of Microbial Community in a Small Water Body within the Alluvial Aquifer of a Large River. Water 2021, 13, 115. [Google Scholar] [CrossRef]
- Karlović, I.; Marković, T.; Šparica Miko, M.; Maldini, K. Geochemical Characteristics of Alluvial Aquifer in the Varaždin Region. Water 2021, 13, 1508. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef]
- Otero, N.; Torrentò, C.; Soler, A.; Menciò, A.; Mas-Pla, J. Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: The case of Plana de Vic (Osona, Spain). Agric. Ecosyst. Environ. 2009, 133, 103–113. [Google Scholar] [CrossRef]
- Pastén-Zapata, E.; Ledesma-Ruiz, R.; Harter, T.; Rampata, A.I.; Mahlknecht, J. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci. Total Environ. 2014, 470, 855–864. [Google Scholar] [CrossRef]
- Mariotti, A.; Landreau, A.; Simon, B. 15N isotope biogeochemistry and natural denitrification processes in groundwater: Application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta. 1988, 52, 1869–1878. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, A.; Zhou, J.; Liu, C.; Cai, H.; Liu, Y.; Xu, W. Evaluating the Sources and Fate of Nitrate in the Alluvial Aquifers in the Shijiazhuang Rural and Suburban Area, China: Hydrochemical and Multi-Isotopic Approaches. Water 2015, 7, 1515–1537. [Google Scholar] [CrossRef]
- Chen, D.J.Z.; MacQuarrie, K.T.B. Correlation between δ15N and δ18O in NO3 during denitrification in groundwater. J. Environ. Eng. Sci. 2005, 4, 221–226. [Google Scholar] [CrossRef]
- Liu, C.Q.; Li, S.L.; Lang, Y.C.; Xiao, H.Y. Using δ15N- and δ18O- values to identify nitrate sources in karst ground water, Guiyang, Southwest China. Environ. Sci. Technol. 2006, 40, 6928–6933. [Google Scholar] [CrossRef]
- Fukada, T.; Kevin, M.; Dennis, P.F.; Grischek, T. A dual isotope approach to identify denitrification in ground water at a riverbank infiltration site. Water Res. 2003, 37, 3070–3078. [Google Scholar] [CrossRef] [PubMed]
- Aravena, R.; Robertson, W.D. Use of multiple isotope tracers to evaluate denitrification in groundwater: Study of nitrate from a large—Flux septic system plume. Ground Water 1998, 36, 975–982. [Google Scholar] [CrossRef]
- Harrison, J.A.; Maranger, R.J.; Alexander, R.B.; Giblin, A.E.; Jacinthe, P.A.; Mayorga, E.; Seitzinger, S.P.; Sobota, D.J.; Wollheim, W.M. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 2009, 93, 143–157. [Google Scholar] [CrossRef]
- Kulaš, A. Phytoplankton Community Structure: Report of the TRANITAL Project; Croatian Geological Survey: Zagreb, Croatia, 2021. (In Croatian) [Google Scholar]
- Karlović, I.; Marković, T.; Kanduč, T.; Vreča, P. Assessment of Seasonal Changes on the Carbon Cycle in the Critical Zone of a Surface Water (SW)–Groundwater (GW) System. Water 2022, 14, 3372. [Google Scholar] [CrossRef]
- Robertson, L.A.; Van Niel, E.W.J.; Torremans, R.A.M.; Kuenen, G.J. Simultaneous nitrification and denitrification in aerobic chemostat culture of Thiosphaera pantotropha. Appl. Environ. Microbiol. 1988, 54, 2812–2818. [Google Scholar] [CrossRef]
- Labroue, L.; Delmas, R.; Serca, D.; Dagnac, J. Nitrate contamination of groundwater as a factor of atmospheric pollution. C. R. Acad. Sci. 3 1991, 313, 119–124. [Google Scholar]
- Sprenger, C.; Lorenzen, G.; Hülshoff, I.; Grützmacher, G.; Ronghang, M.; Pekdeger, A. Vulnerability of bank filtration systems to climate change. Sci. Total Environ. 2011, 409, 655–663. [Google Scholar] [CrossRef]
- Brugger, A.; Reitner, B.; Kolar, I.; Quéric, N.; Herndl, G.J. Seasonal and spatial distribution of dissolved and particulate organic carbon and bacteria in the bank of an impounding reservoir on the Enns River, Austria. Freshwat. Biol. 2001, 46, 997–1016. [Google Scholar] [CrossRef]
- Glibert, P.M.; Wilkerson, F.P.; Dugdale, R.C.; Parker, A.E.; Alexander, J.A.; Blaser, S.; Murasko, S. Phytoplankton communities from San Francisco Bay Delta respond differently to oxidized and reduced nitrogen substrates-even under conditions that would otherwise suggest nitrogen sufficiency. Front. Mar. Sci. 2014, 1, 17. [Google Scholar] [CrossRef]
- Dortch, Q. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. 1990, 61, 183–201. [Google Scholar] [CrossRef]
- Cross, I.D.; McGowan, S.; Needham, T.; Pointer, C.M. The effects of hydrological extremes on former gravel pit lake ecology: Management implications. Fundam. Appl. Limnol. 2014, 185, 71–90. [Google Scholar] [CrossRef]
- Al-Amin, A.; Parvin, F.; Chakraborty, J.; Kim, Y. Cyanobacteria mediated heavy metal removal: A review on mechanism, biosynthesis, and removal capability. Environ. Technol. Rev. 2021, 10, 44–57. [Google Scholar] [CrossRef]
- Rai, P.K.; Tripathi, B.D. Removal of heavy metals by the nuisance cyanobacteria Microcystis in continuous cultures: An eco-sustainable technology. Environ. Sci. 2007, 4, 53–59. [Google Scholar] [CrossRef]
Parameter | Active Gravel Pit | P-1530 | Inactive Gravel Pit | PDS-5 |
---|---|---|---|---|
EC (µS/cm) | 447 (572) 649 | 689 (693) 697 | 217 (334) 501 | 661 (685) 694 |
T (°C) | 5.5 (16.8) 24.1 | 9.2 (14.5) 22.9 | 1.2 (15.5) 32.1 | 11.8 (12.6) 13.9 |
pH | 7.52 (7.80) 8.14 | 7.33 (7.45) 7.53 | 7.04 (8.64) 10.67 | 6.91 (7.28) 7.45 |
DO (mg/L) | 9.9 (12.8) 18.5 | 8.5 (9.7) 11.6 | 7.1 (12.9) 19.5 | 3.5 (8.2) 9.9 |
NO3− (mg/L) | 33.7 (54.2) 64.5 | 48.1 (88.7) 109 | 0.6 (15.8) 50.1 | 42.1 (76.5) 210 |
NO2− (mg/L) | 0.06 (0.16) 0.22 | <0.01 (<0.01) 0.01 | <0.01 (0.09) 0.38 | <0.01 (0.01) 0.02 |
NH4+ (mg/L) | 0.02 (0.15) 0.34 | <0.01 (0.02) 0.05 | <0.01 (0.27) 0.70 | <0.01 (0.04) 0.10 |
Parameter | Inactive Gravel Pit | Active Gravel Pit | Groundwater | ||
---|---|---|---|---|---|
Unfiltered | Filtered | Unfiltered | Filtered | Filtered | |
Al (µg/L) | 11.1 (144) 516 | 4.72 (9.98) 29.5 | 28.8 (84.3) 197 | 1.77 (1.96) 2.15 | 0.40 (3.62) 18.8 |
As (µg/L) | 0.62 (1.32) 2.28 | 0.60 (0.83) 1.71 | 0.61 (0.81) 1.07 | 0.84 (0.88) 0.92 | 0.11 (0.17) 0.39 |
Cd (µg/L) | <0.01 (0.02) 0.08 | <0.01 (0.02) 0.03 | 0.01 (0.02) 0.02 | <0.01 (<0.01) <0.01 | <0.01 (0.03) 0.12 |
Cr (µg/L) | 0.09 (0.38) 0.68 | 0.04 (0.12) 0.28 | 0.18 (0.30) 0.40 | 0.23 (0.24) 0.24 | 0.37 (0.52) 0.70 |
Cu(µg/L) | 1.07 (2.77) 12.8 | 0.52 (1.63) 2.26 | 0.94 (1.50) 2.05 | 0.39 (0.58) 0.87 | 0.11 (0.75) 6.65 |
Fe (µg/L) | 67.9 (366) 836 | 11.9 (23.2) 33.8 | 36.1 (112) 258 | 2.50 (3.05) 3.59 | 1.50 (9.60) 34.0 |
Mn (µg/L) | 1.94 (20.7) 47.3 | 0.10 (0.47) 1.06 | 11.3 (25.8) 62.4 | 1.06 (1.81) 2.56 | 0.29 (0.64) 1.58 |
Pb (µg/L) | 0.25 (1.19) 2.68 | 0.06 (0.57) 3.14 | 0.23 (0.36) 0.57 | 0.06 (0.13) 0.20 | 0.06 (0.17) 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlović, I.; Marković, T.; Smith, A.C.; Maldini, K. Impact of Gravel Pits on Water Quality in Alluvial Aquifers. Hydrology 2023, 10, 99. https://doi.org/10.3390/hydrology10040099
Karlović I, Marković T, Smith AC, Maldini K. Impact of Gravel Pits on Water Quality in Alluvial Aquifers. Hydrology. 2023; 10(4):99. https://doi.org/10.3390/hydrology10040099
Chicago/Turabian StyleKarlović, Igor, Tamara Marković, Andrew C. Smith, and Krešimir Maldini. 2023. "Impact of Gravel Pits on Water Quality in Alluvial Aquifers" Hydrology 10, no. 4: 99. https://doi.org/10.3390/hydrology10040099
APA StyleKarlović, I., Marković, T., Smith, A. C., & Maldini, K. (2023). Impact of Gravel Pits on Water Quality in Alluvial Aquifers. Hydrology, 10(4), 99. https://doi.org/10.3390/hydrology10040099