CoastFLOOD: A High-Resolution Model for the Simulation of Coastal Inundation Due to Storm Surges
Abstract
:1. Introduction
1.1. Research Theme
1.2. Literature Review
1.3. Research Incentive
2. Methodology
2.1. Conceptual Approach of Storm Surge Inundation
2.2. Numerical Model for Hydraulic Flow in Coastal Flooding
2.3. Time Discretization—Numerical Schemes
2.4. Computational Domain and Raster Grid
2.5. Model Parameterization
2.6. Input Data: Boundary and Initial Conditions, Simulation Time Limit
2.6.1. Coupling with a Storm Surge Model
- barotropic circulation hydrodynamics by momentum conservation and continuity SWEs;
- inverse barometer effect, i.e., the response of sea level to the atmospheric pressure gradient of large barometric systems;
- shear stresses of wind on the sea surface;
- Earth gravity and geostrophic effects (Coriolis force);
- ocean bottom friction;
- turbulence of horizontal eddies based on the eddy viscosity concept and the Smagorinsky model approach;
- interaction with coastal wave-induced currents by incorporating radiation stress terms in nearshore surf zones;
2.6.2. Boundary Conditions from Sea Level Observations
3. Case Studies and Data for Model Validation
3.1. Case Study Areas
- Manolada-Lechaina coastal zone (Area 1), east of Patra city, north-western Peloponnese, southeastern Ionian Sea, recorded during October 2021 storm Ballos [122] followed by incidents during December of the same year (December 2021).
- Igoumenitsa port (Area 4), north-western Epirus (north Ionian Sea), recorded on 12 November 2017 [126].
3.2. Observational Data for Model Evaluation
3.3. Enhanced Bathtub Module for Model Validation
4. Results
4.1. Model Verification against Satellite Data during Severe Storm Surge Conditions
4.2. Model Validation against the Bathtub-HC Approach
4.3. Flooding Scenarios of Realistic and Extreme Sea Level Conditions
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lionello, P.; Barriopedro, D.; Ferrarin, C.; Nicholls, R.J.; Orlić, M.; Raicich, F.; Reale, M.; Umgiesser, G.; Vousdoukas, M.; Zanchettin, D. Extreme floods of Venice: Characteristics, dynamics, past and future evolution. Nat. Hazards Earth Syst. Sci. 2021, 21, 2705–2731. [Google Scholar] [CrossRef]
- Krestenitis, Y.; Androulidakis, Y.; Kombiadou, K.; Makris, C.; Baltikas, V. Operational forecast system of storm tides in the aegean sea (Greece). In Proceedings of the 2015 ASLO Aquatic Sciences Meeting, Granada, Spain, 22–27 February 2015. [Google Scholar]
- Mishra, A.K.; Jangir, B.; Strobach, E. Does Increasing Climate Model Horizontal Resolution Be Beneficial for the Mediterranean Region?: Multimodel Evaluation Framework for High-Resolution Model Intercomparison Project. J. Geophys. Res. Atm. 2023, 128, 2022JD037812. [Google Scholar] [CrossRef]
- Reale, M.; Cabos Narvaez, W.D.; Cavicchia, L.; Conte, D.; Coppola, E.; Flaounas, E.; Giorgi, F.; Gualdi, S.; Hochman, A.; Li, L.; et al. Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Clim. Dyn. 2022, 58, 2501–2524. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hoozemans, F.M.J. The Mediterranean: Vulnerability to coastal implications of climate change. Ocean Coast. Manag. 1996, 31, 105–132. [Google Scholar] [CrossRef]
- Snoussi, M.; Ouchani, T.; Niazi, S. Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone. Estuar. Coast. Shelf Sci. 2008, 77, 206–213. [Google Scholar] [CrossRef]
- Shaltout, M.; Tonbol, K.; Omstedt, A. Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia 2015, 57, 293–307. [Google Scholar] [CrossRef]
- Refaat, M.M.; Eldeberky, Y. Assessment of coastal inundation due to sea-level rise along the Mediterranean Coast of Egypt. Mar. Geod. 2016, 39, 290–304. [Google Scholar] [CrossRef]
- Krestenitis, Y.N.; Androulidakis, Y.S.; Kontos, Y.N.; Georgakopoulos, G. Coastal inundation in the north-eastern Mediterranean coastal zone due to storm surge events. J. Coast. Conserv. 2011, 15, 353–368. [Google Scholar] [CrossRef]
- Alvarado-Aguilar, D.; Jiménez, J.A.; Nicholls, R.J. Flood hazard and damage assessment in the Ebro Delta (NW Mediterranean) to relative sea level rise. Nat. Hazards 2012, 62, 1301–1321. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain–southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Rizzo, A.; Vandelli, V.; Gauci, C.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action. Water 2022, 14, 416. [Google Scholar] [CrossRef]
- Hauer, M.E.; Hardy, D.; Kulp, S.A.; Mueller, V.; Wrathall, D.J.; Clark, P.U. Assessing population exposure to coastal flooding due to sea level rise. Nat. Commun. 2021, 12, 6900. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 1–12. [Google Scholar]
- Makris, C.; Androulidakis, Y.; Mallios, Z.; Baltikas, V.; Krestenitis, Y. Towards an Operational Forecast Model for Coastal Inundation due to Storm Surges: Application during Ianos Medicane. In Proceedings of the 9th International Conference on Civil Protection & New Technologies, SafeThessaloniki, Thessaloniki, Greece, 29 September–1 October 2022; pp. 69–72. [Google Scholar]
- Androulidakis, Y.; Makris, C.; Mallios, Z.; Pytharoulis, I.; Baltikas, V.; Krestenitis, Y. Storm surges and coastal inundation during extreme events in the Mediterranean Sea: The IANOS Medicane. Nat. Hazards 2023, 1–40. [Google Scholar] [CrossRef]
- Skoulikaris, C.; Makris, C.; Katirtzidou, M.; Baltikas, V.; Krestenitis, Y. Assessing the vulnerability of a deltaic environment due to climate change impact on surface and coastal waters: The case of Nestos River (Greece). Environ. Model. Assess. 2021, 26, 459–486. [Google Scholar] [CrossRef]
- Makris, C.; Androulidakis, Y.; Baltikas, V.; Kontos, Y.; Karambas, T.; Krestenitis, Y. HiReSS: Storm Surge Simulation Model for the Operational Forecasting of Sea Level Elevation and Currents in Marine Areas with Harbor Works. In Proceedings of the International Scientific Conference DMPCO, Athens, Greece, 8–11 May 2019; Volume 1, pp. 11–15. [Google Scholar]
- Krestenitis, Y.; Pytharoulis, I.; Karacostas, T.; Androulidakis, Y.; Makris, C.; Kombiadou, K.; Tegoulias, I.; Baltikas, V.; Kotsopoulos, S.; Kartsios, S. Severe weather events and sea level variability over the Mediterranean Sea: The WaveForUs operational platform. In Perspectives on Atmospheric Sciences; Springer Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P.T., Eds.; Springer: Cham, Switzerland, 2017; pp. 63–68. [Google Scholar] [CrossRef]
- Makris, C.; Androulidakis, Y.; Karambas, T.; Papadimitriou, A.; Metallinos, A.; Kontos, Y.; Baltikas, V.; Chondros, M.; Krestenitis, Y.; Tsoukala, V.; et al. Integrated modelling of sea-state forecasts for safe navigation and operational management in ports: Application in the Mediterranean Sea. Appl. Math. Model. 2021, 89, 1206–1234. [Google Scholar] [CrossRef]
- Androulidakis, Y.; Kombiadou, K.; Makris, C.; Baltikas, V.; Krestenitis, Y. Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dyn. Atmos. Ocean. 2015, 71, 56–82. [Google Scholar] [CrossRef]
- Makris, C.; Galiatsatou, P.; Tolika, K.; Anagnostopoulou, C.; Kombiadou, K.; Prinos, P.; Velikou, K.; Kapelonis, Z.; Tragou, E.; Androulidakis, Y.; et al. Climate change effects on the marine characteristics of the Aegean and the Ionian seas. Ocean. Dyn. 2016, 66, 1603–1635. [Google Scholar] [CrossRef]
- Makris, C.; Tolika, K.; Baltikas, V.; Velikou, K.; Krestenitis, Y. The impact of climate change on the storm surges of the Mediterranean Sea: Coastal sea level responses to deep depression atmospheric systems. Ocean. Model. 2023, 181, 102149. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Bates, P.D.; Dawson, R.J.; Hall, J.W.; Horritt, M.S.; Nicholls, R.J.; Wicks, J.; Hassan, M. Simplified two-dimensional numerical modelling of coastal flooding and example applications. Coast. Eng. 2005, 52, 793–810. [Google Scholar] [CrossRef]
- Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- Hellenic Cadastre. Available online: https://www.ktimatologio.gr/en (accessed on 19 March 2023).
- Neal, J.; Schumann, G.; Fewtrell, T.; Budimir, M.; Bates, P.; Mason, D. Evaluating a new LISFLOOD-FP formulation with data from the summer 2007 floods in Tewkesbury, UK. J. Flood Risk Manag. 2011, 4, 88–95. [Google Scholar] [CrossRef]
- Smith, R.A.; Bates, P.D.; Hayes, C. Evaluation of a coastal flood inundation model using hard and soft data. Environ. Model. Softw. 2012, 30, 35–46. [Google Scholar] [CrossRef]
- Lewis, M.; Bates, P.; Horsburgh, K.; Neal, J.; Schumann, G. A storm surge inundation model of the northern Bay of Bengal using publicly available data. Q. J. R. Meteorol. Soc. 2013, 139, 358–369. [Google Scholar] [CrossRef]
- Wadey, M.P.; Nicholls, R.J.; Haigh, I. Understanding a coastal flood event: The 10th March 2008 storm surge event in the Solent, UK. Nat. Hazards 2013, 67, 829–854. [Google Scholar] [CrossRef]
- Coulthard, T.J.; Neal, J.C.; Bates, P.D.; Ramirez, J.; de Almeida, G.A.M.; Hancock, G.R. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surf. Process. Landf. 2013, 38, 1897–1906. [Google Scholar] [CrossRef]
- Ramirez, J.; Lichter, M.; Coulthard, T.; Skinner, C. Hyper-resolution mapping of regional storm surge and tide flooding: Comparison of static and dynamic models. Nat. Hazards 2016, 82, 571–590. [Google Scholar] [CrossRef]
- Pariartha, G.; Goonetilleke, A.; Egodawatta, P.; Mirfenderesk, H. The prediction of flood damage in coastal urban areas. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 419, p. 012136. [Google Scholar]
- Jibhakate, S.M.; Timbadiya, P.V.; Patel, P.L. Flood hazard assessment for the coastal urban floodplain using 1D/2D coupled hydrodynamic model. Nat. Hazards 2023, 116, 1557–1590. [Google Scholar] [CrossRef]
- Pasquier, U.; He, Y.; Hooton, S.; Goulden, M.; Hiscock, K.M. An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change. Nat. Hazards 2019, 98, 915–937. [Google Scholar] [CrossRef]
- Pandey, S.; Rao, A.D.; Haldar, R. Modeling of Coastal Inundation in Response to a Tropical Cyclone Using a Coupled Hydraulic HEC-RAS and ADCIRC Model. J. Geophys. Res. Ocean. 2021, 126, e2020JC016810. [Google Scholar] [CrossRef]
- Doong, D.-J.; Lo, W.; Vojinovic, Z.; Lee, W.-L.; Lee, S.-P. Development of a New Generation of Flood Inundation Maps—A Case Study of the Coastal City of Tainan, Taiwan. Water 2016, 8, 521. [Google Scholar] [CrossRef]
- Riama, N.F.; Sari, R.F.; Sulistya, W.; Rahmayanti, H.; Pratama, K.R.; Pratama, B.E.; Suryo, A.W. Coastal inundation modeling and mapping for North Jakarta coast during a supermoon period. Terr. Atmos. Ocean Sci. 2021, 32, 375–390. [Google Scholar] [CrossRef]
- Dasallas, L.; Lee, S. Topographical Analysis of the 2013 Typhoon Haiyan Storm Surge Flooding by Combining the JMA Storm Surge Model and the FLO-2D Flood Inundation Model. Water 2019, 11, 144. [Google Scholar] [CrossRef]
- Nash, S.; Hartnett, M. Nested circulation modelling of inter-tidal zones: Details of a nesting approach incorporating moving boundaries. Ocean. Dyn. 2010, 60, 1479–1495. [Google Scholar] [CrossRef]
- Olbert, A.I.; Comer, J.; Nash, S.; Hartnett, M. High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows. A Cork City example. Coast. Eng. 2017, 121, 278–296. [Google Scholar] [CrossRef]
- Yin, J.; Lin, N.; Yu, D. Coupled modeling of storm surge and coastal inundation: A case study in New York City during Hurricane Sandy. Water Resour. Res. 2016, 52, 8685–8699. [Google Scholar] [CrossRef]
- Hu, R.; Fang, F.; Salinas, P.; Pain, C.C.; Domingo, N.S.; Mark, O. Numerical simulation of floods from multiple sources using an adaptive anisotropic unstructured mesh method. Adv. Water Resour. 2019, 123, 173–188. [Google Scholar] [CrossRef]
- Brown, J.D.; Spencer, T.; Moeller, I. Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: A case study of Canvey Island, United Kingdom. Water Resour. Res. 2007, 43, W06402. [Google Scholar] [CrossRef]
- Wang, H.V.; Loftis, J.D.; Liu, Z.; Forrest, D.; Zhang, J. The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy. J. Mar. Sci. Eng. 2014, 2, 226–246. [Google Scholar] [CrossRef]
- Jelesnianski, C.; Chen, J.; Shaffer, W.; Gilad, A. SLOSH-A hurricane storm surge forecast model. In IEEE OCEANS 1984; IEEE: Toulouse, France, 1984; pp. 314–317. [Google Scholar]
- Zhang, K.; Xiao, C.; Shen, J. Comparison of the CEST and SLOSH models for storm surge flooding. J. Coast. Res. 2008, 24, 489–499. [Google Scholar] [CrossRef]
- Blumberg, A.F.; Georgas, N.; Yin, L.; Herrington, T.O.; Orton, P.M. Street-scale modeling of storm surge inundation along the New Jersey Hudson River waterfront. J. Atmos. Ocean. Tech. 2015, 32, 1486–1497. [Google Scholar] [CrossRef]
- Georgas, N.; Blumberg, A.; Herrington, T.; Wakeman, T.; Saleh, F.; Runnels, D.; Jordi, A.; Ying, K.; Yin, L.; Ramaswamy, V.; et al. The stevens flood advisory system: Operational H3E flood forecasts for the greater New York/New Jersey Metropolitan Region. Flood Risk Manag. Resp. 2016, 194, 648–662. [Google Scholar]
- Xie, L.; Pietrafesa, L.J.; Peng, M. Incorporation of a Mass-Conserving Inundation Scheme into a Three Dimensional Storm Surge Model. J. Coast. Res. 2004, 204, 1209–1223. [Google Scholar] [CrossRef]
- Peng, M.; Xie, L.; Pietrafesa, L.J. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields. Ocean. Model. 2006, 14, 81–101. [Google Scholar] [CrossRef]
- Dottori, F.; Todini, E. Developments of a flood inundation model based on the cellular automata approach: Testing different methods to improve model performance. Phys. Chem. Earth 2011, 36, 266–280. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, H. An Integrated Approach for the Simulation Modeling and Risk Assessment of Coastal Flooding. Water 2020, 12, 2076. [Google Scholar] [CrossRef]
- Hubbert, G.D.; McInnes, K.L. A storm surge inundation model for coastal planning and impact studies. J. Coast. Res. 1999, 168–185. [Google Scholar]
- McMillan, H.K.; Brasington, J. Reduced complexity strategies for modelling urban floodplain inundation. Geomorphology 2007, 90, 226–243. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
- Fewtrell, T.; Bates, P.; de Wit, A.; Asselman, N.; Sayers, P. Comparison of varying complexity numerical models for the prediction of flood inundation in Greenwich, UK. In Proceedings of the FLOODrisk 2008, Oxford, UK, 30 September–2 October 2008. [Google Scholar]
- Neal, J.; Villanueva, I.; Wright, N.; Willis, T.; Fewtrell, T.; Bates, P. How much physical complexity is needed to model flood inundation? Hydrol. Process. 2012, 26, 2264–2282. [Google Scholar] [CrossRef]
- Tsakiris, G.; Bellos, V. A numerical model for two-dimensional flood routing in complex terrains. Water Resour. Manag. 2014, 28, 1277–1291. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. Comparing various methods of building representation for 2D flood modelling in built-up areas. Water Resour. Manag. 2015, 29, 379–397. [Google Scholar] [CrossRef]
- Zellou, B.; Rahali, H. Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions. Nat. Hazards 2017, 86, 1–29. [Google Scholar] [CrossRef]
- Afshari, S.; Tavakoly, A.A.; Rajib, M.A.; Zheng, X.; Follum, M.L.; Omranian, E.; Fekete, B.M. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. J. Hydrol. 2018, 556, 539–556. [Google Scholar] [CrossRef]
- Hoch, J.M.; Eilander, D.; Ikeuchi, H.; Baart, F.; Winsemius, H.C. Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic–hydrodynamic model coupling framework. Nat. Hazards Earth Syst. Sci. 2019, 19, 1723–1735. [Google Scholar] [CrossRef]
- Favaretto, C.; Martinelli, L.; Ruol, P. A model of coastal flooding using linearized bottom friction and its application to a case study in Caorle, Venice, Italy. Int. J. Offshore Polar Eng. 2019, 29, 182–190. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Tegos, A.; Oikonomou, A.; Pagana, V.; Koukouvinos, A.; Mamassis, N.; Koutsoyiannis, D.; Efstratiadis, A. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. J. Hydrol. 2016, 534, 478–492. [Google Scholar] [CrossRef]
- Beven, K. Validation and equifinality. In Computer Simulation Validation: Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives; Beisbart, C., Saam, N.J., Eds.; Springer: Cham, Switzerland, 2019; pp. 791–809. [Google Scholar]
- Her, Y.; Chaubey, I. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty. Hydrol. Process. 2015, 29, 4220–4237. [Google Scholar] [CrossRef]
- Bates, P.; Trigg, M.; Neal, J.; Dabrowa, A. LISFLOOD-FP. User Manual; School of Geographical Sciences, University of Bristol: Bristol, UK, 2013. [Google Scholar]
- Hunter, N.M.; Horritt, M.S.; Bates, P.D.; Wilson, M.D.; Werner, M.G. An adaptive time step solution for raster-based storage cell modelling of floodplain inundation. Adv. Water Res. 2005, 28, 975–991. [Google Scholar] [CrossRef]
- Neal, J.; Dunne, T.; Sampson, C.; Smith, A.; Bates, P. Optimisation of the two-dimensional hydraulic model LISFOOD-FP for CPU architecture. Environ. Model. Softw. 2018, 107, 148–157. [Google Scholar] [CrossRef]
- Hall, J.W.; Tarantola, S.; Bates, P.D.; Horritt, M.S. Distributed sensitivity analysis of flood inundation model calibration. J. Hydraul. Eng. 2005, 131, 117–126. [Google Scholar] [CrossRef]
- Werner, M.G.F.; Hunter, N.M.; Bates, P.D. Identifiability of distributed floodplain roughness values in flood extent estimation. J. Hydrol. 2005, 314, 139–157. [Google Scholar] [CrossRef]
- Kulp, S.; Strauss, B.H. Global DEM errors underpredict coastal vulnerability to sea level rise and flooding. Front. Earth Sci. 2016, 4, 36. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Didier, D.; Baudry, J.; Bernatchez, P.; Dumont, D.; Sadegh, M.; Bismuth, E.; Bandet, M.; Dugas, S.; Sévigny, C. Multihazard simulation for coastal flood mapping: Bathtub versus numerical modelling in an open estuary, Eastern Canada. J. Flood Risk Manag. 2019, 12, e12505. [Google Scholar] [CrossRef]
- Gallien, T.W.; Schubert, J.E.; Sanders, B.F. Predicting tidal flooding of urbanized embayments: A modeling framework and data requirements. Coast. Eng. 2011, 58, 567–577. [Google Scholar] [CrossRef]
- Seenath, A.; Wilson, M.; Miller, K. Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management? Ocean Coast. Manag. 2016, 120, 99–109. [Google Scholar] [CrossRef]
- Williams, L.L.; Lück-Vogel, M. Comparative assessment of the GIS based bathtub model and an enhanced bathtub model for coastal inundation. J. Coast. Conserv. 2020, 24, 1–15. [Google Scholar] [CrossRef]
- Yunus, A.P.; Avtar, R.; Kraines, S.; Yamamuro, M.; Lindberg, F.; Grimmond, C.S.B. Uncertainties in tidally adjusted estimates of sea level rise flooding (bathtub model) for the Greater London. Remote Sens. 2016, 8, 366. [Google Scholar] [CrossRef]
- Horritt, M.S.; Bates, P.D. Predicting floodplain inundation: Raster-based modelling versus the finite-element approach. Hydrol. Process. 2001, 15, 825–842. [Google Scholar] [CrossRef]
- Horsburgh, K.; Horritt, M. The Bristol Channel floods of 1607–reconstruction and analysis. Weather 2006, 61, 272–277. [Google Scholar] [CrossRef]
- Lewis, M.; Horsburgh, K.; Bates, P.; Smith, R. Quantifying the uncertainty in future coastal flood risk estimates for the UK. J. Coast. Res. 2011, 27, 870–881. [Google Scholar] [CrossRef]
- Wadey, M.P.; Nicholls, R.J.; Hutton, C. Coastal Flooding in the Solent: An Integrated Analysis of Defences and Inundation. Water 2012, 4, 430–459. [Google Scholar] [CrossRef]
- Quinn, N.; Lewis, M.; Wadey, M.P.; Haigh, I.D. Assessing the temporal variability in extreme storm-tide time series for coastal flood risk assessment. J. Geophys. Res. Ocean. 2014, 119, 4983–4998. [Google Scholar] [CrossRef]
- Skinner, C.J.; Coulthard, T.J.; Parsons, D.R.; Ramirez, J.A.; Mullen, L.; Manson, S. Simulating tidal and storm surge hydraulics with a simple 2D inertia based model, in the Humber Estuary, UK. Estuar. Coast. Shelf Sci. 2015, 155, 126–136. [Google Scholar] [CrossRef]
- Sadeghi, F.; Rubinato, M.; Goerke, M.; Hart, J. Assessing the Performance of LISFLOOD-FP and SWMM for a Small Watershed with Scarce Data Availability. Water 2022, 14, 748. [Google Scholar] [CrossRef]
- Bradbrook, K.F.; Lane, S.N.; Waller, S.G.; Bates, P.D. Two-dimensional diffusion wave modelling of flood inundation using a simplified channel representation. Int. J. River Basin Manag. 2004, 2, 211–223. [Google Scholar] [CrossRef]
- Hunter, N.M.; Horritt, M.S.; Bates, P.D.; Werner, M.G.F. Theoretical and practical limits to the use of storage cell codes for flood inundation modelling. In Flood Risk Assessment; Reeve, D., Ed.; Institute of Mathematics and its Applications: Southend-on-Sea, UK, 2004. [Google Scholar]
- Wang, J.; Lei, X.; Cai, S.; Zhao, J. Location identification of river bathymetric error based on the forward and reverse flow routing. Water Supply 2022, 22, 5095–5110. [Google Scholar] [CrossRef]
- Murdukhayeva, A.; August, P.; Bradley, M.; LaBash, C.; Shaw, N. Assessment of inundation risk from sea level rise and storm surge in northeastern coastal national parks. J. Coast. Res. 2013, 29, 1–16. [Google Scholar] [CrossRef]
- Seenath, A. Modelling coastal flood vulnerability: Does spatially-distributed friction improve the prediction of flood extent? Appl. Geogr. 2015, 64, 97–107. [Google Scholar] [CrossRef]
- Arcement, G.J.; Schneider, V.R. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; United States Government Printing Office: Denver, CO, USA, 1989. [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Martinelli, L.; Zanuttigh, B.; Corbau, C. Assessment of coastal flooding hazard along the Emilia Romagna littoral, IT. Coast. Eng. 2010, 57, 1042–1058. [Google Scholar] [CrossRef]
- Prime, T.; Brown, J.M. and Plater, A.J. Flood inundation uncertainty: The case of a 0.5% annual probability flood event. Environ. Sci. Policy 2016, 59, 1–9. [Google Scholar] [CrossRef]
- Shen, Y.; Morsy, M.M.; Huxley, C.; Tahvildari, N.; Goodall, J.L. Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall. J. Hydrol. 2019, 579, 124159. [Google Scholar] [CrossRef]
- Shustikova, I.; Domeneghetti, A.; Neal, J.C.; Bates, P.; Castellarin, A. Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrol. Sci. J. 2019, 64, 1769–1782. [Google Scholar] [CrossRef]
- Morsy, M.M.; Lerma, N.R.; Shen, Y.; Goodall, J.L.; Huxley, C.; Sadler, J.M.; Voce, D.; O’Neil, G.L.; Maghami, I.; Zahura, F.T. Impact of geospatial data enhancements for regional-scale 2D hydrodynamic flood modeling: Case study for the Coastal Plain of Virginia. J. Hydrol. Eng. 2021, 26, 05021002. [Google Scholar] [CrossRef]
- Beven, K. Searching for the Holy Grail of Scientific Hydrology: Qt=H(S,R,ΔT)A as closure. Hydrol. Earth Syst. Sci. 2006, 10, 609–618. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 19 March 2023).
- Galiatsatou, P.; Makris, C.; Krestenitis, Y.; Prinos, P. Nonstationary Extreme Value Analysis of Nearshore Sea-State Parameters under the Effects of Climate Change: Application to the Greek Coastal Zone and Port Structures. J. Mar. Sci. Eng. 2021, 9, 817. [Google Scholar] [CrossRef]
- Galiatsatou, P.; Makris, C.; Prinos, P.; Kokkinos, D. Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate. Nat. Hazards 2019, 98, 1051–1089. [Google Scholar] [CrossRef]
- De Vries, H.; Breton, M.; de Mulder, T.; Krestenitis, Y.; Proctor, R.; Ruddick, K.; Salomon, J.C.; Voorrips, A. A comparison of 2D storm surge models applied to three shallow European seas. Environ. Softw. 1995, 10, 23–42. [Google Scholar] [CrossRef]
- Schwiderski, E.W. On charting global ocean tides. Rev. Geophys. 1980, 18, 243–268. [Google Scholar] [CrossRef]
- Sakamoto, K.; Tsujino, H.; Nakano, H.; Hirabara, M.; Yamanaka, G. A practical scheme to introduce explicit tidal forcing into an OGCM. Ocean Sci. 2013, 9, 1089–1108. [Google Scholar] [CrossRef]
- WaveForUs Operational Forecast System. Available online: http://wave4us.web.auth.gr/ (accessed on 19 March 2023).
- METEO.GR Weather Forecast Node. Available online: https://www.meteo.gr/meteomaps/sea_level.cfm (accessed on 19 March 2023).
- National Observatory of Athens. Available online: https://www.iersd.noa.gr/en/ (accessed on 19 March 2023).
- Accu-Waves Operational Forecast System. Available online: https://accuwaves.eu/forecast/ (accessed on 19 March 2023).
- Makris, C.; Baltikas, V.; Kontos, Y.; Androulidakis, Y.; Nagkoulis, N.; Kazakis, I.; Karambas, T.; Papadimitriou, A.; Metallinos, A.; Chondros, M.; et al. Integrated modeling of sea-state forecasts for safe navigation near and inside ports: The Accu-Waves platform. In Proceedings of the 31st ISOPE Conference, Rhodes, Greece, 20–25 June 2021; pp. 2307–2314. [Google Scholar]
- CMS. Available online: https://data.marine.copernicus.eu/product/SEALEVEL_EUR_PHY_L4_MY_008_068/ (accessed on 19 March 2023).
- UNESCO Intergovernmental Oceanographic Commission, IOC. Available online: https://www.ioc-sealevelmonitoring.org/ (accessed on 19 March 2023).
- Landerer, F.W.; Volkov, D.L. The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophys. Res. Lett. 2013, 40, 553–557. [Google Scholar] [CrossRef]
- Bonaduce, A.; Pinardi, N.; Oddo, P.; Spada, G.; Larnicol, G. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Clim. Dyn. 2016, 47, 2851–2866. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. Development mechanisms for Mediterranean tropical-like cyclones (medicanes). Q. J. R. Meteorol. Soc. 2019, 145, 1444–1460. [Google Scholar] [CrossRef]
- Dafis, S.; Claud, C.; Kotroni, V.; Lagouvardos, K.; Rysman, J.F. Insights into the convective evolution of Mediterranean tropical-like cyclones. Q. J. R. Meteorol. Soc. 2020, 146, 4147–4169. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Karagiannidis, A.; Dafis, S.; Kalimeris, A.; Kotroni, V. Ianos—A hurricane in the Mediterranean. Bull. Am. Meteorol. Soc. 2021, 103, E1621–E1636. [Google Scholar] [CrossRef]
- Toomey, T.; Amores, A.; Marcos, M.; Orfila, A.; Romero, R. Coastal hazards of tropical-like cyclones over the Mediterranean Sea. J. Geophys. Res. Oceans 2022, 127, e2021JC017964. [Google Scholar] [CrossRef]
- Europost.gr. Available online: https://europost.gr/kakokairia-mpallos-plimmyres-provlimata-se-oli-ti-chora-prognosi-kairoy/ (accessed on 19 March 2023).
- Sinidisi.gr. Available online: https://sinidisi.gr/plimmires-vasiliki-lefkadas-den-anoixan-sxoleia/ (accessed on 19 March 2023).
- MyLefkada YouTube. Available online: https://www.youtube.com/watch?v=bUeFHvBdaOY&ab_channel=MyLefkada (accessed on 19 March 2023).
- NewsIt. Available online: https://www.newsit.gr/topikes-eidhseis/kakokairia-preveza-metraei-pliges-apo-plimmyres-kai-anemostrovilous/3419041/ (accessed on 19 March 2023).
- NIKOS FATSIOS YouTube Channel about Igoumenitsa Floods. Available online: https://www.youtube.com/watch?v=lMyi5C05u1w&ab_channel=NIKOSFATSIOS (accessed on 19 March 2023).
- Ethnos.gr. Available online: https://www.ethnos.gr/greece/article/124385/ (accessed on 19 March 2023).
- Libre.gr. Available online: https://www.libre.gr/2020/09/18/ianos-voyliaxe-to-rio-deite-to-fainom/ (accessed on 19 March 2023).
- CDSE. Available online: https://dataspace.copernicus.eu/browser/ (accessed on 19 March 2023).
- Sentinel Hub. Available online: https://apps.sentinel-hub.com/eo-browser (accessed on 19 March 2023).
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Underwood, L.W.; Kalcic, M.T.; Fletcher, R.M. Resolution Enhancement of MODIS-derived Water Indices for Studying Persistent Flooding. In AGU Fall Meeting Abstracts; American Geophysical Union (AGU): San Francisco, CA, USA, 2012; p. OS11D–1689. [Google Scholar]
- Kalcic, M.T.; Underwood, L.W.; Fletcher, R.M. A New Approach to Monitoring Coastal Marshes for Persistent Flooding. In AGU Fall Meeting Abstracts; American Geophysical Union (AGU): San Francisco, CA, USA, 2012; p. OS41C–1753. [Google Scholar]
- Schmid, K.; Hadley, B.; Waters, K. Mapping and portraying inundation uncertainty of bathtub-type models. J. Coast. Res. 2014, 30, 548–561. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Voukouvalas, E.; Mentaschi, L.; Dottori, F.; Giardino, A.; Bouziotas, D.; Bianchi, A.; Salamon, P.; Feyen, L. Developments in large-scale coastal flood hazard mapping. Nat. Hazards Earth Syst. Sci. 2016, 16, 1841–1853. [Google Scholar] [CrossRef]
- Karamouz, M.; Fereshtehpour, M. Modeling DEM errors in coastal flood inundation and damages: A spatial nonstationary approach. Wat Resour. Res. 2019, 55, 6606–6624. [Google Scholar] [CrossRef]
- West, H.; Horswell, M.; Quinn, N. Exploring the sensitivity of coastal inundation modelling to DEM vertical error. Int. J. Geogr. Inf. Sci. 2018, 32, 1172–1193. [Google Scholar] [CrossRef]
- Flowerdew, J.; Horsburgh, K.; Wilson, C.; Mylne, K. Development and evaluation of an ensemble forecasting system for coastal storm surges. Q. J. R. Meteorol. Soc. 2010, 136, 1444–1456. [Google Scholar] [CrossRef]
- Doong, D.J.; Chuang, L.H.; Wu, L.C.; Fan, Y.M.; Kao, C.C.; Wang, J.H. Development of an operational coastal flooding early warning system. Nat. Hazards Earth Syst. Sci. 2012, 12, 379–390. [Google Scholar] [CrossRef]
- Harley, M.D.; Valentini, A.; Armaroli, C.; Perini, L.; Calabrese, L.; Ciavola, P. Can an early-warning system help minimize the impacts of coastal storms? A case study of the 2012 Halloween storm, northern Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 209–222. [Google Scholar] [CrossRef]
- Murty, P.L.N.; Padmanabham, J.; Kumar, T.S.; Kumar, N.K.; Chandra, V.R.; Shenoi, S.S.C.; Mohapatra, M. Real-time storm surge and inundation forecast for very severe cyclonic storm ‘Hudhud’. Ocean Eng. 2017, 131, 25–35. [Google Scholar] [CrossRef]
- Nikolić, Ž.; Srzić, V.; Lovrinović, I.; Perković, T.; Šolić, P.; Kekez, T. Coastal Flooding Assessment Induced by Barometric Pressure, Wind-Generated Waves and Tidal-Induced Oscillations: Kaštela Bay Real-Time Early Warning System Mobile Application. Appl. Sci. 2022, 12, 12776. [Google Scholar] [CrossRef]
- Yu, D.; Lane, S.N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment. Part 2: Development of a sub-grid-scale treatment. Hydrol. Process. 2006, 20, 1567–1583. [Google Scholar] [CrossRef]
- Werner, M.G.F. A comparison of flood extent modelling approaches through constraining uncertainties on gauge data. Hydrol. Earth Syst. Sci. 2004, 8, 1141–1152. [Google Scholar] [CrossRef]
Model | References | Concept and Applications |
---|---|---|
LISFLOOD-FP CAESAR-LISFLOOD | [29,30,31,32,33,34] | Reduced complexity inertial formulation of the SWEs leading to 2-D horizontally decomposed Manning-type volumetric flow equations mainly applied in coastal areas with rivers, optionally coupled to a Landscape Evolution Model (LEM) simulating the geomorphic development of flood basins. |
MIKE FLOOD 2D | [35,36] | The well-known proprietary flood model suite combining different modules, MIKE URBAN, MIKE 11, and MIKE 21, for urban sewerage systems overflows, river/channel flood discharges, and coastal drivers applied in coastal cities. |
HEC-RAS 2D | [37,38] | The classic non-commercial flood modelling system combining 1-D/2-D for river flood flow and fluvial plain inundation with the coastal floodplain extent due to sea level changes simulated with the ADCIRC hydrodynamic model. |
SOBEK-2DFLOW (Overland Flow) | [39,40] | Based on complete Saint Venant equations; a fully hydrodynamic 2-D simulation engine for steep floodwater fronts, wetting and drying processes, subcritical and supercritical flow, including rainfall runoff; applications combine pluvial floods with storm surge influence in urban areas. |
FLO-2D | [41] | Reduced complexity 2-D Manning-type volumetric flow storage cell simulator coupled to JMA storm surge model. |
Multi-Scale Nested MSN-Flood model | [42,43] | High-resolution multi-scale modelling of coastal flooding due to tides, storm surges, and river flows specifically for urban coastal inundation. |
FloodMap-Inertia | [44] | An urban flood inundation model neglecting the convective acceleration term in the momentum equation, coupled to ADCIRC for sea level on its coastal boundary, assuming that the floodplain is filled with water by an embankment-type of river-littoral boundaries essentially acting as a continuous, broad-crested weir, through which flow exchange occurs between channel and floodplain. |
Floodity | [45] | An anisotropic dynamic mesh optimization (DMO) technique for 2-D double control-volume and a finite element adaptive mesh model for urban coincidental flood modelling. |
Delft Flooding System Delft-FLS) | [46] | Overland flow simulation by the 2-D Saint-Venant equations on a rectangular, staggered grid with a finite difference method employing a shock-capturing numerical scheme suitable for rapidly modeling varying flows over rough terrains, including flow through defense breaches and around buildings (minimum depth of 0.01 m distinguishes “dry” from “flooded” cells). |
Unstructured Tidal, Residual, Intertidal, Mudflat version 2 (UnTRIM2) | [47] | A semi-implicit, Eulerian-Lagrangian finite difference/finite volume model, governed by 3-D SWEs with Boussinesq approximation solved for free surface elevation, water velocities (and salinity) in a Cartesian coordinate system on an unstructured orthogonal grid including both 3-D barotropic and baroclinic processes (tide, wind, and gravitationally-driven circulation). |
Sea, Lake, and Overland Surges from Hurricanes (SLOSH) | [48,49] | A polar-grid storm surge model with gradually varying cell sizes covering a basin extending from the possibly flooded inland area up to deep water, with a dedicated computation scheme on a B-grid to simulate wetting and drying processes. Water surface elevation differences act as hydraulic load for floodwater propagation to the surrounding grid cells. |
Stevens Estuarine And Coastal Ocean Model (sECOM) | [50,51] | A successor model to the Princeton Ocean Model (POM) family of models; a 3-D, free surface, hydrostatic, primitive equation estuarine and coastal ocean circulation model with a wetting-drying flood model approach along free moving boundaries. |
Xie-Pietrafesa-Peng (XPP) model | [52,53] | A HM-C mass-conserving inundation wetting/drying scheme coupled to POM-3D. |
Cellular Automata (CA) modules | [54,55] | A simplified, grid-based, Saint-Venant equations, 2-D shallow hydrodynamic module discretized in time, space, and state, with local spatial interaction and temporal causality, also optionally running on a triangular finite element mesh. |
A/A | n | Description of Areas’ Characteristics |
---|---|---|
1 | 0.001 | open water |
2 | 0.0115 | concrete surfaces |
3 | 0.010 | rural driveways (dirt road and granules) |
4 | 0.012 | urban land uses (asphalt mixtures and other urban surface features: artificial stones, paving blocks, lightweight aggregate concrete), concrete rooftop, playground, yard, barren land |
5 | 0.013 | main asphalt roads (national, regional highway networks, autobahns, etc.) |
6 | 0.015 | brick terrain, unidentified high and low development urban environment, inland open waters (reservoirs, lakes, ponds, lagoons, estuaries) |
7 | 0.017 | city streets (asphalt, concrete, etc.) |
8 | 0.018 | unidentified/unclassified urban terrain |
9 | 0.020 | clean to gravelly earth pathways (pebbles with a small portion of cobbles), muddy/sandy open waters and sandy terrains, sea bottom (saturated wet sand or silt-sand) and channel beds |
10 | 0.030 | bare unidentified/unclassified soil |
11 | 0.022 | bare land, stone paved road and ceramic sett, or paving sett pathways |
12 | 0.029 | stony cobble lands, pastures, and farmlands |
13 | 0.025 | manmade structures, gravel beds and pathways (pebbles with nominal diameter: dn50 = 4–64 mm, cobbles: dn50 = 64–256 mm) |
14 | 0.0375 | cultivated fields and pasture, grassland (including prairies, steppes, plains) |
15 | 0.0425 | isolated sand/gravel(mixed) pits, estuary channels, and uneven urban areas |
16 | 0.029 | emerged sloping sandy beaches, sand dunes |
17 | 0.030 | managed grasslands |
18 | 0.0115 | unclassified/unidentified rural areas |
19 | 0.033 | grass surfaces |
20 | 0.035 | short stiff grass areas |
21 | 0.0575 | weeds with or without structure |
22 | 0.0555 | heavy brush floodplains |
23 | 0.040 | arable land plains, heavy/coarse gravel (boulders: dn50 >= 256 mm) areas, unclassified grassland, and shrubs (including savannah, meadow, veldt, pampa, tundra) |
24 | 0.050 | unclassified trees, open development areas (containing parks, streets of rural character) |
25 | 0.055 | herbaceous wetlands |
26 | 0.067 | emerged barriers |
27 | 0.140 | hardwood woodland and cultivated woodland |
28 | 0.086 | unclassified wetlands (including watersheds, salt/fresh marshes, bottomland hardwood, swamps, mangrove swamps, seagrass flats, forest swamps) |
29 | 0.100 | forest land and unidentified forest trees evergreen forest, pasture, hay, crop, vegetation |
30 | 0.120 | deciduous forest, natural grassland, herbaceous lands |
31 | 0.150 | mixed forest, shrubs, scrub, emergent herbaceous wetlands |
32 | 0.240 | cultivated vegetation |
33 | 0.300 | unidentified densely built urbanized zones (uncharacterized structures) |
34 | 0.320 | very dense tall (long trunk) trees forest (jungles, etc.) |
35 | 0.368 | very dense and/or stiff grasslands (reedy bamboo, etc.) |
36 | 0.400 | very dense small forest trees and thick shrubs |
A/A | CLC Code | Description of CLC Label Areas’ Characteristics |
---|---|---|
4–8 | 111, 112 | Continuous urban fabric, Discontinuous urban fabric |
10–8 | 121 | Industrial or commercial units |
5–7 | 122 | Road and rail networks and associated land |
4–2 | 123 | Port areas |
4–5 | 124 | Airports |
3 | 131 | Mineral extraction sites |
6–4 | 132, 133, 141 | Dump sites, Construction sites, Green urban areas |
4–7 | 142 | Sport and leisure facilities |
23–14 | 211, 212 | Non-irrigated arable land, Permanently irrigated land |
14 | 213 | Rice fields |
22 | 221 | Vineyards |
30 | 222 | Fruit trees and berry plantations |
29–30 | 223 | Olive groves |
12–14 | 231 | Pastures |
27 | 241 | Annual crops associated with permanent crops |
27–32 | 242 | Complex cultivation patterns |
21–29 | 243 | Land principally occupied by agriculture, with areas of natural vegetation |
29–32 | 244 | Agroforestry areas |
29–34 | 311 | Broad-leaved forest |
30–34 | 312 | Coniferous forest |
31–34 | 313 | Mixed forest |
19–30 | 321 | Natural grasslands |
22–30 | 322 | Moors and heathland |
32 | 323 | Sclerophyllous vegetation |
31 | 324 | Transitional woodland-shrub |
16–15 | 331 | Beaches, dunes, sands |
12–9 | 332 | Bare rocks |
29–32 | 333 | Sparsely vegetated areas |
10 | 334, 335 | Burnt areas, Glaciers and perpetual snow |
28 | 411, 412, 421, 422 | Inland marshes, Peat bogs, Salt marshes, Salines |
1–16 | 423 | Intertidal flats |
6 | 511, 512, 521, 522 | Water courses, Water bodies, Coastal lagoons, Estuaries |
1 | 523 | Sea water |
SLA (m) | 0.2–0.3 | 0.5 | 1 | 1.5 | 2 |
---|---|---|---|---|---|
Study Area | tMIR (h) | ||||
Laganas | 4.25 | 3.61 | 4.45 | 6.40 | 8.87 |
Kyparissia | 0.82 | 0.72 | 1.12 | 1.98 | 2.21 |
Kalamata | 3.96 | 5.13 | 25.76 | 28.59 | 32.79 |
Patra | 14.46 | 15.93 | 50.12 | 77.39 | 81.97 |
Vassiliki | 0.18 | 0.45 | 1.11 | 4.21 | 8.90 |
Livadi | 0.22 | 0.49 | 5.33 | 19.87 | 38.43 |
Igoumenitsa | 0.20 | 0.32 | 0.93 | 3.76 | 5.28 |
Argostoli | 0.67 | 1.57 | 6.97 | 9.23 | 10.18 |
* The two highlighted rows correspond to exceptional cases of counterintuitively higher values of tMIR for lower values of SLA = 0.2–0.3 m. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makris, C.; Mallios, Z.; Androulidakis, Y.; Krestenitis, Y. CoastFLOOD: A High-Resolution Model for the Simulation of Coastal Inundation Due to Storm Surges. Hydrology 2023, 10, 103. https://doi.org/10.3390/hydrology10050103
Makris C, Mallios Z, Androulidakis Y, Krestenitis Y. CoastFLOOD: A High-Resolution Model for the Simulation of Coastal Inundation Due to Storm Surges. Hydrology. 2023; 10(5):103. https://doi.org/10.3390/hydrology10050103
Chicago/Turabian StyleMakris, Christos, Zisis Mallios, Yannis Androulidakis, and Yannis Krestenitis. 2023. "CoastFLOOD: A High-Resolution Model for the Simulation of Coastal Inundation Due to Storm Surges" Hydrology 10, no. 5: 103. https://doi.org/10.3390/hydrology10050103
APA StyleMakris, C., Mallios, Z., Androulidakis, Y., & Krestenitis, Y. (2023). CoastFLOOD: A High-Resolution Model for the Simulation of Coastal Inundation Due to Storm Surges. Hydrology, 10(5), 103. https://doi.org/10.3390/hydrology10050103