Statistical Approach for Computing Base Flow Rates in Gaged Rivers and Hydropower Effect Analysis
Abstract
:1. Introduction
2. Case Study
3. Materials and Methods
3.1. Available Information
3.2. Base Flow Determination
3.2.1. Base Flow Obtained from the Recorded Maximum Floods
3.2.2. Based on the Multiannual Monthly Mean Flow Series
3.2.3. Statistical Approximation
Mean Squared Error (MSE)
Chi-Square
Confidence Intervals
3.2.4. Flowchart
4. Results
4.1. Estimated Base Flow Qb Obtained from the Record of Maximum Flood Hydrographs
4.2. Trend Analysis of the Multivariate Monthly Mean Flow Series Was Performed–Qmm,Tr
4.3. Statistical Approximation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A.O. | Condition before the operation of Urrá 1 Hydroelectric Power Plant |
Expected value. | |
D.O. | Condition after the operation of Urrá 1 Hydroelectric Power Plant |
Upper confidence limit. | |
k | Shape parameter |
Mean squared error (MSE) (%) | |
Sample | |
Observed value | |
Probability of occurrence | |
Exceedance period. | |
The recorded flow (m3/s) | |
Direct runoff flow (m3/s) | |
Qb | Base Flow (m3/s) |
Qb,Tr | Base flow for different return periods (m3/s) |
Qmm | Multiannual monthly mean flow (m3/s) |
Qmm,Tr | Multiannual monthly mean flow for different return periods (m3/s) |
Standard deviation | |
Smoothed value | |
Time | |
Lower confidence limit. | |
Observed value | |
Normal distribution of | |
Location parameter | |
Scale parameter. | |
Unknown parameter | |
Smoothing constant | |
Gamma function | |
Chi-square, | |
Confidence level. |
References
- Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process. 1995, 9, 251–290. [Google Scholar]
- Avesani, D.; Galletti, A.; Piccolroaz, S.; Bellin, A.; Majone, B. A dual-layer MPI continuous large-scale hydrological model including Human Systems. Environ. Model. Softw. 2021, 139, 105003. [Google Scholar]
- McEnroe, B.M. Diseño hidrológico de puentes y alcantarillas: Una revisión histórica. In Great Rivers History: Actas y Artículos Invitados para el Congreso EWRI y el Simposio de Historia; American Society of Civil Engineers: Reston, VA, USA, 2009; pp. 83–90. [Google Scholar]
- Monsalve Sáenz, G. Hidrología en la Ingeniería; Alfaomega Grupo Editor S.A. de C.V.: Mexico DF, Mexico, 1999. [Google Scholar]
- Ajmal, M.; Moon, G.W.; Ahn, J.H.; Kim, T.W. Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds. J. Hydro-Environ. Res. 2015, 9, 592–603. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Hidrología Aplicada; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Samper, J.; Huguet, L.; Ares, J.; García-Vera, M.A. Modelos Interactivos de Balance Hidrológico. Estudios de la Zona No Saturada del Suelo; ICIA: Tenerife, Spain, 1999; pp. 187–193. [Google Scholar]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar]
- Nascimento, N.D.E.O.; Yang, X.; Makhlouf, Z.; Michel, C. GR3J: A daily watershed model with three free parameters. Hydrol. Sci. J. 1999, 44, 263–277. [Google Scholar]
- Yue, S.; Ouarda, T.B.; Bobée, B.; Legendre, P.; Bruneau, P. Approach for describing statistical properties of flood hydrograph. J. Hydrol. Eng. 2002, 7, 147–153. [Google Scholar]
- Aksoy, H.; Kurt, I.; Eris, E. Filtered smoothed minima baseflow separation method. J. Hydrol. 2009, 372, 94–101. [Google Scholar]
- Stewart, M.K. Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 2587–2603. [Google Scholar]
- Tularam, G.A.; Ilahee, M. Exponential smoothing method of base flow separation and its impact on continuous loss estimates. Am. J. Environ. Sci. 2008, 4, 136. [Google Scholar]
- URRA. URRA: Información Institucional–URRA. 2023. Available online: https://urra.com.co/ (accessed on 10 April 2023).
- Pomca Diagnóstico Ambiental de la Cuenca Hidrográfica del Río Sinú; CVS—Corporación Autónoma Regional de los valles del Sinú y del San Jorge: Montería, Colombia, 2004.
- CVS. CVS: CVS—Corporación Autónoma Regional de los valles del Sinú y del San Jorge. 2023. Available online: https://cvs.gov.co/ (accessed on 17 May 2023).
- Corantioquia. Corantioquia: Corporación Autónoma Regional del Centro de Antioquia. 2023. Available online: https://www.corantioquia.gov.co/ (accessed on 17 May 2023).
- Carsucre. Carsucre: Carsucre—Corporacion Autonoma Regional de Sucre_Corporacion Autonoma Regional de Sucre. 2023. Available online: https://carsucre.gov.co/# (accessed on 17 May 2023).
- DANCRA. DANCRA: Estructura Interna de la DAMCRA-Ministerio de Ambiente y Desarrollo Sostenible. 2023. Available online: https://www.minambiente.gov.co/asuntos-marinos-costeros-y-recursos-acuaticos/estructura-interna-de-la-damcra/ (accessed on 18 May 2023).
- INVEMAR. INVEMAR: INVEMAR_Colombia 50% Mar. 2023. Available online: http://www.invemar.org.co/ (accessed on 8 March 2023).
- IDEAM. IDEAM: IDEAM–IDEAM. 2023. Available online: http://www.ideam.gov.co/ (accessed on 8 March 2023).
- Valbuena Gaviria, D.L. Geomorfología y condiciones hidráulicas del sistema fluvial del río Sinú. Integración multiescalar. 1945–1999–2016. Geografía 2017, 3, 70. [Google Scholar]
- Ríos-Alejandro, J.G. Temperaturas extremas en la ciudad de Monterrey NL México. Rev. Chapingo Ser. Cienc. For. Y Del Ambiente 2011, 17, 225–230. [Google Scholar]
- Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001; Volume 208, p. 208. [Google Scholar]
- Gumbel, E.J. Statistics of Extremes; Courier Corporation: North Chelmsford, MA, USA, 2004. [Google Scholar]
- Coronado-Hernández, Ó.E.; Merlano-Sabalza, E.; Díaz-Vergara, Z.; Coronado-Hernández, J.R. Selection of hydrological probability distributions for extreme rainfall events in the regions of Colombia. Water 2020, 12, 1397. [Google Scholar]
- Grego, J.M.; Yates, P.A. Point and standard error estimation for quantiles of mixed flood distributions. J. Hydrol. 2010, 391, 289–301. [Google Scholar]
- Xuewu, J.; Jing, D.; Shen, H.W.; Salas, J.D. Plotting positions for Pearson type-III distribution. J. Hydrol. 1984, 74, 1–29. [Google Scholar]
- Aldrich, J. RA Fisher and the making of maximum likelihood 1912–1922. Stat. Sci. 1997, 12, 162–176. [Google Scholar]
- Hosking, J.R. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B (Methodol.) 1990, 52, 105–124. [Google Scholar]
- Task Committee on Hydrology Handbook of Management Group D of ASCE. Hydrology Handbook; American Society of Civil Engineers: New York, NY, USA, 1996. [Google Scholar]
- Coles, S.; Pericchi, L. Anticipating catastrophes through extreme value modelling. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2003, 52, 405–416. [Google Scholar]
- Mendivelso, F.; Rodríguez, M. Prueba Chi-Cuadrado de independencia aplicada a tablas 2xN. Rev. Médica Sanitas 2018, 21, 92–95. [Google Scholar]
- Montgomery, D. Diseño y Análisis de Experimentos: Editorial Limusa, SA, 2nd ed.; Limusa Wiley: Mexico DF, Mexico, 2004. [Google Scholar]
Year | Qb (m3/s) | Scenario | Year | Qb (m3/s) | Scenario |
---|---|---|---|---|---|
1970 | 602.5 | A.O | 1996 | 774.3 | A.O |
1971 | 465.8 | A.O | 1997 | 376.6 | A.O |
1972 | 590.0 | A.O | 1998 | 680.2 | A.O |
1973 | 511.8 | A.O | 1999 | 596.0 | A.O |
1974 | 503.0 | A.O | 2000 | 452.8 | D.O |
1975 | 646.6 | A.O | 2001 | 575.0 | D.O |
1976 | A.O | 2002 | 606.5 | D.O | |
1977 | 398.0 | A.O | 2003 | 592.5 | D.O |
1978 | 548.0 | A.O | 2004 | 314.5 | D.O |
1979 | 588.4 | A.O | 2005 | 205.0 | D.O |
1980 | 458.0 | A.O | 2006 | 284.0 | D.O |
1981 | 719.2 | A.O | 2007 | 620.5 | D.O |
1982 | 494.0 | A.O | 2008 | 561.4 | D.O |
1983 | 438.0 | A.O | 2009 | 594.3 | D.O |
1984 | 516.4 | A.O | 2010 | 554.1 | D.O |
1985 | 377.0 | A.O | 2011 | 300.5 | D.O |
1986 | 604.4 | A.O | 2012 | 626.3 | D.O |
1987 | 463.9 | A.O | 2013 | 602.8 | D.O |
1988 | 774.8 | A.O | 2014 | 478.0 | D.O |
1989 | 474.4 | A.O | 2015 | 212.8 | D.O |
1990 | 570.6 | A.O | 2016 | 390.5 | D.O |
1991 | 507.5 | A.O | 2017 | 765.0 | D.O |
1992 | 507.5 | A.O | 2018 | 726.8 | D.O |
1993 | 493.6 | A.O | 2019 | 555.2 | D.O |
1994 | 333.1 | A.O | 2020 | 654.7 | D.O |
1995 | 479.8 | A.O | 2021 | 594.8 | D.O |
Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1970 | 662.4 | 679.7 | 549.2 | 578.4 | ||||||||
1971 | 425.5 | 211.3 | 366.7 | 258.1 | 508.7 | 491.4 | 636.0 | 522.0 | 590.5 | 627.1 | 540.9 | 226.0 |
1972 | 244.5 | 132.0 | 105.9 | 562.7 | 582.3 | 432.1 | 457.7 | 525.1 | 606.1 | 490.5 | 278.3 | |
1973 | 126.1 | 63.1 | 48.1 | 230.9 | 382.3 | 530.1 | 514.5 | 528.4 | 562.6 | 688.3 | 479.3 | |
1974 | 332.1 | 134.4 | 120.4 | 191.9 | 489.8 | 528.5 | 387.7 | 442.5 | 489.8 | 665.9 | 704.8 | 272.0 |
1975 | 111.0 | 70.0 | 72.0 | 69.2 | 232.7 | 383.5 | 710.6 | 700.5 | 658.0 | 726.9 | 698.5 | 514.2 |
1976 | 162.4 | 133.9 | 91.5 | 136.9 | 338.7 | 570.1 | 599.2 | 382.3 | 388.2 | 559.5 | 445.6 | 167.6 |
1977 | 108.3 | 69.0 | 50.6 | 103.5 | 356.0 | 577.9 | 562.3 | 568.2 | 442.5 | 581.7 | 500.2 | 329.7 |
1978 | 121.5 | 119.0 | 135.2 | 378.9 | 548.7 | 722.5 | 499.6 | 586.4 | 482.2 | 612.3 | 567.2 | 348.6 |
1979 | 110.8 | 72.1 | 74.4 | 137.2 | 366.7 | 527.7 | 508.6 | 398.4 | 476.8 | 488.1 | 338.5 | 263.1 |
1980 | 144.3 | 137.0 | 58.7 | 66.9 | 232.6 | 362.6 | 463.4 | 472.1 | 557.1 | 392.6 | 360.3 | |
1981 | 203.9 | 223.6 | 379.0 | 313.5 | 637.9 | 690.3 | 576.6 | 509.8 | 725.8 | 529.0 | 434.3 | 320.8 |
1982 | 174.1 | 208.0 | 101.4 | 228.5 | 495.5 | 444.0 | 560.9 | 479.6 | 435.9 | 521.3 | 390.1 | 172.1 |
1983 | 106.0 | 67.6 | 81.7 | 184.2 | 360.1 | 509.8 | 475.0 | 452.4 | 476.3 | 502.1 | 459.4 | 328.6 |
1984 | 187.4 | 133.7 | 121.1 | 98.8 | 228.6 | 333.4 | 507.6 | 541.5 | 545.5 | 546.5 | 451.7 | 261.9 |
1985 | 116.5 | 83.5 | 73.4 | 100.0 | 160.0 | 351.3 | 384.0 | 491.0 | 534.0 | 522.2 | 385.0 | 266.5 |
1986 | 130.3 | 147.1 | 84.4 | 420.9 | 437.3 | 439.3 | 626.4 | 267.2 | 377.5 | 479.8 | 373.0 | 219.1 |
1987 | 132.6 | 146.5 | 73.5 | 306.1 | 528.5 | 378.2 | 547.9 | 604.9 | 497.7 | 577.8 | 368.2 | 358.1 |
1988 | 125.4 | 81.9 | 57.2 | 205.6 | 373.0 | 448.7 | 618.4 | 838.8 | 548.0 | 632.6 | 485.5 | 320.4 |
1989 | 247.9 | 112.1 | 155.0 | 150.2 | 411.0 | 522.2 | 494.8 | 471.8 | 452.6 | 459.1 | 393.6 | 284.5 |
1990 | 174.8 | 112.0 | 99.4 | 153.7 | 477.7 | 419.9 | 426.3 | 460.5 | 352.3 | 466.5 | 581.5 | 321.5 |
1991 | 151.2 | 116.3 | 142.1 | 122.6 | 336.9 | 542.6 | 487.7 | 469.9 | 434.5 | 509.2 | 392.1 | 293.9 |
1992 | 116.6 | 67.1 | 77.6 | 80.9 | 304.2 | 338.2 | 396.1 | 532.5 | 500.3 | 471.4 | 390.3 | 312.5 |
1993 | 167.4 | 130.5 | 127.2 | 265.5 | 558.7 | 458.3 | 536.4 | 388.6 | 394.7 | 434.9 | 481.4 | 415.9 |
1994 | 196.5 | 104.1 | 94.6 | 232.3 | 558.9 | 405.6 | 446.7 | 545.2 | 539.5 | 553.8 | 577.1 | 288.2 |
1995 | 138.6 | 161.1 | 320.8 | 480.0 | 588.1 | 489.1 | 544.1 | 547.3 | 426.0 | 289.9 | ||
1996 | 281.5 | 211.8 | 345.7 | 318.2 | 599.5 | 655.3 | 797.0 | 635.1 | 577.9 | 515.9 | 375.5 | 145.4 |
1997 | 139.0 | 191.6 | 114.2 | 142.3 | 310.9 | 474.5 | 460.3 | 363.1 | 318.0 | 416.0 | 370.1 | 185.7 |
1998 | 86.6 | 115.0 | 72.1 | 190.7 | 376.5 | 566.0 | 694.5 | 537.6 | 455.6 | 516.9 | 536.2 | 356.5 |
1999 | 255.4 | 294.7 | 341.1 | 569.6 | 630.5 | 559.1 | 619.1 | 710.8 | 661.7 | 700.2 | 462.5 | 220.6 |
Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 154.9 | 183.1 | 290.0 | 293.3 | 428.3 | 507.2 | 488.9 | 600.0 | 554.0 | 535.2 | 427.0 | 368.7 |
2001 | 271.1 | 222.4 | 276.3 | 269.5 | 318.3 | 465.3 | 462.4 | 405.4 | 342.9 | 430.5 | 569.5 | 417.4 |
2002 | 253.7 | 127.8 | 145.6 | 261.3 | 482.2 | 642.2 | 629.8 | 379.8 | 479.7 | 441.0 | 380.9 | 257.2 |
2003 | 222.7 | 104.8 | 212.2 | 177.7 | 510.5 | 499.6 | 561.1 | 581.2 | 526.0 | 537.0 | 482.1 | 458.8 |
2004 | 197.2 | 153.3 | 241.8 | 219.2 | 324.0 | 552.8 | 506.5 | 376.9 | 450.9 | 357.9 | 410.1 | 279.8 |
2005 | 204.5 | 285.1 | 244.1 | 301.9 | 422.4 | 563.2 | 605.5 | 539.7 | 486.3 | 538.2 | 472.7 | 268.5 |
2006 | 191.3 | 258.9 | 286.4 | 356.2 | 501.3 | 557.4 | 554.4 | 521.4 | 507.7 | 354.2 | 289.8 | 317.4 |
2007 | 163.4 | 194.2 | 213.2 | 321.6 | 527.8 | 653.4 | 795.4 | 740.7 | 694.8 | 570.1 | 394.6 | 215.5 |
2008 | 175.5 | 130.4 | 253.7 | 200.4 | 553.5 | 560.2 | 649.1 | 405.2 | 426.6 | 755.0 | 386.2 | 299.1 |
2009 | 177.5 | 314.1 | 303.7 | 408.7 | 470.3 | 584.5 | 587.1 | 416.2 | 323.5 | 162.9 | 243.0 | 207.3 |
2010 | 129.7 | 140.0 | 242.8 | 292.7 | 361.1 | 610.5 | 414.6 | 614.3 | 641.7 | 492.4 | 446.8 | 633.1 |
2011 | 341.2 | 182.7 | 283.3 | 493.5 | 491.7 | 481.6 | 478.4 | 509.8 | 503.4 | 467.4 | 312.5 | 414.5 |
2012 | 245.3 | 186.4 | 203.2 | 354.6 | 592.0 | 421.8 | 371.9 | 449.7 | 418.9 | 386.5 | 460.8 | 229.1 |
2013 | 169.9 | 164.1 | 303.4 | 442.5 | 379.1 | 334.7 | 290.0 | 474.6 | 570.5 | 398.7 | 293.6 | 227.8 |
2014 | 177.4 | 153.8 | 169.2 | 172.5 | 205.1 | 287.7 | 282.7 | 247.7 | 457.2 | 360.5 | 336.1 | 257.6 |
2015 | 137.0 | 170.6 | 163.1 | 160.0 | 228.7 | 395.8 | 288.1 | 245.9 | 226.3 | 297.5 | 362.6 | 216.8 |
2016 | 160.5 | 151.6 | 156.0 | 154.6 | 283.8 | 551.4 | 577.8 | 427.6 | 297.1 | 276.2 | 433.0 | 410.5 |
2017 | 187.0 | 140.5 | 151.2 | 171.4 | 390.9 | 671.6 | 753.5 | 636.4 | 576.1 | 654.0 | 238.1 | 350.8 |
2018 | 191.1 | 169.8 | 137.3 | 142.3 | 418.4 | 561.5 | 647.3 | 509.5 | 352.2 | 318.4 | 437.6 | 208.0 |
2019 | 135.4 | 140.0 | 129.2 | 151.5 | 288.4 | 642.7 | 432.7 | 466.4 | 333.0 | 397.0 | 389.8 | 160.6 |
2020 | 162.2 | 142.0 | 135.7 | 130.4 | 147.0 | 192.8 | 401.0 | 661.3 | 421.5 | 468.1 | 254.6 | 275.4 |
2021 | 160.2 | 133.8 | 146.1 | 236.0 | 284.2 | 445.9 | 573.1 | 618.4 | 565.9 | 439.8 | 289.6 |
Indicador | Sample | GEV | Gumbel | Pearson Type III | ||
---|---|---|---|---|---|---|
M.L. | L-M. | M.L. | L-M. | M.L. | ||
Asymmetry C. | 0.515 | 0.49 | 0.69 | 1.14 | 1.14 | 0.62 |
Kurtosis C | 2.62 | 3.25 | 3.73 | 2.40 | 2.40 | 3.58 |
X2 | 2.14 | 4.07 | 4.07 | 4.07 | 1.66 |
Indicador | Sample | GEV | Gumbel | Pearson Type III | ||
---|---|---|---|---|---|---|
M.L. | L-M. | M.L. | L-M. | M.L. | ||
Asymmetry C. | −0.651 | 0.757 | −1.09 | 1.14 | 1.14 | 0.96 |
Kurtosis C | 2.10 | 3.51 | 4.46 | 2.40 | 2.40 | 4.39 |
X2 | 7.45 | 11.82 | 9.09 | 20.55 | 110.00 |
Tr | Qb,Tr (m3/s) | |
---|---|---|
Period: 1970–1999 | Period: 2000–2021 | |
100 | 825 | 764 |
50 | 786 | 753 |
20 | 729 | 728 |
10 | 679 | 698 |
5 | 622 | 652 |
Indicator | Sample | GEV | Gumbel | Perarson Type III | ||
---|---|---|---|---|---|---|
M.L. | L-M. | M.L. | L-M. | M.L | ||
January | ||||||
Asymmetry C. | 1.71 | 100 | 9.05 | 1.14 | 1.14 | 1.62 |
Kurtosis C | 5.11 | - | - | 2.40 | 2.40 | 6.93 |
X2 | 2.62 | 3.59 | 5.03 | 9.86 | 4.55 | |
February | ||||||
Asymmetry C. | 1.04 | 2.36 | 1.60 | 1.14 | 1.14 | - |
Kurtosis C | 3.34 | 16.50 | 8.27 | 2.40 | 2.40 | - |
X2 | 13.50 | 13.50 | 9.50 | 9.50 | - | |
March | ||||||
Asymmetry C. | 1.84 | - | - | 1.14 | 1.14 | - |
Kurtosis C | 4.24 | - | - | 2.40 | 2.40 | - |
X2 | 1 | 1 | 8.50 | 17.00 | - | |
April | ||||||
Asymmetry C. | 1.33 | 3.70 | 2.38 | 1.14 | 1.14 | - |
Kurtosis C | 4.14 | 56.50 | 16.90 | 2.40 | 2.40 | - |
X2 | 1.78 | 1.26 | 2.30 | 2.81 | - | |
May | ||||||
Asymmetry C. | −0.01 | −0.40 | 0.0005 | 1.14 | 1.14 | −0.058 |
Kurtosis C | 1.80 | 2.90 | 2.72 | 2.40 | 2.40 | 3.01 |
X2 | 3.59 | 6.97 | 6.48 | 6.48 | 174 | |
June | ||||||
Asymmetry C. | 0.44 | 0.55 | 0.49 | 1.14 | 1.14 | 1.14 |
Kurtosis C | 2.37 | 3.37 | 3.24 | 2.40 | 2.40 | 4.95 |
X2 | 2.62 | 1.66 | 2.14 | 2.14 | 2.14 | |
July | ||||||
Asymmetry C. | 0.59 | 0.67 | 0.64 | 1.14 | 1.14 | 0.93 |
Kurtosis C | 2.79 | 3.68 | 3.58 | 2.40 | 2.40 | 4,31 |
X2 | 3.59 | 1.66 | 1.66 | 1.66 | 1.66 | |
August | ||||||
Asymmetry C. | 0.73 | 0.49 | 0.78 | 1.14 | 1.14 | 0.41 |
Kurtosis C | 3.93 | 3.25 | 3.99 | 2.40 | 2.40 | 3.26 |
X2 | 4.55 | 5.03 | 5.03 | 7.45 | 4.55 | |
September | ||||||
Asymmetry C. | 0.32 | 0.26 | 0.32 | 1.14 | 1.14 | 0.39 |
Kurtosis C | 2.60 | 2.89 | 2.97 | 2.40 | 2.40 | 3.23 |
X2 | 3.59 | 3.59 | 5.52 | 2.62 | 3.59 | |
October | ||||||
Asymmetry C. | 0.49 | 0.52 | 0.68 | 1.14 | 1.14 | 0.70 |
Kurtosis C | 2.45 | 3.31 | 3.70 | 2.40 | 2.40 | 3.74 |
X2 | 1.27 | 1.27 | 1.27 | 3.13 | 1.27 | |
November | ||||||
Asymmetry C. | 0.90 | 3.36 | 1.78 | 1.14 | 1.14 | 1.47 |
Kurtosis C | 2.70 | 40.40 | 9.72 | 2.40 | 2.40 | 6.26 |
X2 | 3.60 | 2.20 | 2.20 | 5.00 | 3.13 | |
December | ||||||
Asymmetry C. | 0.91 | 0.82 | 0.88 | 1.14 | 1.14 | 0.81 |
Kurtosis C | 3.69 | 4.11 | 4.31 | 2.40 | 2.40 | 3.99 |
X2 | 2.67 | 2.67 | 2.67 | 2.67 | 2.67 |
Indicator | Sample | GEV | Gumbel | Perarson Type III | ||
---|---|---|---|---|---|---|
M.L. | L-M. | M.L. | L-M. | M.L. | ||
January | ||||||
Asymmetry C. | 1.49 | 2.57 | 3.07 | 1.14 | 1.14 | 1.56 |
Kurtosis C | 4.40 | 20.00 | 31.40 | 2.40 | 2.40 | 6.63 |
X2 | 1.45 | 0.91 | 1.45 | 1.45 | 2.55 | |
February | ||||||
Asymmetry C. | 1.40 | 3.00 | 4.46 | 1.14 | 1.14 | 1.27 |
Kurtosis C | 3.62 | 21.10 | 128 | 2.40 | 2.40 | 5.42 |
X2 | 0.91 | 0.91 | 1.45 | 4.73 | 3.62 | |
March | ||||||
Asymmetry C. | 0.07 | −1.00 | 0.16 | 1.14 | 1.14 | - |
Kurtosis C | 1.36 | 3.78 | 2.80 | 2.40 | 2.40 | - |
X2 | 5.27 | 4.73 | 5.82 | 6.91 | - | |
April | ||||||
Asymmetry C. | 0.70 | 3.00 | 1.31 | 1.14 | 1.14 | - |
Kurtosis C | 2.25 | 37.10 | 6.33 | 2.40 | 2.40 | - |
X2 | 2.00 | 2.55 | 2.55 | 2,55 | - | |
May | ||||||
Asymmetry C. | −0.27 | −0.57 | −0.39 | 1.14 | 1.14 | −0.73 |
Kurtosis C | 1.97 | 3.14 | 2.90 | 2.40 | 2.40 | 3.79 |
X2 | 0.91 | 1.45 | 3.09 | 1.45 | 110 | |
June | ||||||
Asymmetry C. | −0.99 | −1.28 | −1.21 | 1.14 | 1.14 | −1.53 |
Kurtosis C | 3.02 | 5.15 | 4.87 | 2.40 | 2.40 | 6.52 |
X2 | 2.55 | 2.55 | 11.27 | 6.91 | 110 | |
July | ||||||
Asymmetry C. | 0.01 | −0.07 | −0.10 | 1.14 | 1.14 | 0.02 |
Kurtosis C | 2.18 | 2.71 | 2.71 | 2.40 | 2.40 | 3.00 |
X2 | 1.45 | 1.45 | 4.18 | 4.18 | 2.55 | |
August | ||||||
Asymmetry C. | −0.14 | −0.21 | −0.10 | 1.14 | 1.14 | −0.20 |
Kurtosis C | 2.35 | 2.75 | 2.71 | 2.40 | 2.40 | 3.06 |
X2 | 2.55 | 2.55 | 2.55 | 2.00 | 110 | |
September | ||||||
Asymmetry C. | −0.05 | −0.13 | −0.13 | 1.14 | 1.14 | −0.08 |
Kurtosis C | 2.23 | 2.72 | 2.72 | 2.40 | 2.40 | 3.01 |
X2 | 3.09 | 4.18 | 3.64 | 4.18 | 110 | |
October | ||||||
Asymmetry C. | 0.37 | 0.27 | 0.39 | 1.14 | 1.14 | 0.27 |
Kurtosis C | 3.10 | 2.90 | 3.06 | 2.40 | 2.40 | 3.11 |
X2 | 0.36 | 0.91 | 2.00 | 0.91 | 0.36 | |
November | ||||||
Asymmetry C. | 0.09 | 0.08 | 0.08 | 1.14 | 1.14 | 0.18 |
Kurtosis C | 2.71 | 2.74 | 2.71 | 2.40 | 2.40 | 3.05 |
X2 | 5.27 | 3.64 | 2.55 | 4.18 | 3.64 | |
December | ||||||
Asymmetry C. | 1.34 | 2.56 | 2.51 | 1.14 | 1.14 | 1.33 |
Kurtosis C | 4.03 | 19.80 | 19.00 | 2.40 | 2.40 | 5.67 |
X2 | 2.71 | 2.71 | 2.71 | 6.14 | 2.71 |
Tr | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 417 | 314 | 337 | 543 | 656 | 772 | 825 | 839 | 752 | 756 | 825 | 595 |
50 | 373 | 282 | 300 | 484 | 640 | 734 | 784 | 789 | 722 | 728 | 764 | 549 |
20 | 314 | 240 | 250 | 405 | 609 | 678 | 724 | 718 | 676 | 687 | 681 | 486 |
10 | 268 | 207 | 212 | 345 | 575 | 630 | 674 | 661 | 635 | 652 | 616 | 434 |
5 | 221 | 173 | 172 | 281 | 528 | 574 | 618 | 598 | 585 | 612 | 548 | 379 |
Tr | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 361 | 334 | 365 | 664 | 626 | 677 | 825 | 769 | 715 | 778 | 571 | 658 |
50 | 331 | 307 | 348 | 605 | 610 | 672 | 798 | 745 | 693 | 736 | 553 | 598 |
20 | 290 | 270 | 322 | 465 | 580 | 661 | 751 | 702 | 655 | 671 | 523 | 517 |
10 | 258 | 241 | 297 | 403 | 546 | 645 | 704 | 660 | 617 | 614 | 494 | 453 |
5 | 225 | 211 | 267 | 338 | 502 | 618 | 642 | 605 | 567 | 546 | 455 | 385 |
Tr | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 49.45 | 61.94 | 59.15 | 34.18 | 20.48 | 6.42 | 0.00 | 1.70 | 8.85 | 8.36 | 0.00 | 27.88 |
50 | 52.54 | 64.12 | 61.83 | 38.42 | 18.58 | 6.62 | 0.25 | 0.38 | 8.14 | 7.38 | 2.80 | 30.15 |
20 | 56.93 | 67.08 | 65.71 | 44.44 | 16.46 | 7.00 | 0.69 | 1.51 | 7.27 | 5.76 | 6.28 | 33.33 |
10 | 60.53 | 69.51 | 68.78 | 49.19 | 15.32 | 7.22 | 0.74 | 2.65 | 6.48 | 3.98 | 9.28 | 36.08 |
5 | 64.47 | 72.19 | 72.35 | 54.82 | 15.11 | 7.72 | 0.64 | 3.86 | 5.95 | 1.61 | 11.90 | 39.07 |
MSE | 57.04 | 67.07 | 65.73 | 44.82 | 17.21 | 7.01 | 0.55 | 2.33 | 7.41 | 5.93 | 7.47 | 33.54 |
Tr | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 52,75 | 56.28 | 52.23 | 20.81 | 18.06 | 11.39 | 7.98 | 0.65 | 6.41 | 1.83 | 25.26 | 13.87 |
50 | 56.04 | 59.23 | 53.78 | 27.62 | 18.99 | 10.76 | 5.98 | 1.06 | 7.97 | 2.26 | 26.56 | 20.58 |
20 | 60.16 | 62.91 | 55.77 | 36.13 | 20.33 | 9.10 | 3.16 | 3.57 | 10.03 | 7.83 | 28.16 | 28.98 |
10 | 63.04 | 65.47 | 57.45 | 42.26 | 21.49 | 7.59 | 0.86 | 5.44 | 11.60 | 12.03 | 29.23 | 35.10 |
5 | 65.49 | 67.64 | 59.05 | 48.16 | 23.01 | 5.21 | 1.53 | 7.21 | 13.04 | 16.06 | 30.21 | 40.95 |
MSE | 59.68 | 62.44 | 55.71 | 36.35 | 20.45 | 9.11 | 4.74 | 4.38 | 10.10 | 9.79 | 27.94 | 29.55 |
Tr (Years) | Qb,Tr (m3/s) | Qmm,Tr (m3/s) | E (%) | |||
---|---|---|---|---|---|---|
Period | ||||||
1970–1999 | 2000–2021 | 1970–1999 | 2000–2021 | 1970–1999 | 2000–2021 | |
100 | 825 | 764 | 825 | 769 | 0.00% | 0.65% |
50 | 786 | 753 | 784 | 745 | 0.25% | 1.06% |
20 | 729 | 728 | 724 | 702 | 0.69% | 3.57% |
10 | 679 | 698 | 674 | 660 | 0.74% | 5.44% |
5 | 622 | 652 | 618 | 605 | 0.64% | 7.21% |
MSE | 0.55% | 4.38% |
Tr (Years) | Qb,Tr (m3/s) | Qmm,Tr (m3/s) | X2 | |||
---|---|---|---|---|---|---|
Period | ||||||
1970–1999 | 2000–2021 | 1970–1999 | 2000–2021 | 1970–1999 | 2000–2021 | |
100 | 825 | 764 | 825 | 769 | 0.00 | 0.03 |
50 | 786 | 753 | 784 | 745 | 0.01 | 0.08 |
20 | 729 | 728 | 724 | 702 | 0.03 | 0.93 |
10 | 679 | 698 | 674 | 660 | 0.04 | 2.07 |
5 | 622 | 652 | 618 | 605 | 0.03 | 3.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalba-Barrios, A.F.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Coronado-Hernández, J.R.; Ramos, H.M. Statistical Approach for Computing Base Flow Rates in Gaged Rivers and Hydropower Effect Analysis. Hydrology 2023, 10, 137. https://doi.org/10.3390/hydrology10070137
Villalba-Barrios AF, Coronado-Hernández OE, Fuertes-Miquel VS, Coronado-Hernández JR, Ramos HM. Statistical Approach for Computing Base Flow Rates in Gaged Rivers and Hydropower Effect Analysis. Hydrology. 2023; 10(7):137. https://doi.org/10.3390/hydrology10070137
Chicago/Turabian StyleVillalba-Barrios, Andrés F., Oscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel, Jairo R. Coronado-Hernández, and Helena M. Ramos. 2023. "Statistical Approach for Computing Base Flow Rates in Gaged Rivers and Hydropower Effect Analysis" Hydrology 10, no. 7: 137. https://doi.org/10.3390/hydrology10070137
APA StyleVillalba-Barrios, A. F., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Coronado-Hernández, J. R., & Ramos, H. M. (2023). Statistical Approach for Computing Base Flow Rates in Gaged Rivers and Hydropower Effect Analysis. Hydrology, 10(7), 137. https://doi.org/10.3390/hydrology10070137