Effects of a Gravel Pit Lake on Groundwater Hydrodynamic
Abstract
:1. Introduction
2. Methods
2.1. Empirical Method by Wrobel (1980)
2.2. Conceptual Model
2.3. Numerical Methods: Governing Groundwater Flow Equation in FEFLOW
2.4. Pumping Test
3. Results
3.1. Empirical Method after Wrobel
3.2. Numerical Simulations
4. Discussion
4.1. Comparison of Groundwater Drawdowns Calculated with Empirical and Numerical Methods
4.2. Radius of Influence Calculated by Sichardt’s Equation Compared to Field Data from Pumping Tests
4.3. 2D vs. 3D Numerical Model in FEFLOW
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eynard, U.; Georgitzikis, K.; Wittmer, D.; El Latunussa, C.; Torres de Matos, C.; Mancini, L.; Unguru, M.; Blagoeva, D.; Bobba, D.; Pavel, C.; et al. Study on the EU’s List of Critical Raw Materials (2020): Non-Critical Raw Materials Factsheets (Final); European Commission: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- Highley, D.; Harrison, D.; Cameron, D.; Lusty, P.; Cowley, J.; Rayner, D. Mineral Planning Factsheets: Construction Aggregates; Brown, T., Ed.; BGS: London, UK, 2019. [Google Scholar]
- EEA (European Environmental Agency). Effectiveness of Environmental Taxes and Charges for Managing Sand, Gravel and Rock Extraction in Selected EU Countries; EEA Report, No. 2/2008; EEA: Copenhagen, Denmark, 2008. [Google Scholar] [CrossRef]
- UEPG (European Aggregates Association). Annual Review 2020–2021. Available online: https://www.aggregates-europe.eu/wp-content/uploads/2023/03/Final_-_UEPG-AR2020_2021-V05_spreads72dpiLowQReduced.pdf (accessed on 3 May 2023).
- Schultze, M.; Vandenberg, J.; McCullough, C.D.; Castendyk, D. The Future Direction of Pit Lakes: Part 1, Research Needs. Mine Water Environ. 2022, 41, 533–543. [Google Scholar] [CrossRef]
- Kidmose, J.; Engesgaard, P.; Nilsson, B.; Laier, T.; Looms, M.C. Spatial Distribution of Seepage at a Flow-Through Lake: Lake Hampen, Western Denmark. Vadose Zone J. 2011, 10, 110–124. [Google Scholar] [CrossRef]
- Mollema, P.; Antonellini, M. Water and (Bio)Chemical Cycling in Gravel Pit Lakes: A Review and Outlook. Earth Sci. Rev. 2016, 159, 247–270. [Google Scholar] [CrossRef]
- Muellegger, C.; Weilhartner, A.; Battin, T.J.; Hofmann, T. Positive and Negative Impacts of Five Austrian Gravel Pit Lakes on Groundwater Quality. Sci. Total Environ. 2013, 443, 14–23. [Google Scholar] [CrossRef]
- Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S. Modeling and Management of Pit Lake Water Chemistry 1: Theory. Appl. Geochem. 2015, 57, 267–288. [Google Scholar] [CrossRef]
- Søndergaard, M.; Lauridsen, T.L.; Johansson, L.S.; Jeppesen, E. Gravel Pit Lakes in Denmark: Chemical and Biological State. Sci. Total Environ. 2018, 612, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Lübbe, E. Schriftenreiche des Kuratoriums für Wasser und Kulturbauwesen, Heft 29, Baggerseen, Bestandsaufnahme, Hydrologie und planerische Konsequenzen; Paul Parey: Hamburg/Berlin, Germany, 1977; ISBN 3-490-02997-6. [Google Scholar]
- Fileccia, A. Some Simple Procedures for the Calculation of the Influence Radius and Well Head Protection Areas (Theoretical Approach and a Field Case for a Water Table Aquifer in an Alluvial Plain). AS/IT JGW 2015, 4, 7–23. [Google Scholar] [CrossRef]
- Arnold, L.R.; Langer, W.H.; Paschke, S.S. Analytical and Numerical Simulation of the Steady-State Hydrologic Effects of Mining Aggregate in Hypothetical Sand-and-Gravel and Fractured Crystalline-Rock Aquifers; Water-Resource Investigations Report 02-4267; USGS: Denver, CO, USA, 2003. Available online: https://pubs.usgs.gov/wri/2002/4267/report.pdf (accessed on 23 May 2023).
- Brownlee, J. Machine Learning Mastery. Analytical vs Numerical Solutions in Machine Learning. Available online: https://machinelearningmastery.com/analytical-vs-numerical-solutions-in-machine-learning/ (accessed on 26 April 2023).
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modelling: Simulation of Flow and Advective Transport, 2nd ed.; Elsevier Inc.: Sand Diego, CA, USA, 2015. [Google Scholar] [CrossRef]
- Marinelli, F.; Niccoli, W.L. Simple Analytical Equations for Estimating Ground Water Inflow to a Mine Pit. Ground Water 2000, 38, 311–314. [Google Scholar] [CrossRef]
- Kandelous, M.K.; Šimůnek, J. Comparison of Numerical, Analytical, and Empirical Models to Estimate Wetting Patterns for Surface and Subsurface Drip Irrigation. Irrig. Sci. 2010, 28, 435–444. [Google Scholar] [CrossRef]
- Yihdego, Y. Engineering and Enviro-Management Value of Radius of Influence Estimate from Mining Excavation. J. Appl. Water Eng. Res. 2018, 6, 329–337. [Google Scholar] [CrossRef]
- Wrobel, J.P. Wechselbeziehungen zwischen Baggerseen und Grundwasser in gut durchlässigen Schottern. GWF Wasser/Abwasser 1980, 121, 165–173. [Google Scholar]
- Niemeyer, R. Hydrologische Untersuchungen an Baggerseen und Alternativen der Folgenutzung; Lehrstuhl für Landwirtschaftl. Wasserbau u. Kulturtechnik, Inst. für Städtebau, Bodenordnung u. Kulturtechnik d. Univ.: Bonn, Germany, 1978. [Google Scholar]
- Kyrieleis, W.; Sichardt, W. Grundwasserabsenkung bei Fundierungsarbeiten; Julius Springer: Berlin, Germany, 1930. (In German) [Google Scholar]
- Diersch, H.-J.G. FEFLOW—Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; Dover Publications, Inc.: New York, NY, USA, 1972. [Google Scholar]
- Fank, J.; Wieser, L. Mureck VFB2 Neuerrichtung, Hydrogeologisches Gutachten; JR-AquaConsol GmbH: Graz, Austria, 2021. (In German) [Google Scholar]
- Fank, J.; Mach, J. SI-MUR-AT, Optimierung Brunnenfeld Mureck des Wasserverbandes “Wasserversorgung Grenzland Südost”; Grundwasserhydrologisches Gutachten; JR-AquaConsol GmbH: Graz, Austria, 2018. (In German) [Google Scholar]
- Wang, Q.; Zhan, H.; Tang, Z. A New Package in MODFLOW to Simulate Unconfined Groundwater Flow in Sloping Aquifers. Groundwater 2014, 52, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Jost, A.; Wang, S.; Verbeke, T.; Colleoni, F.; Flipo, N. Hydrodynamic Relationships Between Gravel Pit Lakes and Aquifers: Brief Review and Insights from Numerical Investigations. CR GEOSCI 2023, 355, 1–25. [Google Scholar] [CrossRef]
- Hofman, T.; Müllegger, C. Einfluss von Nassbaggerungen auf die Oberflächen- und Grundwasserqualität; Abschlussbericht; Vienna University: Vienna, Austria, 2011. (In German) [Google Scholar]
- Desens, A.; Houben, G.J. Jenseits von Sichardt—Empirische Formeln zur Bestimmung der Absenkreichweite eines Brunnens und ein Verbesserungsvorschlag. Grundwasser 2022, 27, 131–141. [Google Scholar] [CrossRef]
- Bresciani, E.; Davy, P.; de Dreuzy, J.R. Is the Dupuit assumption suitable for predicting the groundwater seepage area in hillslopes? Water Resour. Res. 2014, 50, 2394–2406. [Google Scholar] [CrossRef]
- Ahern, J.A. Ground-Water Capture-Zone Delineation: Method Comparison in Synthetic Case Studies and a Field Example on Front Wainwright, Alaska. Master’s Thesis, University of Alaska Fairbanks, Fairbanks, Alaska, 2005. Available online: https://scholarworks.alaska.edu/handle/11122/6942 (accessed on 23 May 2023).
Slope of the Hydraulic Head α | Saturated Zone Thickness | |
---|---|---|
20 m | 80 m | |
2‰ | Scenario 1 | Scenario 3 |
4‰ | Scenario 2 | Scenario 4 |
Slope of the Hydraulic Head [‰] | Vertical Drawdown s [m] | Horizontal Drawdown R [m] |
---|---|---|
2 | 0.6 | 171.2 |
4 | 1.2 | 342.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrzel, J.; Kupfersberger, H.; Rivera Villarreyes, C.A.; Fank, J.; Wieser, L. Effects of a Gravel Pit Lake on Groundwater Hydrodynamic. Hydrology 2023, 10, 140. https://doi.org/10.3390/hydrology10070140
Vrzel J, Kupfersberger H, Rivera Villarreyes CA, Fank J, Wieser L. Effects of a Gravel Pit Lake on Groundwater Hydrodynamic. Hydrology. 2023; 10(7):140. https://doi.org/10.3390/hydrology10070140
Chicago/Turabian StyleVrzel, Janja, Hans Kupfersberger, Carlos Andres Rivera Villarreyes, Johann Fank, and Leander Wieser. 2023. "Effects of a Gravel Pit Lake on Groundwater Hydrodynamic" Hydrology 10, no. 7: 140. https://doi.org/10.3390/hydrology10070140
APA StyleVrzel, J., Kupfersberger, H., Rivera Villarreyes, C. A., Fank, J., & Wieser, L. (2023). Effects of a Gravel Pit Lake on Groundwater Hydrodynamic. Hydrology, 10(7), 140. https://doi.org/10.3390/hydrology10070140