Development and Automation of a Photovoltaic-Powered Soil Moisture Sensor for Water Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Dynamics and Characterization
2.2. Assembly of the Automated Moisture Sensor
- A set of photovoltaic modules (12 V each);
- A temperature and humidity sensor (DHT11);
- A pressure sensor (BMP280);
- A LCD display with 16 × 2 blue backlight (2-lines × 16-characters);
- An Arduino Mega board;
- Rechargeable battery with a voltage of 9 V and 250 mAh.
2.2.1. Arduino Board
2.2.2. Soil Moisture Sensor
2.2.3. BMP280 Pressure Sensor
2.2.4. Photovoltaic Modules
2.2.5. DHT11 Ambient Relative Humidity and Temperature Sensor
2.3. Statistical Modeling and Validation of Moisture Sensor
2.3.1. Descriptive Statistics
2.3.2. Regression Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haldar, K.; Kujawa-Roeleveld, K.; Dey, P.; Bosu, S.; Datta, D.K.; Rijnaarts, H.H.M. Spatio-Temporal Variations in Chemical-Physical Water Quality Parameters Influencing Water Reuse for Irrigated Agriculture in Tropical Urbanized Deltas. Sci. Total Environ. 2020, 708, 134559. [Google Scholar] [CrossRef] [PubMed]
- Muzammil, M.; Zahid, A.; Breuer, L. Water Resources Management Strategies for Irrigated Agriculture in the Indus Basin of Pakistan. Water 2020, 12, 1429. [Google Scholar] [CrossRef]
- Singh, A. Assessment of Different Strategies for Managing the Water Resources Problems of Irrigated Agriculture. Agric. Water Manag. 2018, 208, 187–192. [Google Scholar] [CrossRef]
- Singh, A. Hydrological Problems of Water Resources in Irrigated Agriculture: A Management Perspective. J. Hydrol. 2016, 541, 1430–1440. [Google Scholar] [CrossRef]
- Silva, J.L.B.; Bezerra, A.C.; Moura, G.B.d.A.; Jardim, A.M.d.R.F.; Batista, P.H.D.; de Jesus, F.L.F.; Sanches, A.C.; da Silva, M.V. Spatiotemporal Dynamics of Agricultural Areas with Central Pivot Using Orbital Remote Sensing in the Brazilian Semiarid. Smart Agric. Technol. 2022, 2, 100052. [Google Scholar] [CrossRef]
- Kamienski, C.; Soininen, J.P.; Taumberger, M.; Dantas, R.; Toscano, A.; Cinotti, T.S.; Maia, R.F.; Neto, A.T. Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture. Sensors 2019, 19, 276. [Google Scholar] [CrossRef] [Green Version]
- Ngxumeshe, A.M.; Ratsaka, M.; Mtileni, B.; Nephawe, K. Sustainable Application of Livestock Water Footprints in Different Beef Production Systems of South Africa. Sustainability 2020, 12, 9921. [Google Scholar] [CrossRef]
- da Silva, M.V.; Pandorfi, H.; de Almeida, G.L.P.; de Lima, R.P.; dos Santos, A.; Jardim, A.M.d.R.F.; Rolim, M.M.; da Silva, J.L.B.; Batista, P.H.D.; da Silva, R.A.B.; et al. Spatio-Temporal Monitoring of Soil and Plant Indicators under Forage Cactus Cultivation by Geoprocessing in Brazilian Semi-Arid Region. J. South Am. Earth Sci. 2021, 107, 103155. [Google Scholar] [CrossRef]
- Silva, P.C.; Ferreira, A.F.A.; Araújo, E.S.; Bessa Neto, J.V.; da Costa, A.R.; Fernandes, L.d.S.; Martins, A.A.S.; Cândido, R.d.S.; Jardim, A.M.d.R.F.; Pandorfi, H.; et al. Cherry Tomato Crop Management Under Irrigation Levels: Morphometric Characteristics and Their Relationship with Fruit Production and Quality. Gesunde Pflanz. 2022, 75, 1277–1288. [Google Scholar] [CrossRef]
- Pramanik, M.; Khanna, M.; Singh, M.; Singh, D.K.; Sudhishri, S.; Bhatia, A.; Ranjan, R. Automation of Soil Moisture Sensor-Based Basin Irrigation System. Smart Agric. Technol. 2022, 2, 100032. [Google Scholar] [CrossRef]
- Gutierrez, J.; Villa-Medina, J.F.; Nieto-Garibay, A.; Porta-Gandara, M.A. Automated Irrigation System Using a Wireless Sensor Network and GPRS Module. IEEE Trans. Instrum. Meas. 2014, 63, 166–176. [Google Scholar] [CrossRef]
- Freire, A.G.; de Alencar, T.L.; Chaves, A.F.; Nascimento, V.D.; de Assis, R.N.; Lier, Q.d.J.v.; Mota, J.C.A. Comparison of Devices for Measuring Soil Matric Potential and Effects on Soil Hydraulic Functions and Related Parameters. Agric. Water Manag. 2018, 209, 134–141. [Google Scholar] [CrossRef]
- Pathak, S.; Adusumilli, N.C.; Wang, H.; Almas, L.K. Irrigation Water Demand and Elasticities: A Case Study of the High Plains Aquifer. Irrig. Sci. 2022, 40, 941–954. [Google Scholar] [CrossRef]
- Li, Y. Water Saving Irrigation in China. Irrig. Drain. 2006, 55, 327–336. [Google Scholar] [CrossRef]
- Sauer, T.; Havlík, P.; Schneider, U.A.; Schmid, E.; Kindermann, G.; Obersteiner, M. Agriculture and Resource Availability in a Changing World: The Role of Irrigation. Water Resour. Res. 2010, 46, 6503. [Google Scholar] [CrossRef] [Green Version]
- Gbode, I.E.; Diro, G.T.; Intsiful, J.D.; Dudhia, J. Current Conditions and Projected Changes in Crop Water Demand, Irrigation Requirement, and Water Availability over West Africa. Atmosphere 2022, 13, 1155. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart Irrigation Monitoring and Control Strategies for Improving Water Use Efficiency in Precision Agriculture: A Review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Ramos, M.M.; Aquino, L.A. Chapter 8—Irrigation Management. In Agricultural Production, Bioenergy and Ethanol; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780128022399. [Google Scholar]
- Lesiak, P.; Wolínski, T.; Jaroszewicz, L.; Majcher, J.; Kafarski, M.; Szypłowska, A.; Wilczek, A.; Lewandowski, A.; Gał, L.; Skierucha, W. Point Measurements of Soil Moisture Using TDR Technique—Comparison of Probes. Eng. Proc. 2022, 21, 8. [Google Scholar] [CrossRef]
- Serrano, D.; Ávila, E.; Barrios, M.; Darghan, A.; Lobo, D. Surface Soil Moisture Monitoring with Near-Ground Sensors: Performance Assessment of a Matric Potential-Based Method. Measurement 2020, 155, 107542. [Google Scholar] [CrossRef]
- Bertocco, M.; Parrino, S.; Peruzzi, G.; Pozzebon, A. Estimating Volumetric Water Content in Soil for IoUT Contexts by Exploiting RSSI-Based Augmented Sensors via Machine Learning. Sensors 2023, 23, 2033. [Google Scholar] [CrossRef]
- Radi; Murtiningrum; Ngadisih; Muzdrikah, F.S.; Nuha, M.S.; Rizqi, F.A. Calibration of Capacitive Soil Moisture Sensor (SKU:SEN0193). In Proceedings of the 2018 4th International Conference on Science and Technology, ICST 2018, Yogyakarta, Indonesia, 7–8 August 2018; Institute of Electrical and Electronics Engineers Inc.: Yogyakarta, Indonesia, 2018. [Google Scholar]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A Review of the Methods Available for Estimating Soil Moisture and Its Implications for Water Resource Management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Hardie, M. Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture. Sensors 2020, 20, 6934. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Imran Khan, M.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.; et al. Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability 2022, 14, 11538. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Salam, A.; Vuran, M.C.; Irmak, S. Di-Sense: In Situ Real-Time Permittivity Estimation and Soil Moisture Sensing Using Wireless Underground Communications. Comput. Netw. 2019, 151, 31–41. [Google Scholar] [CrossRef]
- Sanuade, O.A.; Hassan, A.M.; Akanji, A.O.; Olaojo, A.A.; Oladunjoye, M.A.; Abdulraheem, A. New Empirical Equation to Estimate the Soil Moisture Content Based on Thermal Properties Using Machine Learning Techniques. Arab. J. Geosci. 2020, 13, 377. [Google Scholar] [CrossRef]
- Bagheri, M.; Rezania, M. Effect of Soil Moisture Evaporation Rate on Dynamic Measurement of Water Retention Curve with High-Capacity Tensiometer. Int. J. Geomech. 2022, 22, 04021301. [Google Scholar] [CrossRef]
- Abdelmoneim, A.A.; Khadra, R.; Derardja, B.; Dragonetti, G. Internet of Things (IoT) for Soil Moisture Tensiometer Automation. Micromachines 2023, 14, 263. [Google Scholar] [CrossRef]
- Patwa, D.; Bharat, T.V. Influence of Hydraulic Response Time of Tensiometer in Hydraulic Characteristics Estimation for Riverbank Sand. Geotech. Geol. Eng. 2022, 41, 413–427. [Google Scholar] [CrossRef]
- Mesquita, M.; Machado, A.L.P.; Dos Santos, A.P.; Da Silva, M.V.; De Oliveira, H.F.E.; Battisti, R.; Nascimento, A.R. Assessing the Effects of Deficit Irrigation Techniques on Yield and Water Productivity of Processing Tomato. Chem. Eng. Trans. 2019, 75, 181–186. [Google Scholar] [CrossRef]
- de Oliveira, H.F.E.; Campos, H.d.M.; Mesquita, M.; Machado, R.L.; Vale, L.S.R.; Siqueira, A.P.S.; Ferrarezi, R.S. Horticultural Performance of Greenhouse Cherry Tomatoes Irrigated Automatically Based on Soil Moisture Sensor Readings. Water 2021, 13, 2662. [Google Scholar] [CrossRef]
- Mesquita, M.; Dos Santos, A.P.; Machado, A.L.P.; De Oliveira, H.F.E.; Casaroli, D.; Junior, J.A. Qualitative Characteristics of Processing Tomato Cultivated Under Water Deficit Induced in the Vegetative Growth Stage. Chem. Eng. Trans. 2019, 75, 175–180. [Google Scholar] [CrossRef]
- Vatta, K.; Sidhu, R.S.; Lall, U.; Birthal, P.S.; Taneja, G.; Kaur, B.; Devineni, N.; MacAlister, C. Assessing the Economic Impact of a Low-Cost Water-Saving Irrigation Technology in Indian Punjab: The Tensiometer. Water Int. 2018, 43, 305–321. [Google Scholar] [CrossRef] [Green Version]
- Pardossi, A.; Incrocci, L.; Incrocci, G.; Malorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J. Root Zone Sensors for Irrigation Management in Intensive Agriculture. Sensors 2009, 9, 2809–2835. [Google Scholar] [CrossRef] [Green Version]
- Araújo, S.O.; Peres, R.S.; Barata, J.; Lidon, F.; Ramalho, J.C. Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities. Agronomy 2021, 11, 667. [Google Scholar] [CrossRef]
- Monteleone, S.; de Moraes, E.A.; de Faria, B.T.; Aquino Junior, P.T.; Maia, R.F.; Neto, A.T.; Toscano, A. Exploring the Adoption of Precision Agriculture for Irrigation in the Context of Agriculture 4.0: The Key Role of Internet of Things. Sensors 2020, 20, 7091. [Google Scholar] [CrossRef] [PubMed]
- Amiri, Z.; Gheysari, M.; Mosaddeghi, M.R.; Amiri, S.; Tabatabaei, M.S. An Attempt to Find a Suitable Place for Soil Moisture Sensor in a Drip Irrigation System. Inf. Process. Agric. 2022, 9, 254–265. [Google Scholar] [CrossRef]
- Domínguez-Niño, J.M.; Oliver-Manera, J.; Girona, J.; Casadesús, J. Differential Irrigation Scheduling by an Automated Algorithm of Water Balance Tuned by Capacitance-Type Soil Moisture Sensors. Agric. Water Manag. 2020, 228, 105880. [Google Scholar] [CrossRef]
- Livingston, B.E. A Method for Controlling Plant Moisture. Plant World 1908, 11, 39–40. [Google Scholar]
- Pereira, R.M.; Sandri, D.; Rios, G.F.A. Tensiômetros Eletrônicos Integrados a Placa Microcontroladora Arduino No Manejo da Irrigação de Alface em Diferentes Potenciais Matriciais Críticos e Tipos de Solo. Irriga 2022, 27, 311–327. [Google Scholar] [CrossRef]
- Teixeira, A.S.; Coelho, S.L. Desenvolvimento e Calibração de Um Tensiômetro Eletrônico de Leitura Automática. Eng. Agrícola 2005, 25, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Methods of Measuring Soil Moisture Tension. Soil Sci. 1949, 68, 95. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, X.; Sun, X. Research on Calibration Method of Mechanical Belt Tension Meter. Meas. Sens. 2021, 18, 100226. [Google Scholar] [CrossRef]
- Warrick, A.W.; Nielsen, D.R. Spatial Variability of Soil Physical Properties in the Field. In Applications of Soil Physics; Hillel, D., Ed.; Academic Press: New York, NY, USA, 1980; pp. 319–344. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 7 February 2023).
- da Silva, M.V.; Pandorfi, H.; de Almeida, G.L.P.; Jardim, A.M.d.R.F.; Batista, P.H.D.; da Silva, R.A.B.; Lopes, I.; de Oliveira, M.E.G.; da Silva, J.L.B.; Moraes, A.S. Spatial Variability and Exploratory Inference of Abiotic Factors in Barn Compost Confinement for Cattle in the Semiarid. J. Therm Biol. 2020, 94, 102782. [Google Scholar] [CrossRef] [PubMed]
- Thalheimer, M. A Low-Cost Electronic Tensiometer System for Continuous Monitoring of Soil Water Potential. J. Agric. Eng. 2013, 44, e16. [Google Scholar] [CrossRef]
- Sanches, A.C.; Alves, C.d.O.; de Jesus, F.L.F.; Theodoro, F.L.; da Cruz, T.A.C.; Gomes, E.P. Low-Cost and High-Efficiency Automated Tensiometer for Real-Time Irrigation Monitoring. Rev. Bras. Eng. Agrícola Ambient. 2022, 26, 390–395. [Google Scholar] [CrossRef]
- Jardim, A.M.d.R.F.; Silva, J.R.I.; da Silva, M.V.; de Souza, L.S.B.; Araújo Júnior, G.d.N.; Alves, H.K.M.N.; Mesquita, M.; Souza, P.J.d.O.P.d.; Teixeira, A.H.d.C.; da Silva, T.G.F. Modelling the Darcy–Weisbach Friction Factor and the Energy Gradient of the Lateral Line. Irrig. Drain. 2022, 71, 320–332. [Google Scholar] [CrossRef]
- Colak, Y.B. Leaf Water Potential for Surface and Subsurface Drip Irrigated Bell Pepper under Various Deficit Irrigation Strategies. Chil. J. Agric. Res. 2021, 81, 491–506. [Google Scholar] [CrossRef]
- Aliku, O.O.; Oshunsanya, S.O.; Aiyelari, E.O.A. Estimation of Crop Evapotranspiration of Okra Using Drainage Lysimeters under Dry Season Conditions. Sci. Afr. 2022, 16, e01189. [Google Scholar] [CrossRef]
Quantity | Description | Unit Amount (USD) | Total Amount (USD) | Specifications |
---|---|---|---|---|
1 | Arduino maker kit | 70.64 | 70.64 | Includes 136 pieces. |
1 | Pressure and Temperature Sensor (BMP280) | 3.10 | 3.10 | Operating voltage: 3 V; Current consumption: 2.7 µA; Interfaces: I2C and SPI; Pressure measurement range: 300–1100 hPa (equivalent +9000 to −500 m above/below sea level); Accuracy: ±0.12 hPa (±1 m equivalent); Temperature range: −40 to 85 °C; Temperature accuracy: ±1.0 °C. |
1 | Corrosion Resistant Soil Moisture Sensor, Arduino, Model S12 | 9.35 | 9.35 | Operating voltage: 3.3 to 12 V DC input; Current: less than 20 mA; less than 30 mA (output); Output: Digital and analogue; Probe dimensions: 60 × 19 × 9 mm; Module dimensions: 36 × 15 × 7 mm; Probe cable length: 1 m. |
1 | Room temperature and humidity sensor (DHT11) | 2.68 | 2.68 | Power 3.0 to 5.0 VDC (5.5 VDC maximum); Humidity measurement range: 20 to 95% RH; Temperature measurement range: 0° to 50 °C; Humidity measurement accuracy: ±5.0% RH; Temperature measurement accuracy: ±2.0 °C. |
1 | Hikari Power-30 Soldering Iron | 6.84 | 6.84 | - |
1 | Transparent Organizer Box | 5.17 | 5.17 | - |
1 | Telijia 31-Piece Precision Wrench Kit (TE-6036) | 4.14 | 4.14 | - |
4 | Solar Panel System (12 V-3 W) | 15.57 | 62.26 | 12 V-3 W-250 mA Photovoltaic Solar Energy Board Panel Cell, with 20 cm soldered wire, dimensions 145 × 145 mm |
1 | Elgin 12 V Rechargeable Battery | 37.41 | 37.41 | Blister with 1 rechargeable battery 12 V 250 mAh. |
3 | Tin Solder Wire Cobix Tube (1 mm, 22 g) | 3.26 | 9.79 | - |
1 | I2C Serial Module for 16 × 2 Blue Backlight LCD Display for Arduino | 8.21 | 8.21 | The I2C module operates with a minimum supply voltage of 5 V. |
1 | Ethernet Shield W5100 | 24.94 | 24.94 | Supply Voltage: 3 to 5 VDC; Communication: SPI; Operating temperature: −40 to 85 °C; Indicators: TX, RX, COL, FEX, SPD, LNK; Current: 100 mA; Support: Full-duplex and half-duplex, Auto MDI/MDIX, ADSL connection; Works directly with the official Arduino library; TX/RX RAM Buffer: 16 kBytes; Dimensions: 55.8 × 68.58 × 1.6 mm; Datasheet: W5100 Ethernet Shield Module. |
1 | Fiberglass Structure | 124.69 | 124.69 | - |
1 | Lenovo Ideapad 330 laptop | 519.55 | 519.55 | - |
Total amount | 835.55 | 888.77 |
1 DF | 2 SS | 3 MS | F Value | p-Value | |
---|---|---|---|---|---|
Model | 1 | 1435.53 | 1435.53 | 91.92 | <0.0001 |
Error | 38 | 593.46 | 15.62 | ||
Total | 39 | 2028.99 |
Variable | Mean | Median | Minimum | Maximum | 1 SD | 2 CV |
---|---|---|---|---|---|---|
50% | ||||||
Soil moisture sensor | 91.00 | 91.50 | 81.00 | 100.00 | 6.06 | 6.65 |
Gravimetric | 91.19 | 90.05 | 82.82 | 99.93 | 6.68 | 7.33 |
75% | ||||||
Soil moisture sensor | 93.70 | 95.50 | 81.00 | 99.00 | 5.79 | 6.18 |
Gravimetric | 94.22 | 96.17 | 83.04 | 100.02 | 4.94 | 5.24 |
100% | ||||||
Soil moisture sensor | 91.50 | 95.00 | 61.00 | 100.00 | 11.37 | 12.43 |
Gravimetric | 91.67 | 95.25 | 63.24 | 98.29 | 10.66 | 11.63 |
125% | ||||||
Soil moisture sensor | 96.90 | 98.00 | 93.00 | 100.00 | 3.04 | 3.13 |
Gravimetric | 95.38 | 97.07 | 82.04 | 99.82 | 5.40 | 5.67 |
1 DF | 2 SS | 3 MS | F Value | p-Value | |
---|---|---|---|---|---|
Model | 1 | 5445.47 | 5445.47 | 3269.20 | <0.0001 |
Error | 38 | 63.30 | 1.67 | ||
Total | 39 | 5508.76 |
Variable | Mean | Median | Minimum | Maximum | 1 SD | 2 CV |
---|---|---|---|---|---|---|
50% | ||||||
Soil moisture sensor | 64.50 | 63.00 | 49.00 | 89.00 | 15.92 | 24.68 |
Gravimetric | 64.52 | 63.37 | 48.74 | 86.92 | 14.40 | 22.31 |
75% | ||||||
Soil moisture sensor | 55.00 | 56.00 | 45.00 | 65.00 | 7.35 | 13.36 |
Gravimetric | 55.41 | 56.73 | 45.15 | 65.76 | 7.69 | 13.88 |
100% | ||||||
Soil moisture sensor | 55.50 | 55.00 | 40.00 | 66.00 | 8.14 | 14.67 |
Gravimetric | 56.31 | 55.79 | 41.69 | 66.15 | 7.65 | 13.58 |
125% | ||||||
Soil moisture sensor | 49.25 | 49.00 | 31.00 | 65.00 | 13.01 | 26.42 |
Gravimetric | 49.77 | 49.10 | 31.78 | 65.41 | 13.01 | 26.15 |
150% | ||||||
Soil moisture sensor | 47.38 | 44.00 | 37.00 | 63.00 | 9.10 | 19.21 |
Gravimetric | 47.75 | 43.99 | 37.58 | 65.13 | 9.79 | 20.50 |
1 DF | 2 SS | 3 MS | F Value | p-Value | |
---|---|---|---|---|---|
Model | 1 | 36,268.22 | 36,268.22 | 4009.39 | 0.001 |
Error | 79 | 705.57 | 9.04 | ||
Total | 80 | 36,973.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Melo, D.A.; Silva, P.C.; da Costa, A.R.; Delmond, J.G.; Ferreira, A.F.A.; de Souza, J.A.; de Oliveira-Júnior, J.F.; da Silva, J.L.B.; da Rosa Ferraz Jardim, A.M.; Giongo, P.R.; et al. Development and Automation of a Photovoltaic-Powered Soil Moisture Sensor for Water Management. Hydrology 2023, 10, 166. https://doi.org/10.3390/hydrology10080166
de Melo DA, Silva PC, da Costa AR, Delmond JG, Ferreira AFA, de Souza JA, de Oliveira-Júnior JF, da Silva JLB, da Rosa Ferraz Jardim AM, Giongo PR, et al. Development and Automation of a Photovoltaic-Powered Soil Moisture Sensor for Water Management. Hydrology. 2023; 10(8):166. https://doi.org/10.3390/hydrology10080166
Chicago/Turabian Stylede Melo, Denilson Alves, Patrícia Costa Silva, Adriana Rodolfo da Costa, Josué Gomes Delmond, Ana Flávia Alves Ferreira, Johnny Alves de Souza, José Francisco de Oliveira-Júnior, Jhon Lennon Bezerra da Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Pedro Rogerio Giongo, and et al. 2023. "Development and Automation of a Photovoltaic-Powered Soil Moisture Sensor for Water Management" Hydrology 10, no. 8: 166. https://doi.org/10.3390/hydrology10080166
APA Stylede Melo, D. A., Silva, P. C., da Costa, A. R., Delmond, J. G., Ferreira, A. F. A., de Souza, J. A., de Oliveira-Júnior, J. F., da Silva, J. L. B., da Rosa Ferraz Jardim, A. M., Giongo, P. R., Ferreira, M. B., de Assunção Montenegro, A. A., de Oliveira, H. F. E., da Silva, T. G. F., & da Silva, M. V. (2023). Development and Automation of a Photovoltaic-Powered Soil Moisture Sensor for Water Management. Hydrology, 10(8), 166. https://doi.org/10.3390/hydrology10080166