Improvements and Evaluation of the Agro-Hydrologic VegET Model for Large-Area Water Budget Analysis and Drought Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Model Formulation
2.2.1. Original Model Setup
2.2.2. Model Updates
Land Surface Phenology and Landscape Coefficients (Kcp)
Snowpack and Snowmelt
Deep Drainage and Surface Runoff Partitioning
2.2.3. Evaluation Data
Evaluation for Soil Moisture
Evaluation for Snow Water Equivalent
Evaluation for Actual Evapotranspiration
Evaluation for Runoff
3. Results and Discussion
3.1. Water Balance Components
3.2. Evaluation
3.2.1. Soil Moisture (SM)
3.2.2. Snow Water Equivalent (SWE)
3.2.3. Actual Evapotranspiration (ETa)
3.2.4. HUC8 Runoff
4. Case Study Applications
4.1. CONUS
4.2. GHA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asante, K.O.; Macuacua, R.D.; Artan, G.A.; Lietzow, R.W.; Verdin, J.P. Developing a flood monitoring system from remotely sensed data for the Limpopo basin. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1709–1714. [Google Scholar] [CrossRef]
- Artan, G.; Gadain, H.; Smith, J.L.; Asante, K.; Bandaragoda, C.J.; Verdin, J.P. Adequacy of satellite derived rainfall data for stream flow modeling. Nat. Hazards 2007, 43, 167–185. [Google Scholar] [CrossRef]
- Senay, G.B. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm. Algorithms 2008, 1, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Frere, M.; Popov, G. Early Agrometeorological Crop Yield Assessment; FAO: Rome, Italy, 1986; p. 144. [Google Scholar]
- Molden, D.; Sakthivadivel, R. Water accounting to assess use and productivity of water. Int. J. Water Resour. Dev. 1999, 15, 55–71. [Google Scholar] [CrossRef]
- Leavesley, G.H. Precipitation-Runoff Modeling System: User’s Manual; US Department of the Interior: Washington, DC, USA, 1984; Volume 83. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Holmes, T.; De Jeu, R.; Gash, J.; Meesters, A.; Dolman, A. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Herman, A.; Kumar, V.B.; Arkin, P.A.; Kousky, J.V. Objectively determined 10-day African rainfall estimates created for famine early warning systems. Int. J. Remote Sens. 1997, 18, 2147–2159. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
- Hobbins, M.; Harrison, L.; Blakeley, S.; Dewes, C.; Husak, G.; Shukla, S.; Jayanthi, H.; McNally, A.; Sarmiento, D.; Verdin, J. Drought in Africa: Understanding and exploiting the demand perspective using a new evaporative demand reanalysis. AGUFM 2018, 2018, GC21D-1121. [Google Scholar]
- Senay, G.; Verdin, J.; Lietzow, R.; Melesse, A.M. Global daily reference evapotranspiration modeling and evaluation 1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 969–979. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Milly, P.; Dunne, K. Sensitivity of the global water cycle to the water-holding capacity of land. J. Clim. 1994, 7, 506–526. [Google Scholar] [CrossRef]
- Wang-Erlandsson, L.; Bastiaanssen, W.G.; Gao, H.; Jägermeyr, J.; Senay, G.B.; Van Dijk, A.I.; Guerschman, J.P.; Keys, P.W.; Gordon, L.J.; Savenije, H.H. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 2016, 20, 1459–1481. [Google Scholar] [CrossRef]
- Adams, T., III. Flood forecasting in the United States NOAA/national weather service. In Flood Forecasting; Elsevier: Amsterdam, The Netherlands, 2016; pp. 249–310. [Google Scholar]
- McCabe, G.J.; Markstrom, S.L. A Monthly Water-Balance Model Driven by a Graphical User Interface; US Geological Survey: Reston, VA, USA, 2007; Volume 1088. [Google Scholar]
- Senay, G.B.; Verdin, J. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model. Can. J. Remote Sens. 2003, 29, 687–692. [Google Scholar] [CrossRef]
- Tercek, M.T.; Thoma, D.; Gross, J.E.; Sherrill, K.; Kagone, S.; Senay, G. Historical changes in plant water use and need in the continental United States. PLoS ONE 2021, 16, e0256586. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; p. e.156. [Google Scholar]
- Velpuri, N.M.; Senay, G.B. Partitioning evapotranspiration into green and blue water sources in the conterminous United States. Sci. Rep. 2017, 7, 6191. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Senay, G.B. Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data. Hydrol. Earth Syst. Sci. 2012, 16, 3561–3578. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.; Lamb, R.; Quinn, P.; Romanowicz, R.; Freer, J. Topmodel, Computer Models of Watershed Hydrology; Water Resources Publications: Littleton, CO, USA, 1995; pp. 627–668. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.; Kagone, S.; Parrish, G.; Butzer, T.; Boiko, O. Veget_Model; U.S. Geological Survey software release; U.S. Geological Survey: Reston, VA, USA, 2023. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Process. DAAC 2015, 10, 415. [Google Scholar]
- NRCS. NRCS Soils: Gridded National Soil Survey Geographic Database (gNATSGO). Available online: https://www.nrcs.usda.gov/resources/data-and-reports/gridded-national-soil-survey-geographic-database-gnatsgo (accessed on 17 May 2023).
- Boiko, O.; Kagone, S.; Senay, G.B. Soil Properties Dataset in the United States: U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- DiMiceli, C.; Sohlberg, R.; Townshend, J. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V061. NASA EOSDIS Land Process. DAAC 2022. [CrossRef]
- Hansen, M.; DeFries, R.; Townshend, J.; Carroll, M.; Dimiceli, C.; Sohlberg, R. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. US Geol. Surv. Data Ser. 2014, 832, 1–12. [Google Scholar]
- Hobbins, M.; Dewes, C.; Jansma, T. Global Reference Evapotranspiration for Food-Security Monitoring: U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- ISRIC. ISRIC—World Soil Information. Available online: https://data.isric.org/geonetwork/srv/eng/catalog.search#/home (accessed on 13 June 2023).
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Michael, M.G.; Bastiaanssen, W.G. A new simple method to determine crop coefficients for water allocation planning from satellites: Results from Kenya. Irrig. Drain. Syst. 2000, 14, 237. [Google Scholar] [CrossRef]
- Moussav, M.; Wyseure, G.; Feyen, J. Estimation of melt rate in seasonally snow-covered mountainous areas. Hydrol. Sci. J. 1989, 34, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Auch, R.F.; Wellington, D.F.; Taylor, J.L.; Stehman, S.V.; Tollerud, H.J.; Brown, J.F.; Loveland, T.R.; Pengra, B.W.; Horton, J.A.; Zhu, Z. Conterminous United States land-cover change (1985–2016): New insights from annual time series. Land 2022, 11, 298. [Google Scholar] [CrossRef]
- Nemani, R.; Running, S. Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol. Appl. 1997, 7, 79–90. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- NRCS. UADA NRCS Soil Climate Analysis Network. Available online: https://www.nrcs.usda.gov/resources/data-and-reports/soil-climate-analysis-network (accessed on 24 May 2023).
- NRCS. USDA NRCS National Water and Climate Center. Available online: https://www.nrcs.usda.gov/wps/portal/wcc/home/ (accessed on 24 May 2023).
- AmeriFlux. AmeriFlux. Available online: https://ameriflux.lbl.gov/ (accessed on 13 June 2023).
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- USGS. USGS WaterWatch. Available online: https://waterwatch.usgs.gov/index.php (accessed on 5 June 2023).
- Seaber, P.R.; Kapinos, F.P.; Knapp, G.L. Hydrologic Unit Maps; US Government Printing Office: Washington, DC, USA, 1987; Volume 2294, p. 1987. [Google Scholar]
- Brakebill, J.; Wolock, D.; Terziotti, S. Digital hydrologic networks supporting applications related to spatially referenced regression modeling 1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 916–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senay, G.B.; Parrish, G.E.; Schauer, M.; Friedrichs, M.; Khand, K.; Boiko, O.; Kagone, S.; Dittmeier, R.; Arab, S.; Ji, L. Improving the Operational Simplified Surface Energy Balance Evapotranspiration Model Using the Forcing and Normalizing Operation. Remote Sens. 2023, 15, 260. [Google Scholar] [CrossRef]
- Senay, G.B.; Friedrichs, M.; Morton, C.; Parrish, G.E.; Schauer, M.; Khand, K.; Kagone, S.; Boiko, O.; Huntington, J. Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model. Remote Sens. Environ. 2022, 275, 113011. [Google Scholar] [CrossRef]
- Senay, G.B.; Kagone, S.; Parrish, G.E.L.; Khand, K. VegET v2.0 Illustrative Products and Evaluation: U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2023. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhang, X.; Yang, Z.; Ye, Y.; Wang, J.; Gao, S.; Liu, Y.; Wang, W.; Tran, K.H.; Ju, J. Developing an operational algorithm for near-real-time monitoring of crop progress at field scales by fusing harmonized Landsat and Sentinel-2 time series with geostationary satellite observations. Remote Sens. Environ. 2023, 296, 113729. [Google Scholar] [CrossRef]
Parameters | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|
Precipitation | 4000 m | Daily, 1980–current | gridMET [30] |
Land Surface Phenology | 1000 m | 16 days (Terra), 2003–2017 * | MODIS NDVI [31] (MOD13A2.061) |
Reference Evapotranspiration | 4000 m | Daily, 1981–2010 * | gridMET [30] |
Air Temperature | 4000 m | Daily, 1984–2017 * | gridMET [30] |
Soil Properties | 90 m | Static | gNATSGO [32,33] |
Interception | 250 m | Static | MODIS VCF [34] (MOD44B.061) |
Parameters | Spatial Resolution | Temporal Resolution | Reference |
---|---|---|---|
Precipitation | 0.05° | Daily; 1981—current | CHIRPS [36] |
Land Surface Phenology | 1000 m | Every 8 days (Aqua and Terra); 2003–2017 * | MODIS NDVI [31] |
Reference Evapotranspiration | 0.625° × 0.5° | daily; 1981–2010 * | NOAA ETo [37] |
Air Temperature | 1000 m | Monthly; 1981–2010 * | CHELSA [39] |
Soil Properties | 250 m | Static | ISRIC [38] |
Interception | 250 m | Static | MODIS VCF [34] |
Site ID | Name | State | Location (Latitude, Longitude in Degrees) | Time Period |
---|---|---|---|---|
2002 | Crescent Lake #1 | Minnesota | 45.42°, −93.95° | October 1993 to current |
2022 | Fort Reno #1 | Nebraska | 35.33°, −98.02° | November 1998 to current |
2168 | Jornada Exp Range | New Mexico | 32.56°, −106.70° | October 2009 to current |
Site ID | Site Name | Elevation (m) | Location (Latitude, Longitude in Degrees) | Time Period |
---|---|---|---|---|
982 | Cole Canyon | 5910 | 44.48°, −104.42° | 2000 to current |
409 | Columbine Pass | 9171 | 38.42°, −108.39° | 1985 to current |
1034 | Sierra Blanca | 10268 | 33.40°, −105.80° | 2002 to current |
Site ID | Name Name | Landcover | Location (Latitude, Longitude in Degrees) | Time Period Available |
---|---|---|---|---|
US-AR1 | ARM USDA | Grassland | 36.43, −99.42 | 2003–2021 |
US-Ne3 | Mead | Rainfed crop | 41.12, −96.44 | 2001–2020 |
US-Var | Vaira Ranch–Ione | Grassland | 38.41, −120.95 | 2000–2014 |
Spatial Resolution | Temporal Resolution | Study Years | Number of HUC8s (R/P * ≤ 0.40) |
---|---|---|---|
HUC8 scale | Water year (October 1–September 30) | 2012 (dry), 2016 (wet), 2018 (average) | 1762 (1441) 1762 (1432) 1762 (1396) |
Statistics | Without Filter | With Filter (R/P ≤ 0.40) | ||||
---|---|---|---|---|---|---|
2012 | 2016 | 2018 | 2012 | 2016 | 2018 | |
N (HUC8) | 1762 | 1762 | 1762 | 1441 | 1432 | 1396 |
r (correlation coefficient) | 0.90 | 0.88 | 0.90 | 0.82 | 0.81 | 0.82 |
WaterWatch runoff (mm/yr) | 216 | 297 | 267 | 128 | 205 | 165 |
VegET runoff (mm/yr) | 173 | 253 | 203 | 122 | 198 | 141 |
Bias (mm/yr) | −44 | −44 | −64 | −6 | −7 | −24 |
Relative bias (%) | −20.2 | −14.8 | −23.9 | −4.6 | −3.4 | −14.6 |
RMSE (mm/yr) | 144 | 163 | 157 | 85 | 127 | 107 |
Relative RMSE (%) | 66.5 | 54.9 | 58.9 | 66.9 | 62.2 | 64.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senay, G.B.; Kagone, S.; Parrish, G.E.L.; Khand, K.; Boiko, O.; Velpuri, N.M. Improvements and Evaluation of the Agro-Hydrologic VegET Model for Large-Area Water Budget Analysis and Drought Monitoring. Hydrology 2023, 10, 168. https://doi.org/10.3390/hydrology10080168
Senay GB, Kagone S, Parrish GEL, Khand K, Boiko O, Velpuri NM. Improvements and Evaluation of the Agro-Hydrologic VegET Model for Large-Area Water Budget Analysis and Drought Monitoring. Hydrology. 2023; 10(8):168. https://doi.org/10.3390/hydrology10080168
Chicago/Turabian StyleSenay, Gabriel B., Stefanie Kagone, Gabriel E. L. Parrish, Kul Khand, Olena Boiko, and Naga M. Velpuri. 2023. "Improvements and Evaluation of the Agro-Hydrologic VegET Model for Large-Area Water Budget Analysis and Drought Monitoring" Hydrology 10, no. 8: 168. https://doi.org/10.3390/hydrology10080168
APA StyleSenay, G. B., Kagone, S., Parrish, G. E. L., Khand, K., Boiko, O., & Velpuri, N. M. (2023). Improvements and Evaluation of the Agro-Hydrologic VegET Model for Large-Area Water Budget Analysis and Drought Monitoring. Hydrology, 10(8), 168. https://doi.org/10.3390/hydrology10080168