Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Collection and Analysis Methods
3.2. Moran’s I (Index) Statistic
3.3. Entropy Water Quality Index (EWQI)
3.4. Health Risk Assessment
4. Results and Discussion
4.1. General Characteristics of Hydrochemical Parameters
4.2. Spatial Distribution Pattern of Hydrochemical Parameters
4.3. Spatial Interpolation of the Hydrochemical Parameters
4.4. Comprehensive Assessment of Groundwater Quality
4.5. Noncarcinogenic Health Risk Assessment of Nitrate
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma 2010, 159, 390–398. [Google Scholar]
- Belkhiri, L.; Narany, T.S. Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resour. Manag. 2015, 29, 2073–2089. [Google Scholar] [CrossRef]
- Belkhiri, L.; Mouni, L.; Narany, T.S.; Tiri, A. Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundw. Sustain. Dev. 2017, 4, 12–22. [Google Scholar] [CrossRef]
- Belkhiri, L.; Mouni, L.; Tiri, A.; Narany, T.S.; Nouibet, R. Spatial analysis of groundwater quality using self-organizing maps. Groundw. Sustain. Dev. 2018, 7, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Tiri, A.; Belkhiri, L.; Mouni, L. Evaluation of surface water quality for drinking purposes using fuzzy inference system. Groundw. Sustain. Dev. 2018, 6, 235–244. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.; Duan, L.; Wang, Z.; Zhao, Y.; Zhang, Q.; Dai, M.; Liu, H.; Zheng, X. Response of the groundwater system in the Guanzhong Basin (central China) to climate change and human activities. Hydrogeol. J. 2018, 26, 1429–1441. [Google Scholar]
- Belkhiri, L.; Tiri, A.; Mouni, L. Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations. Groundw. Sustain. Dev. 2020, 11, 100473. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Wang, S.; Tian, R.; Xue, C.; Feng, W.; Li, Y. Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation, northwest China. Environ. Earth Sci. 2017, 76, 460. [Google Scholar] [CrossRef]
- Li, P.; He, X.; Li, Y.; Xiang, G. Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: A case study of tongchuan, northwest China. Expo. Health 2019, 11, 95–107. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Deepali, M.; Subramani, T.; Bellows, B.C.; Li, P. Groundwater quality evolution based on geochemical modeling and aptness testing for ingestion using entropy water quality and total hazard indexes in an urban-industrial area (Tiruppur) of Southern India. Environ. Sci. Pollut. Res. 2021, 28, 18523–18538. [Google Scholar] [CrossRef]
- Tiri, A.; Belkhiri, L.; Asma, M.; Mouni, L. Suitability and assessment of surface water for irrigation purpose. In Water chemistry; IntechOpen: London, UK, 2020; pp. 1–18. [Google Scholar]
- Liu, J.; Peng, Y.; Li, C.; Gao, Z.; Chen, S. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health. Environ. Pollut. 2021, 268, 115947. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, A. Appraisal of groundwater quality with human health risk assessment in parts of indo-gangetic alluvial plain, north India. Arch. Environ. Contam. Toxicol. 2021, 80, 55–73. [Google Scholar] [CrossRef]
- Singaraja, C. Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu, India. Appl. Water Sci. 2017, 7, 2157–2173. [Google Scholar] [CrossRef]
- Belkhiri, L.; Mouni, L.; Tiri, A.; Narany, T.S. Evaluation of groundwater quality and its suitability for drinking and agricultural purposes using self-organizing maps. Int. J. Geol. Environ. Eng. 2017, 11, 705–709. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell. Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Adimalla, N. Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: An approach of water quality index (WQI) and health risk assessment (HRA). Environ. Geochem. Health 2020, 42, 1725–1752. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Qian, H.; Ren, W.H.; Wang, H.K.; Liu, F.X.; Yang, F.X. Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. J. Clean. Prod. 2020, 260, 121006. [Google Scholar] [CrossRef]
- Kalaivanan, K.; Gurugnanam, B.; Pourghasemi, H.R.; Suresh, M.; Kumaravel, S. Spatial assessment of groundwater quality using water quality index and hydrochemical indices in the Kodavanar sub-basin, Tamil Nadu, India. Sustain. Water Resour. Manag. 2018, 4, 627–641. [Google Scholar] [CrossRef]
- Nawale, V.P.; Malpe, D.B.; Marghade, D.; Yenkie, R. Non-carcinogenic health risk assessment with source identification of nitrate and fluoride polluted groundwater of Wardha sub-basin, central India. Ecotoxicol. Environ. Saf. 2021, 208, 111548. [Google Scholar] [CrossRef]
- Zhai, Y.; Lei, Y.; Wu, J.; Teng, Y.; Wang, J.; Zhao, X.; Pan, X. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environ. Sci. Pollut. Res. 2017, 24, 3640–3653. [Google Scholar] [CrossRef]
- Kom, K.P.; Gurugnanam, B.; Bairavi, S. Non-carcinogenic health risk assessment of nitrate and fluoride contamination in the groundwater of Noyyal basin, India. Geod. Geodyn. 2022, 13, 619–631. [Google Scholar] [CrossRef]
- Noori, R.; Farahani, F.; Jun, C.; Aradpour, S.; Bateni, S.M.; Ghazban, F.; Hosseinzadeh, M.; Maghrebi, M.; Naseh, M.R.V.; Abolfathi, S. A non-threshold model to estimate carcinogenic risk of nitrate-nitrite in drinking water. J. Clean. Prod. 2022, 363, 132432. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Shil, S.; Singh, U.K. Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecol. Indic. 2019, 106, 105455. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 2018, 77, 273. [Google Scholar] [CrossRef]
- Adimalla, N. Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. Hum. Ecol. Risk. Assess. 2019, 26, 310–334. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, H.; Xu, P.; Hou, K.; Yang, F. Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District, China. Ecotoxicol. Environ. Saf. 2021, 212, 111992. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Z.; Feng, J.; Wang, M. Identification of the hydrochemical features, genesis, water quality and potential health hazards of groundwater in Dawen River Basin, North China. Ecol. Indic. 2023, 149, 110175. [Google Scholar] [CrossRef]
- Singh, G.; Rishi, M.S.; Herojeet, R.; Kaur, L.; Sharma, K. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India. Environ. Geochem. Health 2020, 42, 1833–1862. [Google Scholar] [CrossRef]
- Moran, P.A.P. The interpretation of statistical maps. J. R. Stat. Society 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion: London, UK, 1981. [Google Scholar]
- Goodchild, M.F. Spatial Autocorrelation; Catmog 47; Geo Books: Kattappana, India, 1986. [Google Scholar]
- Adimalla, N. Application of the entropy weighted water quality index (EWQI) and the pollution index of groundwater (PIG) to assess groundwater quality for drinking purposes: A case study in a rural area of telangana state, India. Arch. Environ. Contam. Toxicol. 2021, 80, 31–40. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Zhang, Y.H. Spatio-temporal Analysis of Groundwater Chemistry, Quality and Potential Human Health Risks in the Pinggu Basin of North China Plain: Evidence from High-Resolution Monitoring Dataset of 2015–2017. Sci. Total Environ. 2021, 800, 149568. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Qian, C.; Zhu, G. Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region, northwest China. Appl. Geochem. 2018, 98, 404–417. [Google Scholar] [CrossRef]
- Sheng, D.; Meng, X.; Wen, X.; Wu, J.; Yu, H.; Wu, M.; Zhou, T. Hydrchemical characteristics, quality and health risk assessment of nitrate enriched coastal groundwater in northern China. J. Clean. Prod. 2023, 403, 136872. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Qian, H. Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of ningxia, northwest China. Expo. Health 2016, 8, 349–359. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Z.; Zhang, Y.; Sun, Z.; Sun, T.; Fan, H.; Wu, B.; Li, M.; Qian, L. Hydrochemical evaluation of groundwater quality and human health risk assessment of nitrate in the largest peninsula of China based on high-density sampling: A case study of Weifang. J. Clean. Prod. 2021, 322, 12916. [Google Scholar] [CrossRef]
- USEPA (U.S. Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response: Washington, DC, USA, 1989.
- USEPA (U.S. Environmental Protection Agency). Exposure Factors Handbook; General Factors; Office of Research and Development: Washington, DC, USA, 1997; Volume 1.
- USEPA (U.S. Environmental Protection Agency). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Office of Emergency and Remedial Response: Washington, DC, USA, 2002.
- Tran, D.A.; Tsujimura, M.; Loc, H.H.; Dang, D.H.; Le Vo, P.; Ha, D.T.; Nguyen, T.V. Groundwater quality evaluation and health risk assessment in coastal lowland areas of the Mekong Delta, Vietnam. Groundw. Sustain. Dev. 2021, 15, 100679. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.; Xiao, D.; Zhu, Y.; Yin, S.; Zhang, Y. Hydrogeochemical insights into the signatures, genesis and sustainable perspective of nitrate enriched groundwater in the piedmont of Hutuo watershed, China. Catena 2022, 212, 106020. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhang, Y.; Liu, Y.; Wang, B.; Zhang, G. Spatially varying relationships between land subsidence and urbanization: A case study in Wuhan, China. Remote Sens. 2022, 14, 291. [Google Scholar] [CrossRef]
Min | Max | Mean | SD | Cv | Sj | ej | wj | |
---|---|---|---|---|---|---|---|---|
pH | 6.00 | 7.50 | 6.77 | 0.26 | 0.04 | 8.5-7 | 0.9982 | 0.0530 |
EC | 228 | 1411 | 821 | 279 | 0.34 | 500 | 0.9966 | 0.0997 |
Ca | 16.19 | 198.18 | 95.56 | 32.50 | 0.34 | 75 | 0.9979 | 0.0606 |
Mg | 11.02 | 61.32 | 37.39 | 12.01 | 0.32 | 50 | 0.9966 | 0.0993 |
Na | 12.47 | 38.14 | 24.57 | 4.99 | 0.20 | 200 | 0.9976 | 0.0698 |
K | 1.78 | 5.45 | 3.51 | 0.71 | 0.20 | 12 | 0.9976 | 0.0698 |
Cl | 63.90 | 255.60 | 150.08 | 53.12 | 0.35 | 250 | 0.9951 | 0.1441 |
SO4 | 61.39 | 270.00 | 125.97 | 49.93 | 0.40 | 250 | 0.9957 | 0.1252 |
HCO3 | 97.60 | 524.60 | 232.02 | 90.22 | 0.39 | 500 | 0.9966 | 0.0989 |
NO3 | 0.02 | 47.54 | 23.47 | 14.77 | 0.63 | 45 | 0.9938 | 0.1795 |
EWQI | 41.54 | 94.42 | 63.35 | 12.51 | 0.20 |
Moran’ I | Expected I | Z Resampling | p-Value Resampling | Z Randomization | p-Value Randomization | |
---|---|---|---|---|---|---|
pH | 0.1556 | −0.0294 | 2.2510 | 2.44 × 10−2 | 2.3744 | 0.0176 |
EC | 0.0999 | −0.0294 | 1.5736 | 1.16 × 10−1 | 1.5647 | 0.1176 |
Ca | 0.2695 | −0.0294 | 3.6360 | 2.77 × 10−4 | 3.7808 | 0.0002 |
Mg | −0.0950 | −0.0294 | −0.7974 | 4.25 × 10−1 | −0.7940 | 0.4272 |
Na | −0.0806 | −0.0294 | −0.6223 | 5.34 × 10−1 | −0.6352 | 0.5253 |
K | −0.0805 | −0.0294 | −0.6216 | 5.34 × 10−1 | −0.6345 | 0.5258 |
Cl | 0.3360 | −0.0294 | 4.4453 | 8.78 × 10−6 | 4.3863 | 0.0000 |
SO4 | 0.0810 | −0.0294 | 1.3435 | 1.79 × 10−1 | 1.3828 | 0.1667 |
HCO3 | 0.3837 | −0.0294 | 5.0257 | 5.02 × 10−7 | 5.1597 | 0.0000 |
NO3 | −0.0738 | −0.0294 | −0.5403 | 5.89 × 10−1 | −0.5336 | 0.5936 |
Range | Water Type | No. of Samples | % of Samples |
---|---|---|---|
EWQI ≤ 25 | Excellent | 0 | 0 |
25 < EWQI ≤ 50 | Good | 5 | 14 |
50 < EWQI ≤ 100 | Moderate | 30 | 86 |
100 < EWQI ≤ 150 | Poor | 0 | 0 |
EWQI > 150 | Extremely Poor | 0 | 0 |
HQ | Min | Max | Mean | SD | CV |
---|---|---|---|---|---|
HQChildren | 0.00052 | 1.23802 | 0.61127 | 0.38451 | 0.62903 |
HQAdults | 0.00045 | 1.06116 | 0.52395 | 0.32958 | 0.62903 |
Range | Risk | Child | Adult | ||
---|---|---|---|---|---|
No. of Samples | % of Samples | No. of Samples | % of Samples | ||
HQ ≤ 1 | No risk | 30 | 86 | 33 | 94 |
1 < HQ ≤ 4 | Medium | 5 | 14 | 2 | 6 |
HQ > 4 | High | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brella, D.; Belkhiri, L.; Tiri, A.; Salhi, H.; Lakouas, F.E.; Nouibet, R.; Amrane, A.; Merdoud, R.; Mouni, L. Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria. Hydrology 2023, 10, 171. https://doi.org/10.3390/hydrology10080171
Brella D, Belkhiri L, Tiri A, Salhi H, Lakouas FE, Nouibet R, Amrane A, Merdoud R, Mouni L. Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria. Hydrology. 2023; 10(8):171. https://doi.org/10.3390/hydrology10080171
Chicago/Turabian StyleBrella, Djouhaina, Lazhar Belkhiri, Ammar Tiri, Hichem Salhi, Fatma Elhadj Lakouas, Razki Nouibet, Adeltif Amrane, Ryma Merdoud, and Lotfi Mouni. 2023. "Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria" Hydrology 10, no. 8: 171. https://doi.org/10.3390/hydrology10080171
APA StyleBrella, D., Belkhiri, L., Tiri, A., Salhi, H., Lakouas, F. E., Nouibet, R., Amrane, A., Merdoud, R., & Mouni, L. (2023). Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria. Hydrology, 10(8), 171. https://doi.org/10.3390/hydrology10080171