Simple and Complex Substrates (Sugar, Acetate and Milk Whey) for In Situ Bioremediation of Groundwater with Nitrate and Actinide Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Samples
2.2. Sandy-Loam Samples
2.3. Methods
3. Results
3.1. Screening of Substrates for Nitrate Removal (Accumulation of Nitrite Ions) in Samples of Groundwater
3.2. Distribution of Radionuclide Forms in the Solution/Sediment System in A Sample of Natural Water
3.3. Actinides Size Distribution in a Sample of Natural Water after Substrates Addition
3.4. Actinides Sorption on Rock Samples in the Presence of Milk Whey, Sugar, Acetate, and Metabolites
3.5. Desorption of Radionuclides from Rock Samples in the Presence of Substrates
4. Conclusions
- The mobility of neptunium was more significant than americium and plutonium, and the leaching by natural water was in a range from 28 to 39%.
- For samples with high aluminum and sulfur content, a significant reduction in americium leaching was observed after pre-treatment of microbial activation. In the presence of hydroxylamine (HA), this difference reached up to 40% of the total.
- In the case of the plutonium in the samples with a high aluminum content, a minor increase in leaching with pre-treatment was observed in the presence of HA. The proportion of plutonium leached without pre-treatment in this case constituted 70% to 80% of the total.
- The occurrence of active microbial processes on rocks may be associated with the reduction of iron and the conversion of highly crystalline ferruginous phases into less crystalline ones with a higher sorption capacity with respect to actinides.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rawson, S.A.; Walton, J.C.; Baca, R.G. Migration of actinides from a transuranic waste disposal site in the vadose zone. Radiochim. Acta 1991, 52, 477–486. [Google Scholar] [CrossRef]
- Maher, K.; Bargar, J.R.; Brown, G.E., Jr. Environmental speciation of actinides. Inorg. Chem. 2013, 52, 3510–3532. [Google Scholar] [CrossRef] [PubMed]
- Choppin, G. Actinide speciation in the environment. J. Radioanal. Nucl. Chem. 2007, 273, 695–703. [Google Scholar] [CrossRef]
- Safonov, A.V.; Boguslavsky, A.E.; Gaskova, O.L.; Boldyrev, K.A.; Shvartseva, O.S.; Khvashchevskaya, A.A.; Popova, N.M. Biogeochemical modelling of uranium immobilization and aquifer remediation strategies near NCCP sludge storage facilities. Appl. Sci. 2021, 11, 2875. [Google Scholar] [CrossRef]
- Nash, K.L.; Jensen, M.P.; Schmidt, M.A. In-situ mineralization of actinides for groundwater cleanup: Laboratory demonstration with soil from the Fernald Environmental Management Project. In Science and Technology for Disposal of Radioactive Tank Wastes, 1st ed.; Schulz, W.W., Lombardo, N.J., Eds.; Springer: New York, NY, USA, 1998; pp. 507–518. [Google Scholar]
- Buesseler, K.O.; Dai, M.; Repeta, D.J. Speciation, Mobility and Fate of Actinides in the Groundwater at the Hanford Site; Woods Hole Oceanographic Institution: Falmouth, MA, USA, 2003. [Google Scholar]
- Razvorotneva, L.I.; Boguslavskii, A.E.; Markovich, T.I. Geochemical aspects of environmentally safe conservation of liquid radioactive waste. Radiochemistry 2016, 58, 317–322. [Google Scholar] [CrossRef]
- Pronkin, N.S.; Sharafutdinov, R.B.; Kovalevich, O.M.; Smetnik, A.A.; Levin, A.G.; Kabakchi, S.A.; Masanov, O.L. Hazard classification of holding ponds for liquid radioactive wastes. AT Energy 2003, 94, 398–404. [Google Scholar] [CrossRef]
- Bayliss, C.; Langley, K. Nuclear Decommissioning, Waste Management, and Environmental Site Remediation; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Boguslavsky, A.E.; Gaskova, O.L.; Naymushina, O.S.; Popova, N.M.; Safonov, A.V. Environmental monitoring of low-level radioactive waste disposal in electrochemical plant facilities in Zelenogorsk, Russia. Appl. Geochem. 2020, 119, 104598. [Google Scholar]
- Safonov, A.; Popova, N.; Boldyrev, K.; Lavrinovich, E.; Boeva, N.; Artemiev, G.; Kuzovkina, E.; Emelyanov, A.; Myasnikov, I.; Zakharova, E.; et al. The microbial impact on U, Pu, Np, and Am immobilization on aquifer sandy rocks, collected at the deep LRW injection site. J. Geochem. Explor. 2022, 240, 107052. [Google Scholar] [CrossRef]
- Safonov, A.; Lavrinovich, E.; Emel’yanov, A.; Boldyrev, K.; Kuryakov, V.; Rodygina, N.; Zakharova, E.; Novikov, A. Risk of colloidal and pseudo-colloidal transport of actinides in nitrate contaminated groundwater near a radioactive waste repository after bioremediation. Sci. Rep. 2022, 12, 4557. [Google Scholar] [CrossRef]
- Baumer, T.; Hellebrandt, S.; Maulden, E.; Pearce, C.I.; Emerson, H.P.; Zavarin, M.; Kersting, A.B. Pu distribution among mixed waste components at the Hanford legacy site, USA and implications to long-term migration. Appl. Geochem. 2022, 141, 105304. [Google Scholar] [CrossRef]
- Novikov, A.; Vlasova, I.; Safonov, A.; Ermolaev, V.; Zakharova, E.; Kalmykov, S. Speciation of actinides in groundwater samples collected near deep nuclear waste repositories. J. Environ. Radioact. 2018, 192, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Kalmykov, S.N.; Zakharova, E.V.; Novikov, A.P.; Myasoedov, B.F.; Utsunomiya, S. Effect of redox conditions on actinide speciation and partitioning with colloidal matter. In Actinide Nanoparticle Research; Springer: Berlin/Heidelberg, Germany, 2011; pp. 361–375. [Google Scholar]
- Mibus, J.; Sachs, S.; Pfingsten, W.; Nebelung, C.; Bernhard, G. Migration of uranium (IV)/(VI) in the presence of humic acids in quartz sand: A laboratory column study. J. Contam. Hydrol. 2007, 89, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Santschi, P.H.; Kimberly, A.R.; Laodong, G. Organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol. 2022, 36, 3711–3719. [Google Scholar] [CrossRef] [PubMed]
- Andryushchenko, N.D.; Safonov, A.V.; Babich, T.L.; Ivanov, P.V.; Konevnik, Y.V.; Kondrashova, A.A.; Proshin, I.M.; Zakharova, E.V. Sorption characteristics of materials of the filtration barrier in upper aquifers contaminated with radionuclides. Radiochemistry 2017, 59, 414–424. [Google Scholar] [CrossRef]
- Safonov, A.V.; Andryushchenko, N.D.; Ivanov, P.V.; Boldyrev, K.A.; Babich, T.L.; German, K.E.; Zakharova, E.V. Biogenic Factors of Radionuclide Immobilization on Sandy Rocks of Upper Aquifers. Radiochemistry 2019, 61, 99–108. [Google Scholar] [CrossRef]
- Safonov, A.V.; Boguslavskii, A.E.; Boldyrev, K.A.; Zayceva, L.V. Biogenic Factors of Formation of Geochemical Uranium Anomalies near the Sludge Storage of the Novosibirsk Chemical Concentrate Plant. Geochem. Int. 2019, 57, 709–715. [Google Scholar] [CrossRef]
- Gillow, J.B.; Dunn, M.; Francis, A.J.; Lucero, D.A.; Papenguth, H.W. The potential of subterranean microbes in facilitating actinide migration at the Grimsel Test Site and Waste Isolation Pilot Plant. Radiochim. Acta 2022, 88, 769–775. [Google Scholar] [CrossRef]
- Banaszak, J.; Rittmann, B.; Reed, D. Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures. J. Radioanal. Nucl. Chem. 1999, 241, 385–435. [Google Scholar] [CrossRef]
- Nash, K.; Jensen, M.; Schmidt, M. Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: Uranyl uptake by calcium phytate. J. Alloys Compd. 1998, 271-273, 257–261. [Google Scholar] [CrossRef]
- Safonov, A.V.; Babich, T.L.; Sokolova, D.S.; Grouzdev, D.S.; Tourova, T.P.; Poltaraus, A.B.; Zakharova, E.V.; Merkel, A.Y.; Novikov, A.P.; Nazina, T.N. Microbial Community and in situ Bioremediation of Groundwater by Nitrate Removal in the Zone of a Radioactive Waste Surface Repository. Front. Microbiol. 2018, 9, 1985. [Google Scholar] [CrossRef]
- Renshaw, J.C.; Butchins, L.J.C.; Livens, F.R.; May, I.; Charnock, J.M.; Lloyd, J.R. Bioreduction of Uranium: Environmental Implications of a Pentavalent Intermediate. Environ. Sci. Technol. 2005, 39, 5657–5660. [Google Scholar] [CrossRef] [PubMed]
- Newsome, L.; Morris, K.; Lloyd, J.R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2013, 363, 164–184. [Google Scholar] [CrossRef]
- Kanematsu, H.; Barry, D.M. Environmental problems: Soil and underground water treatment and bioremedi-ation. In Biofilm and Materials Science; Springer: Cham, Switzerland, 2015; pp. 117–123. [Google Scholar]
- Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; et al. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. ISME J. 2010, 4, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Madden, A.S.; Palumbo, A.V.; Ravel, B.; Vishnivetskaya, T.A.; Phelps, T.J.; Schadt, C.W.; Brandt, C.C. Donor-dependent extent of uranium reduction for bioremediation of contaminated sediment mi-crocosms. J. Environ. Qual. 2009, 38, 53–60. [Google Scholar] [CrossRef]
- Anderson, R.T.; Vrionis, H.A.; Ortiz-Bernad, I.; Resch, C.T.; Long, P.E.; Dayvault, R.; Karp, K.; Marutzky, S.; Metzler, D.R.; Peacock, A.; et al. Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer. Appl. Environ. Microbiol. 2003, 69, 5884–5891. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.B.; Wu, W.-M.; Mehlhorn, T.; Tang, G.; Earles, J.; Lowe, K.; Gihring, T.M.; Zhang, G.; Phillips, J.; Boyanov, M.I.; et al. In Situ Bioremediation of Uranium with Emulsified Vegetable Oil as the Electron Donor. Environ. Sci. Technol. 2013, 47, 6440–6448. [Google Scholar] [CrossRef] [PubMed]
- Hall, S. Groundwater Restoration at Uranium In-Situ Recovery Mines, South Texas Coastal Plain; US Geological Survey: Denver, CO, USA, 2009. [Google Scholar] [CrossRef]
- Williamson, A.J.; Binet, M.; Sergeant, C. Radionuclide biogeochemistry: From bioremediation toward the treatment of aqueous radioactive effluents. Crit. Rev. Biotechnol. 2023, 1–19. [Google Scholar] [CrossRef]
- Kobayashi, T.; Sasaki, T.; Kitamura, A. Thermodynamic interpretation of uranium(IV/VI) solubility in the presence of α-isosaccharinic acid. J. Chem. Thermodyn. 2019, 138, 151–158. [Google Scholar] [CrossRef]
- Novikov, A.P.; Goryachenkova, T.A.; Sobakin, P.I.; Kazinskaya, I.E.; Ryleeva, V.S. Speciation of plutonium and americium in the soils affected by Kraton-3 accidental underground nuclear explosion in Yakutia (Russia). J. Radioanal. Nucl. Chem. 2015, 307, 691–697. [Google Scholar] [CrossRef]
- Novikov, A.P.; Safonov, A.V.; Babich, T.L.; Boldyrev, K.A.; Kryuchkov, D.V.; Lavrinovich, E.A.; Kuzovkina, E.V.; Emel’yanov, A.M.; Goryachenkova, T.A. Biotransformation of Neptunium in Model Groundwaters. Geochem. Int. 2020, 58, 182–188. [Google Scholar] [CrossRef]
- Margalef-Marti, R.; Carrey, R.; Soler, A.; Otero, N. Evaluating the potential use of a dairy industry residue to induce denitrification in polluted water bodies: A flow-through experiment. J. Environ. Manag. 2019, 245, 86–94. [Google Scholar] [CrossRef]
- Banerjee, S.; Kundu, A.; Dhak, P. Bioremediation of uranium from waste effluents using novel biosorbents: A review. J. Radioanal. Nucl. Chem. 2022, 331, 2409–2435. [Google Scholar] [CrossRef]
- Del Nero, M.; Froideval, A.; Gaillard, C.; Mignot, G.; Barillon, R.; Munier, I.; Ozgümüs, A. Mechanisms of uranyl sorption. Geol. Soc. London, Spéc. Publ. 2004, 236, 545–560. [Google Scholar] [CrossRef]
- Neu, M.P.; Boukhalfa, H.; Merroun, M.L. Biomineralization and biotransformations of actinide materials. MRS Bull. 2010, 35, 849–857. [Google Scholar] [CrossRef]
Well | 1 | 2 |
---|---|---|
Sampling depth, m | 15 | 15 |
TOS Salinity, mg/L | 3952.0 | 109.0 |
pH | 6.58 | 6.41 |
Eh | 65 | −30 |
Oxidizability, mg O/L | 13.10 | 5.11 |
Fe(total) | 0.25 | 2.38 |
Na+ | 604.0 | 3.41 |
K+ | 3.09 | 0.59 |
Ca2+ | 316.60 | 15.39 |
Mg2+ | 63.20 | 2.76 |
NH4+ | 7.64 | <0.5 |
NO3− | 2517.0 | 0.77 |
SO42− | 72.40 | 0.84 |
Cl− | 4.52 | 2.26 |
HCO3− | 331.0 | 67.10 |
NO2− | <0.2 | <0.2 |
Sample | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | TiO2 | MnO | Fe2O3 | P2O5 | S |
---|---|---|---|---|---|---|---|---|---|---|---|
s1 | 1.68 | 1.14 | 8.64 | 79.32 | 1.69 | 1.46 | 0.39 | 0.038 | 2.75 | 0.07 | 0.09 |
s2 | 3.18 | 2.80 | 7.78 | 74.20 | 1.98 | 4.45 | 0.01 | 0.001 | 2.15 | 0.05 | 2.78 |
s3 | 1.11 | 0.98 | 11.81 | 77.51 | 2.82 | 0.44 | 0.600 | 0.11 | 4.41 | 0.10 | <0.02 |
s4 | 1.20 | 0.96 | 11.69 | 79.03 | 3.00 | 0.46 | 0.570 | 0.06 | 2.84 | 0.08 | <0.02 |
s5 | 1.2 | 1.4 | 13.4 | 75.7 | 2.9 | 1.5 | 0.78 | 0.11 | 2.9 | 0.1 | <0.02 |
Mineral Phase | Samples | ||||
---|---|---|---|---|---|
s1 | s2 | s3 | s4 | s5 | |
Quarz | 50 | 42 | 49 | 53 | 36 |
Siderite | 4 | - | 3 | 1 | 4 |
Calcite | - | 4 | - | - | - |
Potassium feldspar | 22 | 20 | 20 | 20 | 10 |
Albite | 3 | 6 | - | - | 25 |
Amphibole | - | - | - | - | 2 |
Goethite | 4 | 2 | 3 | 1 | - |
Smectite | 8 | 13 | 5 | 5 | 10 |
Kaolinite | 3 | 3 | 5 | 5 | 5 |
Illite | 5 | 10 | 5 | 5 | 5 |
Chlorite | - | - | - | - | 3 |
Substrates | Sample 1 | Sample 2 | ||
---|---|---|---|---|
NO3− Removal | NO2− Accumulation | NO3− Removal | NO2− Accumulation | |
Hydrogen | 89.1 | 0.2 | 102.6 | 0.5 |
Methanol | 106.2 | 5.0 | 41.8 | 7.9 |
Ethanol | 96.5 | 2.9 | 92.2 | 8.4 |
Glycerin | 45.7 | 2.9 | 55.8 | 3.9 |
Oxalate | 33.4 | 8.6 | 32.4 | 11.4 |
Acetate | 115.1 | 4.3 | 160.6 | 6.8 |
Lactate | 86.5 | 4.3 | 39.5 | 3.9 |
Glucose | 96.5 | 2.1 | 104.1 | 6.7 |
Sucrose | 136.1 | 5.0 | 106.5 | 7.5 |
Milk whey | 232.8 | 0.2 | 136.7 | 0.15 |
Brewing waste | 222.1 | 16.7 | 94.0 | 0.56 |
Sunflower oil | 78.6 | 16.0 | 56.8 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myasnikov, I.; Artemiev, G.; Lavrinovich, E.; Kazinskaya, I.; Novikov, A.; Safonov, A. Simple and Complex Substrates (Sugar, Acetate and Milk Whey) for In Situ Bioremediation of Groundwater with Nitrate and Actinide Contamination. Hydrology 2023, 10, 175. https://doi.org/10.3390/hydrology10080175
Myasnikov I, Artemiev G, Lavrinovich E, Kazinskaya I, Novikov A, Safonov A. Simple and Complex Substrates (Sugar, Acetate and Milk Whey) for In Situ Bioremediation of Groundwater with Nitrate and Actinide Contamination. Hydrology. 2023; 10(8):175. https://doi.org/10.3390/hydrology10080175
Chicago/Turabian StyleMyasnikov, Ivan, Grigory Artemiev, Elena Lavrinovich, Irina Kazinskaya, Alexander Novikov, and Alexey Safonov. 2023. "Simple and Complex Substrates (Sugar, Acetate and Milk Whey) for In Situ Bioremediation of Groundwater with Nitrate and Actinide Contamination" Hydrology 10, no. 8: 175. https://doi.org/10.3390/hydrology10080175
APA StyleMyasnikov, I., Artemiev, G., Lavrinovich, E., Kazinskaya, I., Novikov, A., & Safonov, A. (2023). Simple and Complex Substrates (Sugar, Acetate and Milk Whey) for In Situ Bioremediation of Groundwater with Nitrate and Actinide Contamination. Hydrology, 10(8), 175. https://doi.org/10.3390/hydrology10080175