ARIMA and TFARIMA Analysis of the Main Water Quality Parameters in the Initial Components of a Megacity’s Drinking Water Supply System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
3.1. Water Quality Indicators
3.2. ARIMA Models
3.3. ARIMA and TFARIMA Comparative Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Yue, W.; Wu, T.; Zhang, X.; Xia, C. Human Well-Being Related Analysis on Urban Carrying Capacity: An Empirical Study in Chinese Mega-Cities. J. Urban Aff. 2023, 45, 1–17. [Google Scholar] [CrossRef]
- Abu-Zeid, M.A. Water and Sustainable Development: The Vision for World Water, Life and the environment. This Paper Is Based on a Keynote Address Made at the International Conference on Water and Sustainable Development, Paris, March 19, 1998. Water Policy 1998, 1, 9–19. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water Management: Current and Future Challenges and Research Directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Senbore, S.; Oke, S.A. Urban Development Impact on Climate Variability and Surface Water Quality in Part of Mangaung Metropolis of South Africa. Dev. S. Afr. 2023, 40, 293–312. [Google Scholar] [CrossRef]
- Ramsay, L.; Petersen, M.M.; Hansen, B.; Schullehner, J.; van der Wens, P.; Voutchkova, D.; Kristiansen, S.M. Drinking Water Criteria for Arsenic in High-Income, Low-Dose Countries: The Effect of Legislation on Public Health. Environ. Sci. Technol. 2021, 55, 3483–3493. [Google Scholar] [CrossRef]
- Wang, H.-J.; Peng, C.-W.; Han, X.; Wang, Y.; Zhang, J.; Liu, J.-L.; Zhou, M.-X.; Tang, F.; Liu, A.-L. Toxicological Characteristics of Drinking Water in Two Large-Scale Municipal Water Supply Systems of a Metropolitan City in Central China. Environ. Sci. Pollut. Res. 2023, 30, 64058–64066. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, J. Drinking Water Quality and Public Health. Expo. Health 2019, 11, 73–79. [Google Scholar] [CrossRef]
- Pérez-Vidal, A.; Escobar-Rivera, J.C.; Torres-Lozada, P. Development and Implementation of a Water-Safety Plan for Drinking-Water Supply System of Cali, Colombia. Int. J. Hyg. Environ. Health 2020, 224, 113422. [Google Scholar] [CrossRef]
- Benítez, J.S.; Rodríguez, C.M.; Casas, A.F. Disinfection Byproducts (DBPs) in Drinking Water Supply Systems: A Systematic Review. Phys. Chem. Earth Parts A/B/C 2021, 123, 102987. [Google Scholar] [CrossRef]
- Wu, S.; Sumari, N.S.; Dong, T.; Xu, G.; Liu, Y. Characterizing Urban Expansion Combining Concentric-Ring and Grid-Based Analysis for Latin American Cities. Land 2021, 10, 444. [Google Scholar] [CrossRef]
- Feola, G.; Suzunaga, J.; Soler, J.; Goodman, M.K. Ordinary Land Grabbing in Peri-Urban Spaces: Land Conflicts and Governance in a Small Colombian City. Geoforum 2019, 105, 145–157. [Google Scholar] [CrossRef]
- Rodríguez-Jeangros, N.; Camacho, L.A.; Rodríguez, J.P.; McCray, J.E. Integrated Urban Water Resources Model to Improve Water Quality Management in Data-Limited Cities with Application to Bogotá, Colombia. J. Sustain. Water Built Environ. 2018, 4, 04017019. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; McIntyre, N.; Díaz-Granados, M.; Quijano, J.P.; Maksimović, Č. Monitoring and Modelling to Support Wastewater System Management in Developing Mega-Cities. Sci. Total Environ. 2013, 445–446, 79–93. [Google Scholar] [CrossRef]
- Salamanca-Cano, A.K.; Durán-Díaz, P. Stakeholder Engagement around Water Governance: 30 Years of Decision-Making in the Bogotá River Basin. Urban Sci. 2023, 7, 81. [Google Scholar] [CrossRef]
- Poveda, G.; Álvarez, D.M.; Rueda, Ó.A. Hydro-Climatic Variability over the Andes of Colombia Associated with ENSO: A Review of Climatic Processes and Their Impact on One of the Earth’s Most Important Biodiversity Hotspots. Clim. Dyn. 2011, 36, 2233–2249. [Google Scholar] [CrossRef]
- Restrepo, J.D.; Kettner, A.J.; Syvitski, J.P.M. Recent Deforestation Causes Rapid Increase in River Sediment Load in the Colombian Andes. Anthropocene 2015, 10, 13–28. [Google Scholar] [CrossRef]
- Pintilie, L.; Torres, C.M.; Teodosiu, C.; Castells, F. Urban Wastewater Reclamation for Industrial Reuse: An LCA Case Study. J. Clean. Prod. 2016, 139, 1–14. [Google Scholar] [CrossRef]
- Savun-Hekimoğlu, B.; Erbay, B.; Hekimoğlu, M.; Burak, S. Evaluation of Water Supply Alternatives for Istanbul Using Forecasting and Multi-Criteria Decision Making Methods. J. Clean. Prod. 2021, 287, 125080. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A Review of the Application of Machine Learning in Water Quality Evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef]
- Barrientos-Torres, D.; Martinez-Ríos, E.A.; Navarro-Tuch, S.A.; Pablos-Hach, J.L.; Bustamante-Bello, R. Water Flow Modeling and Forecast in a Water Branch of Mexico City through ARIMA and Transfer Function Models for Anomaly Detection. Water 2023, 15, 2792. [Google Scholar] [CrossRef]
- Veerendra, G.T.N.; Kumaravel, B.; Rao, P.K.R.; Dey, S.; Manoj, A.V.P. Forecasting Models for Surface Water Quality Using Predictive Analytics. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Ristow, D.C.M.; Henning, E.; Kalbusch, A.; Petersen, C.E. Models for Forecasting Water Demand Using Time Series Analysis: A Case Study in Southern Brazil. J. Water Sanit. Hyg. Dev. 2021, 11, 231–240. [Google Scholar] [CrossRef]
- Kaur, J.; Parmar, K.S.; Singh, S. Autoregressive Models in Environmental Forecasting Time Series: A Theoretical and Application Review. Environ. Sci. Pollut. Res. 2023, 30, 19617–19641. [Google Scholar] [CrossRef]
- Katimon, A.; Shahid, S.; Mohsenipour, M. Modeling Water Quality and Hydrological Variables Using ARIMA: A Case Study of Johor River, Malaysia. Sustain. Water Resour. Manag. 2018, 4, 991–998. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Zhang, W.; Wang, X. Reliable Model of Reservoir Water Quality Prediction Based on Improved ARIMA Method. Environ. Eng. Sci. 2019, 36, 1041–1048. [Google Scholar] [CrossRef]
- Elevli, S.; Uzgören, N.; Bingöl, D.; Elevli, B. Drinking Water Quality Control: Control Charts for Turbidity and pH. J. Water Sanit. Hyg. Dev. 2016, 6, 511–518. [Google Scholar] [CrossRef]
- Sentas, A.; Psilovikos, A.; Karamoutsou, L.; Charizopoulos, N. Monitoring, Modeling, and Assessment of Water Quality and Quantity in River Pinios, Using ARIMA Models. Desalination Water Treat. 2018, 133, 336–347. [Google Scholar] [CrossRef]
- Azhar, S.C.; Aris, A.Z.; Yusoff, M.K.; Ramli, M.F.; Juahir, H. Classification of River Water Quality Using Multivariate Analysis. Procedia Environ. Sci. 2015, 30, 79–84. [Google Scholar] [CrossRef]
- Issa, H.M.; Alrwai, R.A. Long-Term Drinking Water Quality Assessment Using Index and Multivariate Statistical Analysis for Three Water Treatment Plants of Erbil City, Iraq. UKH J. Sci. Eng. 2018, 2, 39–48. [Google Scholar] [CrossRef]
- Arain, M.B.; Ullah, I.; Niaz, A.; Shah, N.; Shah, A.; Hussain, Z.; Tariq, M.; Afridi, H.I.; Baig, J.A.; Kazi, T.G. Evaluation of Water Quality Parameters in Drinking Water of District Bannu, Pakistan: Multivariate Study. Sustain. Water Qual. Ecol. 2014, 3–4, 114–123. [Google Scholar] [CrossRef]
- Maiolo, M.; Pantusa, D. Multivariate Analysis of Water Quality Data for Drinking Water Supply Systems. Water 2021, 13, 1766. [Google Scholar] [CrossRef]
- Skandalos, N.; Wang, M.; Kapsalis, V.; D’Agostino, D.; Parker, D.; Bhuvad, S.S.; Udayraj; Peng, J.; Karamanis, D. Building PV Integration According to Regional Climate Conditions: BIPV Regional Adaptability Extending Köppen-Geiger Climate Classification against Urban and Climate-Related Temperature Increases. Renew. Sustain. Energy Rev. 2022, 169, 112950. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. (Eds.) Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Water Works Association: Washington, DC, USA, 2017; ISBN 978-0-87553-287-5. [Google Scholar]
- Burhanuddin, S.N.Z.A.; Deni, S.M.; Ramli, N.M. Imputation of Missing Rainfall Data Using Revised Normal Ratio Method. Adv. Sci. Lett. 2017, 23, 10981–10985. [Google Scholar] [CrossRef]
- de Gois, G.; de Oliveira-Júnior, J.F.; da Silva Junior, C.A.; Sobral, B.S.; de Bodas Terassi, P.M.; Junior, A.H.S.L. Statistical Normality and Homogeneity of a 71-Year Rainfall Dataset for the State of Rio de Janeiro—Brazil. Theor. Appl. Clim. 2020, 141, 1573–1591. [Google Scholar] [CrossRef]
- Ivosev, G.; Burton, L.; Bonner, R. Dimensionality Reduction and Visualization in Principal Component Analysis. Anal. Chem. 2008, 80, 4933–4944. [Google Scholar] [CrossRef]
- Amiri, B.J.; Nakane, K. Modeling the Linkage Between River Water Quality and Landscape Metrics in the Chugoku District of Japan. Water Resour. Manag. 2009, 23, 931–956. [Google Scholar] [CrossRef]
- Beamonte Córdoba, E.; Casino Martínez, A.; Veres Ferrer, E. Water Quality Indicators: Comparison of a Probabilistic Index and a General Quality Index. The Case of the Confederación Hidrográfica Del Júcar (Spain). Ecol. Indic. 2010, 10, 1049–1054. [Google Scholar] [CrossRef]
- Morgan, G.A.; Barrett, K.C.; Leech, N.L.; Gloeckner, G.W. IBM SPSS for Introductory Statistics: Use and Interpretation, 6th ed.; Routledge: London, UK, 2019; ISBN 978-1-00-000491-5. [Google Scholar]
- Dimri, T.; Ahmad, S.; Sharif, M. Time Series Analysis of Climate Variables Using Seasonal ARIMA Approach. J. Earth Syst. Sci. 2020, 129, 149. [Google Scholar] [CrossRef]
- Viccione, G.; Guarnaccia, C.; Mancini, S.; Quartieri, J. On the Use of ARIMA Models for Short-Term Water Tank Levels Forecasting. Water Supply 2019, 20, 787–799. [Google Scholar] [CrossRef]
- Mahla, S.K.; Parmar, K.S.; Singh, J.; Dhir, A.; Sandhu, S.S.; Chauhan, B.S. Trend and Time Series Analysis by ARIMA Model to Predict the Emissions and Performance Characteristics of Biogas Fueled Compression Ignition Engine. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 4293–4304. [Google Scholar] [CrossRef]
- Ljung, G.M.; Box, G.E.P. On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Cruz, D.; Pimentel, M.; Russo, A.; Cabral, W. Charge Neutralization Mechanism Efficiency in Water with High Color Turbidity Ratio Using Aluminium Sulfate and Flocculation Index. Water 2020, 12, 572. [Google Scholar] [CrossRef]
- Stevenson, M.; Bravo, C. Advanced Turbidity Prediction for Operational Water Supply Planning. Decis. Support Syst. 2019, 119, 72–84. [Google Scholar] [CrossRef]
- García-Ávila, F.; Avilés-Añazco, A.; Sánchez-Cordero, E.; Valdiviezo-Gonzáles, L.; Ordoñez, M.D.T. The Challenge of Improving the Efficiency of Drinking Water Treatment Systems in Rural Areas Facing Changes in the Raw Water Quality. S. Afr. J. Chem. Eng. 2021, 37, 141–149. [Google Scholar] [CrossRef]
- Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O. Examining the Dynamics of the Relationship between Water pH and Other Water Quality Parameters in Ground and Surface Water Systems. PLoS ONE 2022, 17, e0262117. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, T.N. Prediction of Water Quality from Simple Field Parameters. Environ. Earth Sci. 2013, 69, 821–829. [Google Scholar] [CrossRef]
- Girardi, R.; Pinheiro, A.; Garbossa, L.H.P.; Torres, É. Water Quality Change of Rivers during Rainy Events in a Watershed with Different Land Uses in Southern Brazil. RBRH 2016, 21, 514–524. [Google Scholar] [CrossRef]
- Wang, K.; Gelda, R.K.; Mukundan, R.; Steinschneider, S. Inter-Model Comparison of Turbidity-Discharge Rating Curves and the Implications for Reservoir Operations Management. JAWRA J. Am. Water Resour. Assoc. 2021, 57, 430–448. [Google Scholar] [CrossRef]
- Besmer, M.D.; Hammes, F. Short-Term Microbial Dynamics in a Drinking Water Plant Treating Groundwater with Occasional High Microbial Loads. Water Res. 2016, 107, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Price, J.I.; Heberling, M.T. The Effects of Source Water Quality on Drinking Water Treatment Costs: A Review and Synthesis of Empirical Literature. Ecol. Econ. 2018, 151, 195–209. [Google Scholar] [CrossRef]
- Li, D.; Bu, S.; Li, Q.; Chen, S.; Zhen, Z.; Fu, C. Water Environment Capacity Estimation and Pollutant Reduction of Yanghe Reservoir Basin in Hebei Province, China, via 0-D Water Quality Model. Environ. Earth Sci. 2021, 80, 508. [Google Scholar] [CrossRef]
- Grochowska, J. Assessment of Water Buffer Capacity of Two Morphometrically Different, Degraded, Urban Lakes. Water 2020, 12, 1512. [Google Scholar] [CrossRef]
- Huynh, T.T.; Kim, J.; Kim, W.; Hur, J.; Ho, Q.N.; Bi, Q.; Bui, T.V.; Kim, J.J.; Lee, S.D.; Choi, Y.Y.; et al. Dynamics of Suspended Particulate Matter in an Impounded River Under Dry and Wet Weather Conditions. Water Resour. Res. 2023, 59, e2022WR033629. [Google Scholar] [CrossRef]
- Zeb, H.; Yaqub, A.; Ajab, H.; Zeb, I.; Khan, I. Effect of Climate Change and Human Activities on Surface and Ground Water Quality in Major Cities of Pakistan. Water 2023, 15, 2693. [Google Scholar] [CrossRef]
Parameter | Station | ||
---|---|---|---|
Teusacá River | San Rafael Reservoir | WTP | |
Turbidity (NTU) | 44.8 | 3.83 | 0.67 |
Color (CU) | 77.4 | 18.3 | 3.70 |
Conductivity (uS/cm) | 205 | 46.3 | 42.9 |
pH | 7.06 | 7.06 | 6.69 |
Total alkalinity (mg/L CaCO3) | 14.4 | 15.4 | 12.2 |
Chlorides (mg/L Cl−) | 57.1 | 5.38 | 4.24 |
Total iron (mg/L Fe+3) | 1.85 | 0.41 | 0.06 |
Nitrites (mg/L NO2) | 3.88 | 0.28 | 0.01 |
Nitrates (mg/L NO3) * | 0.75 | 0.26 | 0.11 |
Total hardness (mg/L CaCO3) * | 12.6 | 17.2 | 18.9 |
Dissolved oxygen (mg/L O2) * | 7.12 | 6.79 | N.A. |
Sulfates (mg/L SO4) * | 0.48 | 1.17 | 5.50 |
Total coliforms (CFU/100 mL) | 66,602 | 2485 | 0.00 |
E. Coli (CFU/100 mL) | 19,353 | 53.6 | 0.00 |
Parameter | Station | ||
---|---|---|---|
Teusacá River | San Rafael Reservoir | Teusacá River | |
Missing Data (%) | Missing Data (%) | Missing Data (%) | |
Turbidity | 0.14 | 0.17 | 0.17 |
Color | 0.55 | 0.17 | 0.21 |
Conductivity | 0.21 | 0.24 | 0.10 |
pH | 0.21 | 0.24 | 0.24 |
Total alkalinity | 0.24 | 0.31 | 0.17 |
Chlorides | 4.14 | 3.15 | 2.94 |
Total iron | 11.9 | 12.3 | 9.55 |
Nitrites | 0.68 | 2.50 | 4.07 |
Total coliforms | 13.3 | 13.4 | 10.9 |
E. coli | 13.7 | 14.2 | 10.9 |
Turbidity | Color | Conductivity | Total Alkalinity | Chlorides | Total Iron | |
---|---|---|---|---|---|---|
River | ||||||
Turbidity | 1.000 | |||||
Color | 0.929 * | 1.000 | ||||
Conductivity | −0.777 * | −0.741 * | 1.000 | |||
Total alkalinity | −0.770 * | −0.741 * | 0.834 * | 1.000 | ||
Chlorides | −0.720 * | −0.693 * | 0.804 * | 0.773 * | 1.000 | |
Total iron | 0.698 * | 0.693 * | −0.553 * | −0.522 * | −0.509 * | 1.000 |
Reservoir | ||||||
Turbidity | 1.000 | |||||
Color | 0.827 * | 1.000 | ||||
Conductivity | −0.028 | −0.065 | 1.000 | |||
Total alkalinity | −0.036 | 0.006 | 0.302 * | 1.000 | ||
Chlorides | −0.053 | −0.110 | 0.455 * | −0.146 | 1.000 | |
Total iron | 0.588 * | 0.670 * | −0.022 | 0.041 | −0.015 | 1.000 |
WTP | ||||||
Turbidity | 1.000 | |||||
Color | 0.523 * | 1.000 | ||||
Conductivity | −0.072 | −0.006 | 1.000 | |||
Total alkalinity | −0.039 | 0.116 | 0.257 * | 1.000 | ||
Chlorides | −0.166 | −0.023 | 0.740 * | −0.184 | 1.000 | |
Total iron | 0.290 * | 0.281 * | −0.054 | −0.044 | −0.021 | 1.000 |
Time Scale | ARIMA Model (p,d,q) | Transformation/Outliers | R2 | MAPE (%) | BIC | Ljung-Box Q (18) | GL | p-Value (Q) |
---|---|---|---|---|---|---|---|
River | |||||||
Daily | (0,1,10) | Natural logarithm | 0.206 | 83.308 | 9.599 | 19.339 | 14 | 0.152 |
(4,1,2) | Natural logarithm | 0.208 | 83.065 | 9.610 | 11.113 | 12 | 0.519 | |
(0,1,6) * | Natural logarithm/34 | 0.760 | 64.471 | 8.324 | 21.252 | 14 | 0.095 | |
Weekly | (0,1,8) | Natural logarithm | 0.868 | 14.704 | 6.110 | 36.743 | 15 | 0.001 |
(1,1,7) * | Square root | 0.901 | 16.904 | 5.838 | 18.029 | 10 | 0.054 | |
(1,1,7) | Natural logarithm/47 | 0.872 | 13.280 | 6.226 | 9.053 | 13 | 0.769 | |
Monthly | (1,1,1) | Natural logarithm | 0.974 | 3.988 | 3.554 | 11.602 | 16 | 0.771 |
(2,1,1) | Natural logarithm | 0.974 | 3.970 | 3.561 | 6.533 | 15 | 0.969 | |
(2,1,2) * | Natural logarithm/68 | 0.990 | 3.448 | 2.825 | 18.283 | 14 | 0.194 | |
Reservoir | |||||||
Daily | (0,1,5) | Natural logarithm | 0.640 | 38.448 | 3.729 | 17.477 | 15 | 0.291 |
(1,1,5) | Natural logarithm | 0.640 | 38.428 | 3.739 | 12.177 | 12 | 0.432 | |
(0,1,5) * | Natural logarithm/36 | 0.889 | 31.833 | 1.712 | 17.200 | 15 | 0.307 | |
Weekly | (0,1,7) | Natural logarithm | 0.289 | 6.923 | 0.208 | 26.497 | 11 | 0.005 |
(1,1,7) | Square root | 0.902 | 7.264 | 0.002 | 16.946 | 10 | 0.076 | |
(0,1,9) * | Natural logarithm/36 | 0.921 | 6.039 | −0.092 | 14.759 | 9 | 0.098 | |
Monthly | (0,2,1) | Natural logarithm | 0.975 | 2.520 | −2.275 | 23.547 | 17 | 0.132 |
(1,2,1) | Natural logarithm | 0.975 | 2.490 | −2.275 | 2.995 | 16 | 0.143 | |
(1,1,1) * | Natural logarithm/74 | 0.996 | 1.706 | −3.919 | 25.781 | 16 | 0.057 | |
WTP | |||||||
Daily | (0,1,11) | Natural logarithm | 0.150 | 20.696 | 2.748 | 31.458 | 14 | 0.005 |
(1,0,7) | Square root | 0.236 | 35.029 | 2.506 | 8.053 | 10 | 0.624 | |
(1,1,9) * | No transformation/13 | 0.988 | 18.517 | −1.629 | 15.251 | 8 | 0.054 | |
Weekly | (0,1,7) | Natural logarithm | 0.822 | 4.118 | −0.450 | 199.126 | 13 | 0.000 |
(0,1,10) | Square root | 0.929 | 6.053 | −1.351 | 13.687 | 8 | 0.090 | |
(3,1,8) * | Natural logarithm/26 | 0.982 | 3.129 | −2.683 | 12.769 | 12 | 0.386 | |
Monthly | (0,1,6) | Natural logarithm | 0.969 | 1.329 | −3.394 | 9.263 | 17 | 0.932 |
(1,1,6) | Natural logarithm | 0.969 | 1.312 | −3.387 | 0.503 | 11 | 1.000 | |
(2,1,14) * | Natural logarithm/34 | 0.998 | 0.960 | −6.185 | 1.914 | 2 | 0.384 |
Time Scale | ARIMA Model (p,d,q) | Transformation | R2 | MAPE (%) | Outliers | BIC | Ljung-Box Q (18) | GL | p-Value (Q) |
---|---|---|---|---|---|---|---|---|
River/Reservoir | ||||||||
Daily | (0,1,5) | Natural logarithm | 0.080 | 36.636 | No | 3.725 | 18.955 | 15 | 0.216 |
(0,1,5) * | Natural logarithm | 0.902 | 30.306 | 36 (AD) | 1.593 | 19.071 | 15 | 0.211 | |
Numerator/Delay: 0, Difference: 1, Denominator/Delay: 1 | ||||||||
Weekly | (0,1,7) | Natural logarithm | 0.889 | 7.096 | No | 0.138 | 26.073 | 11 | 0.006 |
(0,1,9) | Natural logarithm | 0.988 | 5.308 | 49 (AD and LS) | −1.948 | 21.069 | 9 | 0.012 | |
Numerator/Delay: 0, Difference: 1, Denominator/Delay: 1 | ||||||||
Monthly | (1,1,1) | Natural logarithm | 0.976 | 2.534 | No | −2.324 | 8.043 | 16 | 0.948 |
(1,1,13) * | Natural logarithm | 0.994 | 2.264 | 44 (AD) | −3.515 | 17.108 | 15 | 0.312 | |
Numerator/Delay: 0, Difference: 1, Denominator/Delay: 1 | ||||||||
Reservoir/WTP | ||||||||
Daily | (0,1,9) | Natural logarithm | 0.013 | 20.580 | No | 2.750 | 32.755 | 15 | 0.005 |
(0,1,9) * | Natural logarithm | 0.997 | 18.353 | 17 (AD and LS) | −2.883 | 19.246 | 15 | 0.203 | |
Numerator/Delay: 0, Difference: 1, Denominator/Delay: N/A | ||||||||
Weekly | (0,1,7) | Natural logarithm | 0.867 | 5.510 | No | −0.772 | 189.890 | 16 | 0.000 |
(0,1,10) | None | 0.999 | 4.882 | 12 (AD and LS) | −6.180 | 57.717 | 11 | 0.000 | |
Numerator/Delay: N/A, Difference: N/A, Denominator/Delay: N/A | ||||||||
Monthly | (0,2,18) | Natural logarithm | 0.995 | 1.136 | No | −8.828 | 44.387 | 14 | 0.000 |
(0,2,9) * | None | 0.998 | 1.076 | 20 (AD and LS) | −9.602 | 18.684 | 14 | 0.177 | |
Numerator/Delay: 0, Difference: 2, Denominator/Delay: 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafra-Mejía, C.A.; Rondón-Quintana, H.A.; Urazán-Bonells, C.F. ARIMA and TFARIMA Analysis of the Main Water Quality Parameters in the Initial Components of a Megacity’s Drinking Water Supply System. Hydrology 2024, 11, 10. https://doi.org/10.3390/hydrology11010010
Zafra-Mejía CA, Rondón-Quintana HA, Urazán-Bonells CF. ARIMA and TFARIMA Analysis of the Main Water Quality Parameters in the Initial Components of a Megacity’s Drinking Water Supply System. Hydrology. 2024; 11(1):10. https://doi.org/10.3390/hydrology11010010
Chicago/Turabian StyleZafra-Mejía, Carlos Alfonso, Hugo Alexander Rondón-Quintana, and Carlos Felipe Urazán-Bonells. 2024. "ARIMA and TFARIMA Analysis of the Main Water Quality Parameters in the Initial Components of a Megacity’s Drinking Water Supply System" Hydrology 11, no. 1: 10. https://doi.org/10.3390/hydrology11010010
APA StyleZafra-Mejía, C. A., Rondón-Quintana, H. A., & Urazán-Bonells, C. F. (2024). ARIMA and TFARIMA Analysis of the Main Water Quality Parameters in the Initial Components of a Megacity’s Drinking Water Supply System. Hydrology, 11(1), 10. https://doi.org/10.3390/hydrology11010010