Analysis of Anomalies Due to the ENSO and Long-Term Changes in Extreme Precipitation Indices Using Data from Ground Stations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Data
2.3. Methodology
- Construction of the time series of extreme precipitation indices (EPI) in the study area. The resulting EPI time series will have a yearly time resolution;
- Interannual variability analysis—The Mann–Whitney–Wilcoxon test was used to analyze the anomalies during El Niño and La Niña years against normal (or neutral) years;
- Analysis of the long-term behavior of EPI—The Mann–Whitney–Wilcoxon test was used to assess whether two samples from different periods taken from the EPI time series belonged to the same population.
2.3.1. Missing Data Filling Using Bias Correction: Quantile Mapping
2.3.2. Extreme Precipitation Indices (EPI)
2.4. Mann–Whitney Wilcoxon Statistical Test
2.4.1. Climatic Variability of EPI
- NAY—1988, 1995, 1998, 1999, 2007, 2010, 2011, 2020, 2021;
- NOY—1982, 1986, 1987, 1991, 1994, 1997, 2002, 2009, 2015;
- NOR—1979, 1980, 1981, 1983, 1984, 1985, 1989, 1990, 1992, 1993, 1996, 2000, 2001, 2003, 2004, 2005, 2006, 2008, 2012, 2013, 2014, 2016, 2017, 2018, 2019.
2.4.2. Long-Term Change of EPI
- -
- EPI anomalies in NAY: ;
- -
- EPI anomalies in NOY: ;
- -
- EPI long term change: .
3. Results
3.1. Filling of Missing Data with ERA5
3.2. Extreme Precipitation Indices (EPI)
3.3. Inter-Annua Variability or Long-Term Change: Which Is More Important?
4. Summary and Discussion
- Extreme precipitation indices tend to be “wetter” during the cold ENSO phase (La Niña years), while they are “drier” during the warm phase (El Niño years);
- The long-term change presents smaller magnitudes than the anomalies driven by ENSO;
- In conclusion, for all EPI, the inter-annual variability driven by ENSO is more important than the long-term change in the period 1979–2022.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Marengo, J.A.; Espinoza, J.C. Extreme Seasonal Droughts and Floods in Amazonia: Causes, Trends and Impacts. Int. J. Climatol. 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Garreaud, R.; Poveda, G.; Arias, P.A.; Molina-Carpio, J.; Masiokas, M.; Viale, M.; Scaff, L. Hydroclimate of the Andes Part I: Main Climatic Features. Front. Earth Sci. 2020, 8, 64. [Google Scholar] [CrossRef]
- He, Z.; Dai, A.; Vuille, M. The Joint Impacts of Atlantic and Pacific Multidecadal Variability on South American Precipitation and Temperature. J. Clim. 2021, 34, 7959–7981. [Google Scholar] [CrossRef]
- Cordova, M.; Celleri, R.; van Delden, A. Dynamics of Precipitation Anomalies in Tropical South America. Atmosphere 2022, 13, 972. [Google Scholar] [CrossRef]
- Kayano, M.T.; Ceron, W.L.; Andreoli, R.V.; Souza, R.A.F.; Avila-Diaz, A.; Zuluaga, C.F.; Carvalho, L.M.V. Does the El Nino-Southern Oscillation Affect the Combined Impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the Precipitation and Surface Air Temperature Variability over South America? Atmosphere 2022, 13, 231. [Google Scholar] [CrossRef]
- Banco Mundial. Análisis de La Gestión Del Riesgo de Desastres En Colombia: Un Aporte Para La Construcción de Políticas Públicas; CID PALMERO: Bogotá, Colombia, 2012. [Google Scholar]
- Casado, A.; Campo, A.M. Extremos Hidroclimáticos y Recursos Hídricos: Estado de Conocimiento En El Suroeste Bonaerense, Argentina. Cuad. Geogr. 2019, 58, 6. (In Spanish) [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; 104p. [Google Scholar]
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Rosenzweig, C.; Tubiello, F.N.; Goldberg, R.; Mills, E.; Bloomfield, J. Increased Crop Damage in the US from Excess Precipitation under Climate Change. Glob. Environ. Chang. 2002, 12, 197–202. [Google Scholar] [CrossRef]
- Hoyos, N.; Escobar, J.; Restrepo, J.C.; Arango, A.M.; Ortiz, J.C. Impact of the 2010–2011 La Niña Phenomenon in Colombia, South America: The Human Toll of an Extreme Weather Event. Appl. Geogr. 2013, 39, 16–25. [Google Scholar] [CrossRef]
- Moreno, H.A.; Vélez, M.V.; Montoya, J.D.; Rhenals, R.L. La Lluvia y Los Deslizamientos de Tierra En Antioquia: Análisis de Su Ocurrencia En Las Escalas Interanual, Intraanual y Diaria. Rev. EIA 2013, 3, 59–69. [Google Scholar]
- Aristizábal, E.; Gómez, J. Inventario de Emergencias y Desastres En El Valle de Aburrá Originados Por Fenómenos Naturales y Antrópicos En El Periodo 1880-2007. Gestión Y Ambiente 2007, 10, 17–30. [Google Scholar]
- Liu, S.; Huang, S.; Xie, Y.; Leng, G.; Huang, Q.; Wang, L.; Xue, Q. Spatial-Temporal Changes of Rainfall Erosivity in the Loess Plateau, China: Changing Patterns, Causes and Implications. CATENA 2018, 166, 279–289. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; van Beek, L.P.H.; Tian, X.; Bogaard, T.A. Physically-Based Landslide Prediction over a Large Region: Scaling Low-Resolution Hydrological Model Results for High-Resolution Slope Stability Assessment. Environ. Model. Softw. 2020, 124, 104607. [Google Scholar] [CrossRef]
- Arias, P.A.; Ortega, G.; Villegas, L.D.; Martínez, J.A. Colombian Climatology in CMIP5/CMIP6 Models: Persistent Biases and Improvements. Rev. Fac. Ing. Univ. Antioq. 2021, 100, 75–96. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data. WIREs Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Kumar, S.; Chanda, K.; Pasupuleti, S. Spatiotemporal Analysis of Extreme Indices Derived from Daily Precipitation and Temperature for Climate Change Detection over India. Theor. Appl. Climatol. 2020, 140, 343–357. [Google Scholar] [CrossRef]
- Pita-Diaz, O.; Ortega-Gaucin, D. Analysis of Anomalies and Trends of Climate Change Indices in Zacatecas, Mexico. Climate 2020, 8, 55. [Google Scholar] [CrossRef]
- Barry, A.A.; Caesar, J.; Tank, A.M.G.K.; Aguilar, E.; McSweeney, C.; Cyrille, A.M.; Nikiema, M.P.; Narcisse, K.B.; Sima, F.; Stafford, G.; et al. West Africa Climate Extremes and Climate Change Indices. Int. J. Climatol. 2018, 38, E921–E938. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.; Peterson, T. Observed Coherent Changes in Climatic Extremes during the Second Half of the Twentieth Century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; Garcia, I.G.; Araujo, R.M.; Santos, A.R.; et al. Changes in Precipitation and Temperature Extremes in Central America and Northern South America, 1961–2003. J. Geophys. Res. Atmos. 2005, 110, D23107. [Google Scholar] [CrossRef]
- Zhang, X.B.; Aguilar, E.; Sensoy, S.; Melkonyan, H.; Tagiyeva, U.; Ahmed, N.; Kutaladze, N.; Rahimzadeh, F.; Taghipour, A.; Hantosh, T.H.; et al. Trends in Middle East Climate Extreme Indices from 1950 to 2003. J. Geophys. Res. Atmos. 2005, 110, D22104. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Tank, A.M.G.K.; Peterson, T.C.; Quadir, D.A.; Dorji, S.; Zou, X.; Tang, H.; Santhosh, K.; Joshi, U.R.; Jaswal, A.K.; Kolli, R.K.; et al. Changes in Daily Temperature and Precipitation Extremes in Central and South Asia. J. Geophys. Res. Atmos. 2006, 111, D16105. [Google Scholar] [CrossRef]
- Vincent, L.A.; Mekis, E. Changes in Daily and Extreme Temperature and Precipitation Indices for Canada over the Twentieth Century. Atmos. Ocean 2006, 44, 177–193. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated Analyses of Temperature and Precipitation Extreme Indices since the Beginning of the Twentieth Century: The HadEX2 Dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Yosef, Y.; Aguilar, E.; Alpert, P. Changes in Extreme Temperature and Precipitation Indices: Using an Innovative Daily Homogenized Database in Israel. Int. J. Climatol. 2019, 39, 5022–5045. [Google Scholar] [CrossRef]
- Galván, R.; Carbonetti, M.; Gende, M.; Brunini, C. Impact of the extreme 2015-2016 ENOS event on the geometry of the earth surface in the equatorial region of South America. Geoacta 2017, 42, 23–44. [Google Scholar]
- Timmermann, A.; An, S.-I.; Kug, J.-S.; Jin, F.-F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation Complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef]
- Tang, T.; Luo, J.-J.; Peng, K.; Qi, L.; Tang, S. Over-Projected Pacific Warming and Extreme El Niño Frequency Due to CMIP5 Common Biases. Natl. Sci. Rev. 2021, 8, nwab056. [Google Scholar] [CrossRef]
- Feldman, D.R.; Tadić, J.M.; Arnold, W.; Schwarz, A. Establishing a Range of Extreme Precipitation Estimates in California for Planning in the Face of Climate Change. J. Water Resour. Plan. Manag. 2021, 147, 04021056. [Google Scholar] [CrossRef]
- Poveda, G.; Álvarez, D.; Rueda, Ó. Hydro-Climatic Variability over the Andes of Colombia Associated with ENSO: A Review of Climatic Processes and Their Impact on One of the Earth’s Most Important Biodiversity Hotspots. Clim. Dyn. 2011, 36, 2233–2249. [Google Scholar] [CrossRef]
- Serrano Vincenti, S.; Zuleta, D.; Moscoso, V.; Jácome, P.; Palacios, E.; Villacís, M. Análisis estadístico de datos meteorológicos mensuales y diarios para la determinación de variabilidad climática y cambio climático en el Distrito Metropolitano de Quito. LGR 2012, 16, 23. [Google Scholar] [CrossRef]
- Naranjo Bedoya, K.; Aristizábal Giraldo, E.V.; Morales Rodelo, J.A. Influencia del ENSO en la Variabilidad Espacial y Temporal de la Ocurrencia de Movimientos en Masa Desencadenados por Lluvias en la Región Andina Colombiana. Ing. Y Cienc. 2019, 15, 11–42. [Google Scholar] [CrossRef]
- Capel Molina, J.J. “El Niño” y El Sistema Climático Terrestre, 1st ed.; University of Murcia: Barcelona, Spain, 1999; ISBN 84-344-3458-X. [Google Scholar]
- Wang, S.; Li, S.; Xing, J.; Yang, J.; Dong, J.; Qin, Y.; Sahu, S.K. Evaluation of the Influence of El Niño-Southern Oscillation on Air Quality in Southern China from Long-Term Historical Observations. Front. Environ. Sci. Eng. 2022, 16, 26. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and Its Possible Teleconnection. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Chen, N.; Majda, A.J. Simple Dynamical Models Capturing the Key Features of the Central Pacific el Niño. Proc. Natl. Acad. Sci. USA 2016, 113, 11732–11737. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E. ENSO in the Global Climate System. In El Niño Southern Oscillation in a Changing Climate; American Geophysical Union (AGU): Washington, DC, USA, 2020; pp. 21–37. ISBN 978-1-119-54816-4. [Google Scholar]
- Freund, M.B.; Henley, B.J.; Karoly, D.J.; McGregor, H.V.; Abram, N.J.; Dommenget, D. Higher Frequency of Central Pacific El Niño Events in Recent Decades Relative to Past Centuries. Nat. Geosci. 2019, 12, 450–455. [Google Scholar] [CrossRef]
- Iacovone, M.F.; Pántano, V.C.; Penalba, O.C. Consecutive Dry and Wet Days over South America and Their Association with ENSO Events, in CMIP5 Simulations. Theor Appl Clim. 2020, 142, 791–804. [Google Scholar] [CrossRef]
- Pal, M.; Maity, R.; Ratnam, J.V.; Nonaka, M.; Behera, S.K. Long-Lead Prediction of ENSO Modoki Index Using Machine Learning Algorithms. Sci. Rep. 2020, 10, 365. [Google Scholar] [CrossRef]
- Navarro-Monterroza, E.; Arias, P.A.; Vieira, S.C.; Navarro-Monterroza, E.; Arias, P.A.; Vieira, S.C. El Niño-Oscilación del Sur, fase Modoki, y sus efectos en la variabilidad espacio-temporal de la precipitación en Colombia. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2019, 43, 120–132. [Google Scholar] [CrossRef]
- Liang, X.S.; Xu, F.; Rong, Y.; Zhang, R.; Tang, X.; Zhang, F. El Niño Modoki Can Be Mostly Predicted More than 10 Years Ahead of Time. Sci. Rep. 2021, 11, 17860. [Google Scholar] [CrossRef]
- Pinault, J.-L. The Anticipation of the ENSO: What Resonantly Forced Baroclinic Waves Can Teach Us (Part II). J. Mar. Sci. Eng. 2018, 6, 63. [Google Scholar] [CrossRef]
- Maher, N.; Wills, R.C.J.; DiNezio, P.; Klavans, J.; Milinski, S.; Sanchez, S.C.; Stevenson, S.; Stuecker, M.F.; Wu, X. The Future of the El Niño–Southern Oscillation: Using Large Ensembles to Illuminate Time-Varying Responses and Inter-Model Differences. Earth Syst. Dyn. 2023, 14, 413–431. [Google Scholar] [CrossRef]
- Giraldo-Osorio, J.D.; Trujillo-Osorio, D.E.; Baez-Villanueva, O.M. Analysis of ENSO-Driven Variability, and Long-Term Changes, of Extreme Precipitation Indices in Colombia, Using the Satellite Rainfall Estimates CHIRPS. Water 2022, 14, 1733. [Google Scholar] [CrossRef]
- Fernández Lopera, C.C.; Castro Rivera, J.A. Unidad Nacional para la Gestión del Riesgo de Desastres. In Fenómeno El Niño, Análisis comparativo 1997–1998//2014–2016; UNGRD: Bogotá, Colombia, 2016; ISBN 978-958-56-0170-3. [Google Scholar]
- Tabari, H. Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Balmaceda-Huarte, R.; Olmo, M.E.; Bettolli, M.L.; Poggi, M.M. Evaluation of Multiple Reanalyses in Reproducing the Spatio-Temporal Variability of Temperature and Precipitation Indices over Southern South America. Int. J. Climatol. 2021, 41, 5572–5595. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; García-Herrera, R.; Peña-Angulo, D.; Tomas-Burguera, M.; Domínguez-Castro, F.; Noguera, I.; Calvo, N.; Murphy, C.; Nieto, R.; Gimeno, L.; et al. Do CMIP Models Capture Long-Term Observed Annual Precipitation Trends? Clim. Dyn. 2022, 58, 2825–2842. [Google Scholar] [CrossRef]
- Aristizábal, E.; Yokota, S. Evolución Geomorfológica Del Valle de Aburra y Sus Implicaciones en la Ocurrencia de Movimientos en Masa. Boletín Cienc. Tierra 2008, 24, 5–18. [Google Scholar]
- Guerrero Hoyos, L.Á.; Aristizábal Giraldo, E. Estimación y Análisis de Umbrales Críticos de Lluvia para la Ocurrencia de Avenidas Torrenciales en el Valle de Aburrá (Antioquia). Rev. EIA 2019, 16, 97–111. [Google Scholar] [CrossRef]
- Pérez, J.I.; Zuñiga, Y.P.; Nardini, A. Identification Multiattribute of Typologies of Flood-Vulnerable Housing in Riohacha, la Guajira-Colombia. Inf. Tecnol. 2018, 29, 187–201. [Google Scholar] [CrossRef]
- Pérez, J.I.; Escobar, J.R.; Fragozo, J.M. Modelación Hidráulica 2D de Inundaciones En Regiones Con Escasez de Datos. el Caso Del Delta Del Río Ranchería, Riohacha-Colombia: 2D Hydraulic Flood Modeling in Data-Scarce Regions The Case of Ranchería River Delta, Riohacha-Colombia. Inf. Tecnol. 2018, 29, 143–157. [Google Scholar] [CrossRef]
- Varón Gutiérrez, S.D.; Vargas Cuervo, G. Análisis de La Susceptibilidad Por Inundaciones Asociadas a La Dinámica Fluvial Del Río Guatiquía En La Ciudad de Villavicencio, Colombia. Cuad. De Geogr. Rev. Colomb. De Geogr. 2019, 28, 152–174. [Google Scholar] [CrossRef]
- Pabón-Caicedo, J.D. Búsqueda de series de referencia para el seguimiento de la señal regional del calentamiento global. Cuad. Geogr. Rev. Colomb. Geogr. 1995, 5, 164–173. [Google Scholar]
- Oscar, M.S.; Poveda, J.G.; Carvajal, L.F. Introducción al Clima de Colombia, 1st ed.; Universidad Nacional de Colombia: Medellín, Colombia, 1997; ISBN 978-958-628-144-7. [Google Scholar]
- Pérez, C.; Poveda, G.; Mesa, O.; Carvajal, L.F.; Ochoa, A. Evidencias de cambio climático en Colombia: Tendencias y cambios de fase y amplitud de los ciclos anual y semianual. Bull. L’institut Français D’études Andin. 1998, 27, 537–546. [Google Scholar] [CrossRef]
- Pabón, J.D. El cambio climático global y su manifestación en Colombia. Cuad. Geogr. Rev. Colomb. Geogr. 2003, 12, 111–119. [Google Scholar]
- Aristizábal Acevedo, L.A. Estimación Hidrológica Bajo Escenarios de Cambio Climático En Colombia. Master Thesis, Universidad Nacional de Colombia-Sede Medellín, Antioquia, Colombia, 2009. [Google Scholar]
- Álvarez-Villa, O.D.; Vélez, J.I.; Poveda, G. Improved Long-Term Mean Annual Rainfall Fields for Colombia. Int. J. Climatol. 2011, 31, 2194–2212. [Google Scholar] [CrossRef]
- Pabón-Caicedo, J.D. Cambio Climático en Colombia: Tendencias en la Segunda Mitad del Siglo XX y Escenarios Posibles para el Siglo XXI. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2012, 36, 261–278. [Google Scholar]
- Arias, P.A.; Martínez, J.A.; Vieira, S.C. Moisture Sources to the 2010–2012 Anomalous Wet Season in Northern South America. Clim. Dyn. 2015, 45, 2861–2884. [Google Scholar] [CrossRef]
- Mesa, O.; Urrea, V.; Ochoa, A. Trends of Hydroclimatic Intensity in Colombia. Climate 2021, 9, 120. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in Precipitation Extremes in the Yangtze River Basin during 1960–2019 and the Association with Global Warming, ENSO, and Local Effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [CrossRef]
- Li, C.; Tian, Q.; Yu, R.; Zhou, B.; Xia, J.; Burke, C.; Dong, B.; Tett, S.F.B.; Freychet, N.; Lott, F.; et al. Attribution of Extreme Precipitation in the Lower Reaches of the Yangtze River during May 2016. Environ. Res. Lett. 2018, 13, 014015. [Google Scholar] [CrossRef]
- Cerón, W.L.; Andreoli, R.V.; Kayano, M.T.; Canchala, T.; Ocampo-Marulanda, C.; Avila-Diaz, A.; Antunes, J. Trend Pattern of Heavy and Intense Rainfall Events in Colombia from 1981–2018: A Trend-EOF Approach. Atmosphere 2022, 13, 156. [Google Scholar] [CrossRef]
- IDEAM. Zonificación y Codificación de Unidades Hidrográficas e Hidrogeológicas de Colombia; IDEAM: Bogotá, Colombia, 2013. [Google Scholar]
- Benavides, H.O.; Márquez, R.M.; Moreno, G.H. Análisis de Índices de Extremos Climáticos Para Colombia Usando El RCLIMDEX; IDEAM: Bogotá, Colombia, 2007. [Google Scholar]
- Urrea, V.; Ochoa, A.; Mesa, O. Seasonality of Rainfall in Colombia. Water Resour. Res. 2019, 55, 4149–4162. [Google Scholar] [CrossRef]
- Cerón, W.L.; Andreoli, R.V.; Kayano, M.T.; Avila-Diaz, A. Role of the Eastern Pacific-Caribbean Sea SST Gradient in the Choco Low-Level Jet Variations from 1900–2015. Clim. Res. 2021, 83, 61–74. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias Correction of Regional Climate Model Simulations for Hydrological Climate-Change Impact Studies: Review and Evaluation of Different Methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and Dynamical Downscaling of the Seine Basin Climate for Hydro-Meteorological Studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding Appropriate Bias Correction Methods in Downscaling Precipitation for Hydrologic Impact Studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing Bias Correction Methods in Downscaling Meteorological Variables for a Hydrologic Impact Study in an Arid Area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef]
- Teng, J.; Potter, N.J.; Chiew, F.H.S.; Zhang, L.; Wang, B.; Vaze, J.; Evans, J.P. How Does Bias Correction of Regional Climate Model Precipitation Affect Modelled Runoff? Hydrol. Earth Syst. Sci. 2015, 19, 711–728. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Piticar, A.; Burada, D.C. Changes in Precipitation Extremes in Romania. Quat. Int. 2016, 415, 325–335. [Google Scholar] [CrossRef]
- Bronaught, D. R Package Climdex.Pcic Version 1.1-11: PCIC Implementation of Climdex Routines. Available online: https://rdrr.io/cran/climdex.pcic/ (accessed on 1 June 2022).
- Yue, S.; Wang, C. The Influence of Serial Correlation on the Mann–Whitney Test for Detecting a Shift in Median. Adv. Water Resour. 2002, 25, 325–333. [Google Scholar] [CrossRef]
- Ramírez Builes, V.; Jaramillo-Robledo, Á. Relación Entre El Índice Oceánico de El Niño y La Lluvia, En La Región Andina Central de Colombia. Cenicafé. 2009, 60, 161–172. [Google Scholar]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bauer, D.F. Constructing Confidence Sets Using Rank Statistics. J. Am. Stat. Assoc. 1972, 67, 687–690. [Google Scholar] [CrossRef]
- Tedeschi, R.G.; Cavalcanti, I.F.A.; Grimm, A.M. Influences of Two Types of ENSO on South American Precipitation. Int. J. Climatol. 2013, 33, 1382–1400. [Google Scholar] [CrossRef]
- Tedeschi, R.G.; Grimm, A.M.; Cavalcanti, I.F.A. Influence of Central and East ENSO on Precipitation and Its Extreme Events in South America during Austral Autumn and Winter. Int. J. Climatol. 2016, 36, 4797–4814. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, J. Impact of Eastern and Central Pacific el Niño on Lower Tropospheric Ozone in China. Atmos. Chem. Phys. 2022, 22, 7273–7285. [Google Scholar] [CrossRef]
- Kim, H.-M.; Webster, P.J.; Curry, J.A. Impact of Shifting Patterns of Pacific Ocean Warming on North Atlantic Tropical Cyclones. Science 2009, 325, 77–80. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Kug, J.-S.; Dewitte, B.; Kwon, M.-H.; Kirtman, B.P.; Jin, F.-F. El Niño in a Changing Climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, B.; Zheng, J. A Unified Complex Index to Characterize Two Types of ENSO Simultaneously. Sci. Rep. 2019, 9, 8373. [Google Scholar] [CrossRef]
Category | ID | Name of the Index | Definition | Units |
---|---|---|---|---|
Frequency | R10mm | Number of days with intense precipitation | Number of days in a year when PRCP ≥ 10 mm | days |
R20mm | Number of days with very intense precipitation | Number of days in a year when PRCP ≥ 20 mm | days | |
R50mm | Number of days over 50 mm | Number of days in a year in which PRCP ≥ nn mm, nn is a parameter defined by the user, which in this case was set to 50 mm, to thus be able to identify days with too intense precipitation. | days | |
Intensity | RX1day | Maximum amount of precipitation in one day | Annual maximum precipitation in 1 day | mm |
Rx5day | Maximum amount of precipitation in 5 days | Annual maximum precipitation on 5 consecutive days | mm | |
SDII | Simple daily intensity index | Total annual precipitation divided by the number of wet days (defined by PRCP ≥ 1.0 mm) in a year | mm/day | |
R95pTOT | Very wet days | Total annual precipitation where RR > 95 percentile | mm | |
R99pTOT | Extremely wet days | Total annual precipitation where RR > 99 percentile | mm | |
PRCPTOT | Total annual precipitation on wet days | Total annual precipitation on wet days (RR ≥ 1 mm) | mm | |
Duration | CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | days |
CWD | Consecutive wet days | Maximum number of consecutive days with RR ≥ 1 mm | days |
EPI | Negative Changes | Positive Changes | ||||
---|---|---|---|---|---|---|
p-Value < 0.01 | 0.01 < p-Value < 0.05 | p-Value > 0.05 | 0.01 < p-Value < 0.05 | p-Value < 0.01 | ||
R10mm | 0 | 0 | 70 | 275 | 183 | 352 |
R20mm | 1 | 1 | 99 | 166 | 168 | 445 |
R50mm | 1 | 6 | 226 | 42 | 96 | 508 |
Rx1day | 2 | 7 | 346 | 6 | 42 | 477 |
Rx5day | 1 | 5 | 259 | 20 | 76 | 519 |
SDII | 3 | 9 | 311 | 19 | 50 | 488 |
R95pTOT | 0 | 7 | 194 | 44 | 97 | 538 |
R99pTOT | 0 | 8 | 307 | 11 | 60 | 494 |
PRCPTOT | 0 | 1 | 66 | 313 | 181 | 319 |
CDD | 183 | 159 | 480 | 0 | 3 | 55 |
CWD | 1 | 3 | 168 | 66 | 114 | 528 |
EPI | Negative Changes | Positive Changes | ||||
---|---|---|---|---|---|---|
p-Value < 0.01 | 0.01 < p-Value < 0.05 | p-Value > 0.05 | 0.01 < p-Value < 0.05 | p-Value < 0.01 | ||
R10mm | 181 | 140 | 466 | 91 | 1 | 1 |
R20mm | 85 | 121 | 525 | 145 | 4 | 0 |
R50mm | 23 | 47 | 533 | 264 | 12 | 1 |
Rx1day | 3 | 24 | 510 | 329 | 9 | 5 |
Rx5day | 13 | 35 | 520 | 301 | 7 | 4 |
SDII | 6 | 13 | 409 | 429 | 19 | 4 |
R95pTOT | 22 | 41 | 566 | 243 | 6 | 2 |
R99pTOT | 3 | 25 | 536 | 302 | 11 | 3 |
PRCPTOT | 179 | 168 | 441 | 91 | 0 | 1 |
CDD | 0 | 1 | 89 | 563 | 144 | 83 |
CWD | 14 | 64 | 543 | 255 | 2 | 2 |
EPI | Negative Changes | Positive Changes | ||||
---|---|---|---|---|---|---|
p-Value < 0.01 | 0.01 < p-Value < 0.05 | p-Value > 0.05 | 0.01 < p-Value < 0.05 | p-Value < 0.01 | ||
R10mm | 58 | 66 | 417 | 262 | 39 | 38 |
R20mm | 64 | 59 | 415 | 274 | 30 | 38 |
R50mm | 47 | 49 | 394 | 337 | 28 | 23 |
Rx1day | 27 | 35 | 411 | 363 | 26 | 18 |
Rx5day | 38 | 55 | 429 | 317 | 18 | 23 |
SDII | 116 | 62 | 267 | 276 | 39 | 120 |
R95pTOT | 62 | 60 | 422 | 284 | 27 | 25 |
R99pTOT | 30 | 40 | 411 | 356 | 25 | 18 |
PRCPTOT | 70 | 77 | 452 | 230 | 28 | 23 |
CDD | 9 | 27 | 333 | 440 | 43 | 28 |
CWD | 94 | 73 | 383 | 276 | 25 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-León, L.A.; Giraldo-Osorio, J.D. Analysis of Anomalies Due to the ENSO and Long-Term Changes in Extreme Precipitation Indices Using Data from Ground Stations. Hydrology 2024, 11, 7. https://doi.org/10.3390/hydrology11010007
Vargas-León LA, Giraldo-Osorio JD. Analysis of Anomalies Due to the ENSO and Long-Term Changes in Extreme Precipitation Indices Using Data from Ground Stations. Hydrology. 2024; 11(1):7. https://doi.org/10.3390/hydrology11010007
Chicago/Turabian StyleVargas-León, Luis Alberto, and Juan Diego Giraldo-Osorio. 2024. "Analysis of Anomalies Due to the ENSO and Long-Term Changes in Extreme Precipitation Indices Using Data from Ground Stations" Hydrology 11, no. 1: 7. https://doi.org/10.3390/hydrology11010007
APA StyleVargas-León, L. A., & Giraldo-Osorio, J. D. (2024). Analysis of Anomalies Due to the ENSO and Long-Term Changes in Extreme Precipitation Indices Using Data from Ground Stations. Hydrology, 11(1), 7. https://doi.org/10.3390/hydrology11010007