Groundwater Response to Snowmelt Infiltration in Seasonal Frozen Soil Areas: Site Monitoring and Numerical Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Methods
2.2.1. Meteorological and Land Surface Measurements
2.2.2. Vadose Zone and Groundwater Monitoring
2.2.3. Specific Yield and Porosity Measurements
2.2.4. Evaluation of Snowmelt (Rainfall) Infiltration Coefficient
- (1)
- Water Balance Method
- (2)
- Numerical Simulation Method
3. Results
3.1. Variation Characteristics of Temperature and Division of Freeze–Thaw Period
- (1)
- Unstable freezing period
- (2)
- Stable freezing period
- (3)
- Unstable thawing period
- (4)
- Stable thawing period
- (5)
- Non-freezing period
3.2. Variation Characteristics of Soil Moisture
3.2.1. Soil Moisture at 0.5 m
- (1)
- Unstable freezing period
- (2)
- Stable freezing period
- (3)
- Unstable thawing period
- (4)
- Stable thawing period
- (5)
- Non-freezing period
3.2.2. Soil Moisture at 1.5 m
3.3. Response Characteristics of Groundwater Level
- (1)
- Stable period (31 October–17 December 2020)
- (2)
- Decline period (18 December 2020–4 March 2021)
- (3)
- Rapid rising period (5–19 March 2021)
- (4)
- Slow rising period (20 March–19 April 2021)
- (5)
- Decline period (after 20 April)
3.4. Evaluation of Snowmelt (Rainfall) Infiltration Coefficient
3.4.1. Water Balance Method
3.4.2. Numerical Simulation Method
4. Discussion
4.1. Recharge Effects of Spring Snowmelt Infiltration on Groundwater
4.2. Possible Mechanism of Spring Snowmelt Infiltration
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, T.; Barry, R.G.; Knowles, K.; Ling, F.; Armstrong, R.L. Distribution of Seasonally and Perennially Frozen Ground in the Northern Hemisphere. In Proceedings of the Permafrost; Phillips, M., Springman, S.M., Arenson, L.U., Eds.; AA Balkema Publishers: Leiden, The Netherland, 2003; Volume 1–2, pp. 1289–1294. [Google Scholar]
- Stuurop, J.C.; van der Zee, S.E.A.T.M.; French, H.K. The Influence of Soil Texture and Environmental Conditions on Frozen Soil Infiltration: A Numerical Investigation. Cold Reg. Sci. Technol. 2022, 194, 103456. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Li, T.; Liu, D.; Hou, R.; Li, Q.; Yi, J.; Li, M.; Meng, F. Snow Melting Water Infiltration Mechanism of Farmland Freezing-Thawing Soil and Determination of Meltwater Infiltration Parameter in Seasonal Frozen Soil Areas. Agric. Water Manag. 2021, 258, 107165. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Fu, Q.; Liu, D.; Hou, R.; Li, Q.; Guo, X. Regulation of Cu and Zn Migration in Soil by Biochar during Snowmelt. Environ. Res. 2020, 186, 109566. [Google Scholar] [CrossRef]
- Gray, D.M.; Landine, P.G.; Granger, R.J. Simulating Infiltration into Frozen Prairie Soils in Streamflow Models. Can. J. Earth Sci. 1985, 22, 464–472. [Google Scholar] [CrossRef]
- Burt, T.P.; Williams, P.J. Hydraulic Conductivity in Frozen Soils. Earth Surf. Process. 1976, 1, 349–360. [Google Scholar] [CrossRef]
- Hayashi, M. The Cold Vadose Zone: Hydrological and Ecological Significance of Frozen-Soil Processes. Vadose Zone J. 2013, 12, 1–8. [Google Scholar] [CrossRef]
- Ireson, A.M.; van der Kamp, G.; Ferguson, G.; Nachshon, U.; Wheater, H.S. Hydrogeological Processes in Seasonally Frozen Northern Latitudes: Understanding, Gaps and Challenges. Hydrogeol. J. 2013, 21, 53–66. [Google Scholar] [CrossRef]
- Iwata, Y.; Nemoto, M.; Hasegawa, S.; Yanai, Y.; Kuwao, K.; Hirota, T. Influence of Rain, Air Temperature, and Snow Cover on Subsequent Spring-Snowmelt Infiltration into Thin Frozen Soil Layer in Northern Japan. J. Hydrol. 2011, 401, 165–176. [Google Scholar] [CrossRef]
- Bayard, D.; Stähli, M.; Parriaux, A.; Flühler, H. The Influence of Seasonally Frozen Soil on the Snowmelt Runoff at Two Alpine Sites in Southern Switzerland. J. Hydrol. 2005, 309, 66–84. [Google Scholar] [CrossRef]
- McCauley, C.A.; White, D.M.; Lilly, M.R.; Nyman, D.M. A Comparison of Hydraulic Conductivities, Permeabilities and Infiltration Rates in Frozen and Unfrozen Soils. Cold Reg. Sci. Technol. 2002, 34, 117–125. [Google Scholar] [CrossRef]
- Ala-Aho, P.; Autio, A.; Bhattacharjee, J.; Isokangas, E.; Kujala, K.; Marttila, H.; Menberu, M.; Meriö, L.-J.; Postila, H.; Rauhala, A.; et al. What Conditions Favor the Influence of Seasonally Frozen Ground on Hydrological Partitioning? A Systematic Review. Environ. Res. Lett. 2021, 16, 043008. [Google Scholar] [CrossRef]
- Demand, D.; Selker, J.S.; Weiler, M. Influences of Macropores on Infiltration into Seasonally Frozen Soil. Vadose Zone J. 2019, 18, 180147. [Google Scholar] [CrossRef]
- Iwata, Y.; Hayashi, M.; Hirota, T. Comparison of Snowmelt Infiltration under Different Soil-Freezing Conditions Influenced by Snow Cover. Vadose Zone J. 2008, 7, 79–86. [Google Scholar] [CrossRef]
- Shanley, J.B.; Chalmers, A. The Effect of Frozen Soil on Snowmelt Runoff at Sleepers River, Vermont. Hydrol. Process. 1999, 13, 1843–1857. [Google Scholar] [CrossRef]
- Nygren, M.; Giese, M.; Kløve, B.; Haaf, E.; Rossi, P.M.; Barthel, R. Changes in Seasonality of Groundwater Level Fluctuations in a Temperate-Cold Climate Transition Zone. J. Hydrol. X 2020, 8, 100062. [Google Scholar] [CrossRef]
- Fuss, C.B.; Driscoll, C.T.; Green, M.B.; Groffman, P.M. Hydrologic Flowpaths during Snowmelt in Forested Headwater Catchments under Differing Winter Climatic and Soil Frost Regimes. Hydrol. Process. 2016, 30, 4617–4632. [Google Scholar] [CrossRef]
- Nygren, M.; Giese, M.; Barthel, R. Recent Trends in Hydroclimate and Groundwater Levels in a Region with Seasonal Frost Cover. J. Hydrol. 2021, 602, 126732. [Google Scholar] [CrossRef]
- Lyu, H.; Wu, T.; Su, X.; Wang, Y.; Wang, C.; Yuan, Z. Factors Controlling the Rise and Fall of Groundwater Level during the Freezing-Thawing Period in Seasonal Frozen Regions. J. Hydrol. 2022, 606, 127442. [Google Scholar] [CrossRef]
- Zhang, F.; Li, H.; Li, Y.; Guo, X.; Dai, L.; Lin, L.; Cao, G.; Li, Y.; Zhou, H. Strong Seasonal Connectivity between Shallow Groundwater and Soil Frost in a Humid Alpine Meadow, Northeastern Qinghai-Tibetan Plateau. J. Hydrol. 2019, 574, 926–935. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Lo, M.-H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.-F.; Ducharne, A.; Yang, Z.-L. Divergent Effects of Climate Change on Future Groundwater Availability in Key Mid-Latitude Aquifers. Nat Commun 2020, 11, 3710. [Google Scholar] [CrossRef]
- Okkonen, J.; Kløve, B. A Sequential Modelling Approach to Assess Groundwater–Surface Water Resources in a Snow Dominated Region of Finland. J. Hydrol. 2011, 411, 91–107. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Pavlovskii, I.; Cey, E.E.; Hayashi, M. Effects of Preferential Flow on Snowmelt Partitioning and Groundwater Recharge in Frozen Soils. Hydrol. Earth Syst. Sci. 2019, 23, 5017–5031. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, Y.; Jiang, B.; Bailey, R.T.; Masud, B.; Smerdon, B.; Faramarzi, M. Modelling Impacts of Climate Change on Snow Drought, Groundwater Drought, and Their Feedback Mechanism in a Snow-Dominated Watershed in Western Canada. J. Hydrol. 2024, 636, 131342. [Google Scholar] [CrossRef]
- Zaremehrjardy, M.; Victor, J.; Park, S.; Smerdon, B.; Alessi, D.S.; Faramarzi, M. Assessment of Snowmelt and Groundwater-Surface Water Dynamics in Mountains, Foothills, and Plains Regions in Northern Latitudes. J. Hydrol. 2022, 606, 127449. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Nakamura, K.; Horino, H.; Kawashima, S. Numerical Assessments of the Impacts of Climate Change on Regional Groundwater Systems in a Paddy-Dominated Alluvial Fan. Paddy Water Environ. 2016, 14, 93–103. [Google Scholar] [CrossRef]
- Nakano, T.; Yamada, Y.; Shin, K.-C. Effects of Snow and Land Modification on an Andesite Lava Aquifer in Chokai Volcano, Northwestern Japan. J. Hydrol. 2022, 612, 128191. [Google Scholar] [CrossRef]
- Boumaiza, L.; Chesnaux, R.; Walter, J.; Stumpp, C. Assessing Groundwater Recharge and Transpiration in a Humid Northern Region Dominated by Snowmelt Using Vadose-Zone Depth Profiles. Hydrogeol. J. 2020, 28, 2315–2329. [Google Scholar] [CrossRef]
- Vigna, B.; Banzato, C. The Hydrogeology of High-Mountain Carbonate Areas: An Example of Some Alpine Systems in Southern Piedmont (Italy). Environ. Earth Sci. 2015, 74, 267–280. [Google Scholar] [CrossRef]
- Earman, S.; Campbell, A.R.; Phillips, F.M.; Newman, B.D. Isotopic Exchange between Snow and Atmospheric Water Vapor: Estimation of the Snowmelt Component of Groundwater Recharge in the Southwestern United States. J. Geophys. Res. Atmos. 2006, 111, D09302. [Google Scholar] [CrossRef]
- Flint, A.L.; Flint, L.E.; Hevesi, J.A.; Blainey, J.B. Fundamental Concepts of Recharge in the Desert Southwest: A Regional Modeling Perspective; Water Science and Application; American Geophysical Union: Washington, DC, USA, 2004; Volume 9. [Google Scholar] [CrossRef]
- Watanabe, K.; Osada, Y. Simultaneous Measurement of Unfrozen Water Content and Hydraulic Conductivity of Partially Frozen Soil near 0 Degrees C. Cold Reg. Sci. Tech. 2017, 142, 79–84. [Google Scholar] [CrossRef]
- Zhao, Y.; Nishimura, T.; Hill, R.; Miyazaki, T. Determining Hydraulic Conductivity for Air-Filled Porosity in an Unsaturated Frozen Soil by the Multistep Outflow Method. Vadose Zone J. 2013, 12, vzj2012.0061. [Google Scholar] [CrossRef]
- Stähli, M.; Jansson, P.-E.; Lundin, L.-C. Soil Moisture Redistribution and Infiltration in Frozen Sandy Soils. Water Resour. Res. 1999, 35, 95–103. [Google Scholar] [CrossRef]
- Schwen, A.; Bodner, G.; Scholl, P.; Buchan, G.D.; Loiskandl, W. Temporal Dynamics of Soil Hydraulic Properties and the Water-Conducting Porosity under Different Tillage. Soil Tillage Res. 2011, 113, 89–98. [Google Scholar] [CrossRef]
- van der Kamp, G.; Hayashi, M.; Gallén, D. Comparing the Hydrology of Grassed and Cultivated Catchments in the Semi-Arid Canadian Prairies. Hydrol. Process. 2003, 17, 559–575. [Google Scholar] [CrossRef]
- Fouli, Y.; Cade-Menun, B.J.; Cutforth, H.W. Freeze–Thaw Cycles and Soil Water Content Effects on Infiltration Rate of Three Saskatchewan Soils. Can. J. Soil. Sci. 2013, 93, 485–496. [Google Scholar] [CrossRef]
Time | Period | Water Level Rise/mm | Accumulated Precipitation/mm | /mm | Snowmelt (Rainfall) Infiltration Coefficient |
---|---|---|---|---|---|
15 November 2020–22 November 2020 | unstable freezing period | 135 | 34.3 | 4.05 | 0.12 |
16 January 2021–26 January 2021 | stable freezing period | 105 | 9 | 3.15 | 0.35 |
4 March 2021–9 March 2021 | unstable thawing period | 341.25 | 12.8 | 10.24 | 0.80 |
19 March 2021–23 March 2021 | stable thawing period | 65 | 7.8 | 1.95 | 0.25 |
Time | Period | Accumulated Precipitation/mm | /m3 | /m3 | Snowmelt (Rainfall) Infiltration Coefficient |
---|---|---|---|---|---|
31 October 2020–18 November 2020 | unstable freezing period | 8.6 | 7.506 | 0.808 | 0.11 |
19 November 2020–11 February 2021 | stable freezing period | 43.1 | 37.615 | 10.542 | 0.28 |
12 February 2021–22 March 2021 | unstable thawing period | 14.8 | 12.917 | 6.937 | 0.54 |
23 March 2021–11 April 2021 | stable thawing period | 0.1 | 0.087 | / | / |
12 April 2021–12 May 2021 | non-freezing period | 24.8 | 21.644 | 2.524 | 0.12 |
Time | Period | Infiltration /m3 | Groundwater Evaporation/m3 | Inflow /m3 | Outflow /m3 | Variation of Groundwater Storage/m3 |
---|---|---|---|---|---|---|
31 October 2020–18 November 2020 | unstable freezing period | 0.8 | 0 | 33.31 | 30.69 | 2.7 |
19 November 2020–11 February 2021 | stable freezing period | 10.5 | 0 | 97.03 | 128.87 | −18.92 |
12 February 2021–22 March 2021 | unstable thawing period | 6.937 | 0 | 33.83 | 49.75 | −7.27 |
23 March 2021–11 April 2021 | stable thawing period | / | 0 | 23.95 | 20.28 | 2.97 |
12 April 2021–12 May 2021 | non-freezing period | 2.52 | 22.02 | 34.52 | 20.51 | −5.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Du, X.; Ye, X.; Wang, E. Groundwater Response to Snowmelt Infiltration in Seasonal Frozen Soil Areas: Site Monitoring and Numerical Simulation. Hydrology 2024, 11, 201. https://doi.org/10.3390/hydrology11120201
Fang Y, Du X, Ye X, Wang E. Groundwater Response to Snowmelt Infiltration in Seasonal Frozen Soil Areas: Site Monitoring and Numerical Simulation. Hydrology. 2024; 11(12):201. https://doi.org/10.3390/hydrology11120201
Chicago/Turabian StyleFang, Yongjun, Xinqiang Du, Xueyan Ye, and Enbo Wang. 2024. "Groundwater Response to Snowmelt Infiltration in Seasonal Frozen Soil Areas: Site Monitoring and Numerical Simulation" Hydrology 11, no. 12: 201. https://doi.org/10.3390/hydrology11120201
APA StyleFang, Y., Du, X., Ye, X., & Wang, E. (2024). Groundwater Response to Snowmelt Infiltration in Seasonal Frozen Soil Areas: Site Monitoring and Numerical Simulation. Hydrology, 11(12), 201. https://doi.org/10.3390/hydrology11120201