Geographical Information System-Based Site Selection in North Kordofan, Sudan, Using In Situ Rainwater Harvesting Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.1.1. Geographical Location
2.1.2. Climate Conditions
2.1.3. Soil
2.1.4. Land Cover
3. Data Collection and Processes
3.1. Criteria Selection and Assessment of the Suitability Level
3.1.1. Soil Texture of the Region
3.1.2. Runoff Depth of the Region
SCS-CN Method
Curve Number CN
3.1.3. Rainfall Surplus of the Region
3.1.4. Land Cover (LC) of the Region
3.1.5. Slope of the Region
4. Validation of the Existent In Situ RWH Structures
4.1. Analysis of the Criteria Maps of Sheikan Province
4.2. Weighted Linear Combination (WLC) Procedures
4.2.1. Reclassification
4.2.2. Normalization
4.2.3. Weighted Linear Combination (WLC)
5. Analytical Hierarchy Process (AHP)
Assignment of the Criteria Weights
6. Geographic Information System (GIS)
7. Results
7.1. Analysis of the Criteria Maps of the Region
7.1.1. Soil Texture Map
7.1.2. Runoff Depth Map
7.1.3. Rainfall Surplus Map
7.1.4. Land Cover Map
7.1.5. Slope Map
7.1.6. AHP Model Outputs
8. Discussion
8.1. Criteria Used to Delineate Suitable Sites for In Situ RWH
8.2. Identifying Optimal Locations for In Situ Rainwater Harvesting (RWH)
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, Z.A.; Imran, M.; Umer, J.; Ahmed, S.; Diemuodeke, O.E.; Abdelatif, A.O. Assessing Crop Water Requirements and a Case for Renewable-Energy-Powered Pumping System for Wheat, Cotton, and Sorghum Crops in Sudan. Energies 2021, 14, 8133. [Google Scholar] [CrossRef]
- Siddig, K.; Stepanyan, D.; Wiebelt, M.; Grethe, H.; Zhu, T.J. Climate change and agriculture in the Sudan: Impact pathways beyond changes in mean rainfall and temperature. Ecol. Econ. 2020, 169, 106566. [Google Scholar] [CrossRef]
- Tharwat, M.I.H.; Modiba, M.M.; Simon, B. Effects of Climate Change on Sudan’s Water Resources. J. Cent. Eur. Green Innov. 2023, 11, 84–90. [Google Scholar] [CrossRef]
- El Baroudy, A.A. Mapping and evaluating land suitability using a GIS-based model. Catena 2016, 140, 96–104. [Google Scholar] [CrossRef]
- Sanjak, E. Contribution of the National Adaptation Plan of Action Project to Sustainable Livelihoods in North Kordofan State, Sudan. Orkshop 2015, 2020, 31. [Google Scholar]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Bigurra-Alzati, C.A.; Ortiz-Gómez, R.; Vázquez-Rodríguez, G.A.; López-León, L.D.; Lizárraga-Mendiola, L. Water conservation and green infrastructure adaptations to reduce water scarcity for residential areas with semi-arid climate: Mineral de la reforma, Mexico. Water 2020, 13, 45. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Wuta, M.; Nyamangara, J.; Gumbo, D.J.S. Opportunities for optimization of in-field water harvesting to cope with changing climate in semi-arid smallholder farming areas of Zimbabwe. SpringerPlus 2013, 2, 100. [Google Scholar] [CrossRef]
- Alene, A.; Yibeltal, M.; Abera, A.; Andualem, T.G.; Lee, S.S. Identifying rainwater harvesting sites using integrated GIS and a multi-criteria evaluation approach in semi-arid areas of Ethiopia. Appl. Water Sci. 2022, 12, 238. [Google Scholar] [CrossRef]
- Darabi, H.; Moradi, E.; Davudirad, A.A.; Ehteram, M.; Cerda, A.; Haghighi, A.T. Efficient rainwater harvesting planning using socio-environmental variables and data-driven geospatial techniques. J. Clean. Prod. 2021, 311, 127706. [Google Scholar] [CrossRef]
- Mudatenguha, F.; Anena, J.; Kiptum, C.K.; Mashingaidze, A.B. In situ rain water harvesting techniques increase maize growth and grain yield in a semi-arid agro-ecology of Nyagatare, Rwanda. Int. J. Agric. Biol. 2014, 16, 996–1000. [Google Scholar]
- Mahmoud, S.H.; Alazba, A.A. The potential of in situ rainwater harvesting in arid regions: Developing a methodology to identify suitable areas using GIS-based decision support system. Arab. J. Geosci. 2015, 8, 5167–5179. [Google Scholar] [CrossRef]
- Ammar, A.; Riksen, M.; Ouessar, M.; Ritsema, C. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. Int. Soil Water Conserv. Res. 2016, 4, 108–120. [Google Scholar] [CrossRef]
- Buraihi, F.H.; Shariff, A.R.M. Selection of rainwater harvesting sites by using remote sensing and GIS techniques: A case study of Kirkuk, Iraq. J. Teknol. 2015, 76, 75–81. [Google Scholar] [CrossRef]
- El Naim, A.M.; Hamoda, S.M.; Ibrahim, E.A.; Zaied, M.M.; Ibrahim, E.B. Performance of In-situ Rain Water Harvesting on Yield of Grain Sorghum in Gradud Soil of North Kordofan. Int. J. Agric. For. 2018, 8, 77–82. [Google Scholar] [CrossRef]
- Ezzat, S.; Omer, M.A.; Fadlalla, B.; Ahmed, H. Effect of water harvesting and re-seeding on forage biomass production from rangelands in Sheikan Locality, North Kordofan State, Sudan. J. Agric. Crop Res. 2016, 4, 117–123. [Google Scholar]
- Mohammedien, M.A.; Yagoub, S.O.; Mohammed, A. Effect of Different Rainwater Harvesting Techniques (RWHT) On Yield of Pearl Millet Intercropped with Cow pea, North Darfur-Sudan. Sch. J. Agric. Vet. Sci. 2016, 3, 429–434. [Google Scholar]
- Elsheikh, W.; Nasreldin, M. Impacts of Climate Change on Water Resources in Sudan. Eurasian J. Agric. Res. 2022, 6, 83–90. [Google Scholar]
- Alredaisy, S.M.A.H. Reviewing indicators of climate change and their environmental impacts in Sudan. Int. J. Recent Res. Interdiscip. Sci. 2023, 10, 7–16. [Google Scholar]
- Dafalla, M.S.; Abdel-Rahman, E.M.; Siddig, K.H.; Ibrahim, I.S.; Csaplovics, E. Land use and land cover changes in Northern Kordofan state of Sudan: A remotely sensed data analysis. In Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 269–283. [Google Scholar]
- Modak, S.; Das, D. Delineation of Suitable Zone for Rainwater Harvesting in Upper Catchment of Kumari River Basin, West Bengal and Jharkhand, India: Using AHP and Geospatial Techniques. Paideuma 2022, 14, 20–43. [Google Scholar]
- Sharma, D.D.; Chanjta, A. Identification of Potential Water Collection Spots in Tribal Region of Himachal Pradesh, India Using Remote Sensing & GIS. Int. J. Sci. Eng. Appl. Sci. 2017, 3, 2395–3470. [Google Scholar]
- Bulcock, L.; Jewitt, G.J.P. Key physical characteristics used to assess water harvesting suitability. Phys. Chem. Earth Parts A/B/C 2013, 66, 89–100. [Google Scholar] [CrossRef]
- Dilshad, M.; Peel, L.J. Evaluation of the USDA curve number method for agricultural catchments in the Australian semi-arid tropics. Soil Res. 1994, 32, 673–685. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Long-term hydrological simulation based on the Soil Conservation Service curve number. Hydrol. Process. 2004, 18, 1291–1313. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Bandyopadhyay, A.; Kusuma, K.N. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. J. Earth Syst. Sci. 2009, 118, 355–368. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouvier, C.; Martin, C.; Didon-Lescot, J.-F.; Todorovik, D.; Domergue, J.-M. Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. J. Hydrol. 2010, 387, 176–187. [Google Scholar] [CrossRef]
- Weerasinghe, H.; Schneider, U.; Loew, A. Water harvest-and storage-location assessment model using GIS and remote sensing. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 3353–3381. [Google Scholar]
- Al-Hasan, A.A.S.; Mattar, Y.E.-S. Mean runoff coefficient estimation for ungauged streams in the Kingdom of Saudi Arabia. Arab. J. Geosci. 2014, 7, 2019–2029. [Google Scholar] [CrossRef]
- Soulis, K.; Valiantzas, J.; Dercas, N.; Londra, P.A. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrol. Earth Syst. Sci. 2009, 13, 605–615. [Google Scholar] [CrossRef]
- Gebremedhn, A.Y.; Getahun, Y.S.; Moges, A.S.; Tesfay, F. Identification of suitable rainwater harvesting sites using geospatial techniques with AHP in Chacha Watershed, Jemma Sub-Basin Upper Blue Nile, Ethiopia. Air Soil Water Res. 2023, 16, 11786221231195831. [Google Scholar] [CrossRef]
- Rejani, R.; Rao, K.; Srinivasa Rao, C.; Osman, M.; Sammi Reddy, K.; George, B.; Pratyusha Kranthi, G.; Chary, G.; Swamy, M.; Rao, P.J.; et al. Identification of potential rainwater-harvesting sites for the sustainable management of a semi-arid watershed. Irrig. Drain. 2017, 66, 227–237. [Google Scholar] [CrossRef]
- Aghaloo, K.; Chiu, Y.-R. Identifying optimal sites for a rainwater-harvesting agricultural scheme in iran using the best-worst method and fuzzy logic in a GIS-based decision support system. Water 2020, 12, 1913. [Google Scholar] [CrossRef]
- Harka, A.E.; Roba, N.T.; Kassa, A.K. Modelling rainfall runoff for identification of suitable water harvesting sites in Dawe River watershed, Wabe Shebelle River basin, Ethiopia. J. Water Land Dev. 2020, 47, 186–195. [Google Scholar] [CrossRef]
- Singh, P.; Anand, A.; Srivastava, P.K.; Singh, A.; Pandey, P.C. Delineation of groundwater potential zone and site suitability of rainwater harvesting structures using remote sensing and in situ geophysical measurements. Adv. Remote Sens. Nat. Resour. Monit. 2021, 170–188. [Google Scholar] [CrossRef]
- Debebe, Y.; Otterpohl, R.; Islam, Z. Remote sensing and multi-criterion analysis for identifying suitable rainwater harvesting areas. Acta Geophys. 2023, 71, 855–872. [Google Scholar] [CrossRef]
- Ketsela, G.M. Identification of Potential Rain Water Harvesting Areas in the Central Rift Valley of Ethiopia Using a GIS-Based Approach. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2009; pp. 13–87. [Google Scholar]
- Laurita. Identifying suitable sites for underground dams using GIS technology: A case study in North-East Brazil. In Proceedings of the 11th International AIIA Conference, Bari, Italy, 5–8 July 2017. [Google Scholar]
- Argyriou, A.V.; Teeuw, R.M.; Rust, D.; Sarris, A. GIS multi-criteria decision analysis for assessment and mapping of neotectonic landscape deformation: A case study from Crete. Geomorphology 2016, 253, 262–274. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Alazba, A.A. Integrated remote sensing and GIS-based approach for deciphering groundwater potential zones in the central region of Saudi Arabia. Environ. Earth Sci. 2016, 75, 344. [Google Scholar] [CrossRef]
- Karimi, H.; Zeinivand, H. Integrating runoff map of a spatially distributed model and thematic layers for identifying potential rainwater harvesting suitability sites using GIS techniques. Geocarto Int. 2021, 36, 320–339. [Google Scholar] [CrossRef]
- Rajbanshi, J. Estimation of runoff depth and volume using NRCS-CN method in Konar Catchment (Jharkhand, India). J. Civ. Environ. Eng. 2016, 6, 4. [Google Scholar] [CrossRef]
- Tadros, M.J.; Al-Mefleh, N.K.; Othman, Y.A.; Al-Assaf, A. Water harvesting techniques for improving soil water content, and morpho-physiology of pistachio trees under rainfed conditions. Agric. Water Manag. 2021, 243, 106464. [Google Scholar] [CrossRef]
- Mahmood, K.; Qaiser, A.; Farooq, S.; Nisa, M.U. RS-and GIS-based modeling for optimum site selection in rain water harvesting system: An SCS-CN approach. Acta Geophys. 2020, 68, 1175–1185. [Google Scholar] [CrossRef]
- Tahvili, Z.; Khosravi, H.; Malekian, A.; Khalighi Sigaroodi, S.; Pishyar, S.; Singh, V.P.; Ghodsi, M. Locating suitable sites for rainwater harvesting (RWH) in the central arid region of Iran. Sustain. Water Resour. Manag. 2021, 7, 10. [Google Scholar] [CrossRef]
Suitability Rank for Soil Texture | |||
---|---|---|---|
No | Texture Classes | Description | Ranking Classes |
1 | Clay | 2 | |
2 | Clay loam | 4 | |
3 | Loam | 5 | |
4 | Rock | 1 | |
5 | Sand | 1 | |
6 | Sandy clay loam | 5 | |
7 | Sandy loam | 3 | |
Suitability rank for runoff depth | |||
Runoff depth (mm) | |||
1 | 21–25 | Very deep | 5 |
2 | 17–20 | Deep | 4 |
3 | 12–16 | Moderately deep | 3 |
4 | 8–11 | Shallow | 2 |
5 | 0–7 | Very shallow | 1 |
Suitability rank for rainfall surplus | |||
Rainfall surplus values (mm) | |||
1 | 0–1 | Very large deficit | 1 |
2 | 2–22 | Large deficit | 2 |
3 | 23–40 | Medium deficit | 3 |
4 | 41–60 | Small surplus | 4 |
5 | 61–80 | Large surplus | 5 |
Suitability rank for land cover | |||
Land cover types | |||
1 | Bare land | 3 | |
2 | Cultivated land | 5 | |
3 | Forest and tree plantation | 2 | |
4 | Shrub- and grasslands | 4 | |
5 | Water bodies and artificial surfaces | (Restricted) 1 | |
Suitability rank for slope of the study area | |||
Slope (%) | |||
1 | 0–0.4 | Flat | 5 |
2 | 0.5–1 | Slightly flat | 4 |
3 | 2–7 | Moderately sloping | 3 |
4 | 8–15 | Strongly sloping | 2 |
5 | 16–32 | Mountainous | 1 |
Texture | Runoff Depth | Rainfall Surplus | Land Cover | Slope | |
---|---|---|---|---|---|
Texture | 1 | 2 | 3 | 7 | 4 |
Runoff Depth | ½ | 1 | 4 | 5 | 3 |
Rainfall Surplus | 1/3 | ¼ | 1 | 4 | 3 |
Land Cover | 1/7 | 1/5 | ¼ | 1 | ½ |
Slope | ¼ | 1/3 | 1/3 | 2 | 1 |
Suitability Levels | Area (km2) | Percentage (%) |
---|---|---|
Excellent | 4863.75 | 26.25 |
Good | 7419.183 | 40.05 |
Moderate | 1705.481 | 9.2 |
Poor | 1645.227 | 8.9 |
Unsuitable | 2888.126 | 15.6 |
Total | 18,521.767 | 100.00 |
Suitability Levels | Area (km2) | Percentage (%) |
---|---|---|
Excellent | 198.182 | 10.81 |
Good | 844 | 46.04 |
Moderate | 341 | 18.60 |
Poor | 328.998 | 17.95 |
Unsuitable | 121 | 6.60 |
Total | 1833.18 | 100.00 |
Suitability Levels | Area (km2) | Percentage (%) |
---|---|---|
Excellent | 787.811 | 42.94 |
Good | 42 | 5.90 |
Moderate | 649.4 | 24.51 |
Poor | 371.2 | 20.25 |
Unsuitable | 117 | 6.41 |
Total | 1833.18 | 100.00 |
Locations | Suitability Map of FAO Data | Suitability Map of New Data |
---|---|---|
Algabal | 1/2 Excellent 1/2 Poor | Moderate |
Wad_albaga | Excellent | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, I.; Bresci, E.; Alotaibi, K.D.; Abdelmalik, A.M.; Ahmed, E.M.; Almutairi, M.-B.R. Geographical Information System-Based Site Selection in North Kordofan, Sudan, Using In Situ Rainwater Harvesting Techniques. Hydrology 2024, 11, 204. https://doi.org/10.3390/hydrology11120204
Ahmed I, Bresci E, Alotaibi KD, Abdelmalik AM, Ahmed EM, Almutairi M-BR. Geographical Information System-Based Site Selection in North Kordofan, Sudan, Using In Situ Rainwater Harvesting Techniques. Hydrology. 2024; 11(12):204. https://doi.org/10.3390/hydrology11120204
Chicago/Turabian StyleAhmed, Ibrahim, Elena Bresci, Khaled D. Alotaibi, Abdelmalik M. Abdelmalik, Eljaily M. Ahmed, and Majed-Burki R. Almutairi. 2024. "Geographical Information System-Based Site Selection in North Kordofan, Sudan, Using In Situ Rainwater Harvesting Techniques" Hydrology 11, no. 12: 204. https://doi.org/10.3390/hydrology11120204
APA StyleAhmed, I., Bresci, E., Alotaibi, K. D., Abdelmalik, A. M., Ahmed, E. M., & Almutairi, M.-B. R. (2024). Geographical Information System-Based Site Selection in North Kordofan, Sudan, Using In Situ Rainwater Harvesting Techniques. Hydrology, 11(12), 204. https://doi.org/10.3390/hydrology11120204