Influence of Floodplain Forest Structure on Overbank Sediment and Phosphorus Deposition in an Agriculturally Dominated Watershed in Iowa, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region Description
2.1.1. River and Basin Description
2.1.2. Hydrology and Water Quality Description
2.2. Site Selection and Survey Plot Distribution
2.3. Forest Survey
2.3.1. Forest Survey Plot Layout
2.3.2. Forest Herbaceous Layer Survey
2.3.3. Forest Overstory and Woody Regeneration Survey
2.3.4. Coarse Downed Wood
2.4. Sediment Deposition
2.5. Sediment Characterization and Analyses
2.6. Spatial Analyses
2.7. Statistical Analysis
3. Results
3.1. Vegetation Survey
3.1.1. Forest Overstory and Coarse Downed Wood
3.1.2. Forest Herbaceous Layer
3.2. Correlations between Vegetation Metrics and Annual Deposition
3.3. Correlations between Vegetation Characteristics and Total Phosphorus
3.4. Influence of Spatial Characteristics on Deposition
3.5. Floodplain Sediment and Total Phosphorus Storage
4. Discussion
4.1. Vegetation Influences on Sediment and TP
4.2. Spatial Influences on Sediment and TP
4.3. Floodplain Sediment and Total Phosphorus Storage
4.4. Study Limitations
4.5. Floodplain Forest Influences on Water Quality
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA National Agricultural Statistics Service. United States Summary and State Data. 2017 Census Agric. 2017, 1, 820. [Google Scholar]
- Thaler, E.A.; Kwang, J.S.; Quirk, B.J.; Quarrier, C.L.; Larsen, I.J. Rates of Historical Anthropogenic Soil Erosion in the Midwestern United States. Earth’s Future 2022, 10, e2021EF002396. [Google Scholar] [CrossRef]
- Correll, D.L. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Turner, R.E.; Rabalais, N.N.; Justic, D. Gulf of Mexico Hypoxia: Alternate States and a Legacy. Environ. Sci. Technol. 2008, 42, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K. The Effect of Eutrophication on Drinking Water. Br. J. Multidiscip. Adv. Stud. 2023, 4, 7–20. [Google Scholar] [CrossRef]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of U. S. Freshwaters: Analysis of Potential Economic Damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.E.; Streeter, M.T.; Seeman, A.; Jones, C.S.; Wolter, C.F. Total Phosphorus Export from Iowa Agricultural Watersheds: Quantifying the Scope and Scale of a Regional Condition. J. Hydrol. 2020, 581, 124397. [Google Scholar] [CrossRef]
- Mendes, L.R.D. Edge-of-Field Technologies for Phosphorus Retention from Agricultural Drainage Discharge. Appl. Sci. 2020, 10, 634. [Google Scholar] [CrossRef]
- Omengo, F.O.; Alleman, T.; Geeraert, N.; Bouillon, S.; Govers, G. Sediment Deposition Patterns in a Tropical Floodplain, Tana River, Kenya. Catena 2016, 143, 57–69. [Google Scholar] [CrossRef]
- Wilkin, D.C.; Hebel, S.J. Erosion, Redeposition, and Delivery of Sediment to Midwestern Streams. Water Resour. Res. 1982, 18, 1278–1282. [Google Scholar] [CrossRef]
- Cooper, J.R.; Gilliam, J.W. Phosphorus Redistribution from Cultivated Fields into Riparian Areas. Soil Sci. Soc. Am. J. 1987, 51, 1600–1604. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R. Carbon, Nitrogen, and Phosphorus Accumulation in Floodplains of Atlantic Coastal Plain Rivers, USA. Ecol. Appl. 2005, 15, 1178–1190. [Google Scholar] [CrossRef]
- Kronvang, B.; Andersen, I.K.; Hoffmann, C.C.; Pedersen, M.L.; Ovesen, N.B.; Andersen, H.E. Water Exchange and Deposition of Sediment and Phosphorus during Inundation of Natural and Restored Lowland Floodplains. Water. Air. Soil Pollut. 2007, 181, 115–121. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R. Retention of Riverine Sediment and Nutrient Loads by Coastal Plain Floodplains. Ecosystems 2009, 12, 728–746. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R. Seasonal Variation in Nutrient Retention During Inundation of a Short-Hydroperiod Floodplain. River Res. Appl. 2007, 23, 1088–1101. [Google Scholar] [CrossRef]
- Kronvang, B.; Hoffmann, C.C.; Dörge, R. Sediment Deposition and Net Phosphorus Retention in a Hydraulically Restored Lowland River Floodplain in Denmark: Combining Field and Laboratory Experiments. Mar. Freshw. Res. 2009, 60, 638–646. [Google Scholar] [CrossRef]
- Hubbard, L.; Kolpin, D.W.; Kalkhoff, S.J.; Robertson, D.M. Nutrient and Sediment Concentrations and Corresponding Loads during the Historic June 2008 Flooding in Eastern Iowa. J. Environ. Qual. 2011, 40, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Moustakidis, I.V.; Schilling, K.E.; Weber, L.J. Soil Total Phosphorus Deposition and Variability Patterns across the Floodplains of an Iowa River. Catena 2019, 174, 84–94. [Google Scholar] [CrossRef]
- Nepf, H.M.; Vivoni, E.R. Flow Structure in Depth-Limited, Vegetated Flow. J. Geophys. Res. Ocean. 2000, 105, 28547–28557. [Google Scholar] [CrossRef]
- Diehl, R.M.; Merritt, D.M.; Wilcox, A.C.; Scott, M.L. Applying Functional Traits to Ecogeomorphic Processes in Riparian Ecosystems. Bioscience 2017, 67, 729–743. [Google Scholar] [CrossRef]
- James, C.S.; Jordanova, A.A.; Nicolson, C.R. Flume Experiments and Modelling of Flow-Sediment-Vegetation Interactions. IAHS-AISH Publ. 2002, 276, 3–10. [Google Scholar]
- Lambrechts, T.; François, S.; Lutts, S.; Muñoz-Carpena, R.; Bielders, C.L. Impact of Plant Growth and Morphology and of Sediment Concentration on Sediment Retention Efficiency of Vegetative Filter Strips: Flume Experiments and VFSMOD Modeling. J. Hydrol. 2014, 511, 800–810. [Google Scholar] [CrossRef]
- Kretz, L.; Seele, C.; van der Plas, F.; Weigelt, A.; Wirth, C. Leaf Area and Pubescence Drive Sedimentation on Leaf Surfaces during Flooding. Oecologia 2020, 193, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Kretz, L.; Koll, K.; Seele-Dilbat, C.; van der Plas, F.; Weigelt, A.; Wirth, C. Plant Structural Diversity Alters Sediment Retention on and underneath Herbaceous Vegetation in a Flume Experiment. PLoS ONE 2021, 16, e0248320. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Thompson, C.; Wang, X.; Cai, T.; Chang, Y. Differential Sediment Trapping Abilities of Mangrove and Saltmarsh Vegetation in a Subtropical Estuary. Geomorphology 2018, 318, 270–282. [Google Scholar] [CrossRef]
- Reef, R.; Christie, E.K.; Moller, I.; Spencer, T. The Effect of Vegetation Height and Biomass on the Sediment Budget of a European Saltmarsh. Coast. Shelf Sci. 2018, 202, 125–133. [Google Scholar] [CrossRef]
- Boorman, L.A.; Garbutt, A.; Barratt, D. The Role of Vegetation in Determining Patterns of the Accretion of Salt Marsh Sediment. Geol. Soc. Spec. Publ. 1998, 139, 389–399. [Google Scholar] [CrossRef]
- Bourgoin, L.M.; Bonnet, M.P.; Martinez, J.M.; Kosuth, P.; Cochonneau, G.; Moreira-Turcq, P.; Guyot, J.L.; Vauchel, P.; Filizola, N.; Seyler, P. Temporal Dynamics of Water and Sediment Exchanges between the Curuaí Floodplain and the Amazon River, Brazil. J. Hydrol. 2007, 335, 140–156. [Google Scholar] [CrossRef]
- Griffith, G.E.; Omernik, J.M.; Wilton, T.F.; Pierson, S.M. Ecoregions and Subregions of Lowa: A Framework for Water Quality Assessment and Management. J. Iowa Acad. Sci. 1994, 101, 5–13. [Google Scholar]
- Strahler, A.N. Quantitative Analysis of Watershed Geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- USGS StreamStats Program. Available online: https://www.usgs.gov/streamstats (accessed on 1 January 2024).
- Robertson, D.M.; Saad, D.A. SPARROW Models Used to Understand Nutrient Sources in the Mississippi/Atchafalaya River Basin. J. Environ. Qual. 2013, 42, 1422–1440. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.E.; Libra, R.D. Increased Baseflow in Iowa over the Second Half of the 20th Century. J. Am. Water Resour. Assoc. 2003, 39, 851–860. [Google Scholar] [CrossRef]
- Beck, W.J.; Moore, P.L.; Schilling, K.E.; Wolter, C.F.; Isenhart, T.M.; Cole, K.J.; Tomer, M.D. Changes in Lateral Floodplain Connectivity Accompanying Stream Channel Evolution: Implications for Sediment and Nutrient Budgets. Sci. Total Environ. 2019, 660, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Iowa Department of Natural Resources Flood Gradient of the Modeled 2, 5, 10, 25, 50, 100, and 500 Year Floodplain Boundaries Download. Available online: https://geodata.iowa.gov/documents/224dab85156e420d9c3beb3188650069/about (accessed on 5 May 2023).
- Wu, Y.; Liu, S. Modeling of Land Use and Reservoir Effects on Nonpoint Source Pollution in a Highly Agricultural Basin. J. Environ. Monit. 2012, 14, 2350–2361. [Google Scholar] [CrossRef]
- USGS National Water Information System Data. Available online: https://dashboard.waterdata.usgs.gov/app/nwd/en/?aoi=default (accessed on 2 February 2024).
- Gilles, D.; Young, N.; Schroeder, H.; Piotrowski, J.; Chang, Y.J. Inundation Mapping Initiatives of the Iowa Flood Center: Statewide Coverage and Detailed Urban Flooding Analysis. Water 2012, 4, 85–106. [Google Scholar] [CrossRef]
- Kouwen, N. Field Estimation of the Biomechanical Properties of Grass. J. Hydraul. Res. 1988, 26, 559–568. [Google Scholar] [CrossRef]
- USDA. Forest Inventory And Analysis National Core Field Guide Volume I: Field Data Collection Procedures For Phase 2 Plots; USDA: Hutchinson, KS, USA, 2021; Volume I. [Google Scholar]
- Woodall, C.W.; Monleon, V.J. United States Department of Agriculture Sampling Protocol, Estimation, and Analysis Procedures for the Down Woody Materials Indicator of the FIA Program; USDA Forest Service, North Central Research Station: Asheville, NC, USA, 2005. [Google Scholar]
- Cordova, J.M.; Rosi-Marshall, E.L.; Yamamuro, A.M.; Lamberti, G.A. Quantity, Controls and Functions of Large Woody Debris in Midwestern USA Streams. River Res. Appl. 2007, 23, 21–33. [Google Scholar] [CrossRef]
- Sigafoos, R.S. Botanical Evidence of Floods and Flood-Plain Deposition; US Government Printing Office: Washington, DC, USA, 1964; Volume 485-A, p. 35. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, 2024. Available online: http://www.rstudio.com/ (accessed on 1 January 2024).
- Nanson, G.C.; Beach, H.F. Forest Succession and Sedimentation on a Meandering-River Floodplain, Northeast British Columbia, Canada. J. Biogeogr. 1977, 4, 229. [Google Scholar] [CrossRef]
- Rybicki, N.B.; Noe, G.B.; Hupp, C.; Robinson, M.E. Vegetation Composition, Nutrient, and Sediment Dynamics along a Floodplain Landscape. River Syst. 2015, 21, 109–123. [Google Scholar] [CrossRef]
- Gordon, B.A.; Dorothy, O.; Lenhart, C.F. Nutrient Retention in Ecologically Functional Floodplains: A Review. Water 2020, 12, 2762. [Google Scholar] [CrossRef]
- Asselman, N.E.M.; Middelkoop, H. Floodplain Sedimentation: Quantities, Patterns and Processes. Earth Surf. Process. Landforms 1995, 20, 481–499. [Google Scholar] [CrossRef]
- Walling, D.E.; Owens, P.N.; Leeks, G.J.L. The Role of Channel and Floodplain Storage in the Suspended Sediment Budget of the River Ouse, Yorkshire, UK. Geomorphology 1998, 22, 225–242. [Google Scholar] [CrossRef]
- Walling, D.E.; He, Q. The Spatial Variability of Overbank Sedimentation on River Floodplains. Geomorphology 1998, 24, 209–223. [Google Scholar] [CrossRef]
Category | Height Requirement |
---|---|
Short grass | <25 cm |
Short forb | |
Medium grass | 25–50 cm |
Medium forb | |
Tall grass | >50 cm |
Tall forb |
Category | Parameter | Pearson Correlation p-Value | Pearson Correlation Coefficient |
---|---|---|---|
Late spring ground vegetation cover | Total ground vegetation cover | <0.001 | 0.42 |
Tall grass cover | 0.011 | 0.26 | |
Tall forb cover | 0.001 | 0.32 | |
Medium forb cover | <0.001 | 0.59 | |
Short forb cover | <0.001 | 0.34 | |
Late summer ground vegetation cover | Short grass cover | 0.038 | 0.21 |
Medium forb cover | 0.008 | 0.27 | |
Short forb cover | <0.001 | 0.44 | |
Vegetation stiffness | Board drop | 0.036 | 0.22 |
Category | Parameter | Correlation Coefficient for P Concentration * | Correlation Coefficient for P Mass * |
---|---|---|---|
Forest inventory | Basal area per hectare | - | 0.12 |
Trees per hectare | 0.29 | 0.31 | |
Total seedlings and saplings | −0.34 | - | |
Late spring cover | Total cover spring | 0.29 | 0.33 |
Tall grass cover | - | 0.32 | |
Summed grass cover | 0.38 | - |
Two-Year FRI | Five-Year FRI | Ten-Year FRI | |
---|---|---|---|
Mean bulk density (kg/m3) | 880.3 | 832.2 | 1049.5 |
Mean percent clay | 38.2 | 28.8 | 35.1 |
Annual sediment deposition per square meter (kg/m2) | 3.76 | 2.77 | 3.43 |
Mean P concentration (mg/kg) | 915.2 | 841.0 | 785.8 |
Annual phosphorus deposition per square meter (g/m2) | 3.44 | 2.33 | 2.70 |
Parameter | Total |
---|---|
Total area (Ha) | 1879 |
Mean bulk density (kg/m3) | 897.19 |
Mean percent clay | 36.9 |
Total annual sediment deposition (Mg) | 73,691 |
Annual sediment deposition per square meter (kg/m2) | 3.92 |
Mean P concentration (mg/kg) | 950.64 |
Total annual phosphorus deposition (Mg) | 70.05 |
Annual phosphorus deposition per square meter (g/m2) | 3.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geer, S.; Beck, W.; Zimmerman, E.; Schultz, R. Influence of Floodplain Forest Structure on Overbank Sediment and Phosphorus Deposition in an Agriculturally Dominated Watershed in Iowa, USA. Hydrology 2024, 11, 57. https://doi.org/10.3390/hydrology11040057
Geer S, Beck W, Zimmerman E, Schultz R. Influence of Floodplain Forest Structure on Overbank Sediment and Phosphorus Deposition in an Agriculturally Dominated Watershed in Iowa, USA. Hydrology. 2024; 11(4):57. https://doi.org/10.3390/hydrology11040057
Chicago/Turabian StyleGeer, Sierra, William Beck, Emily Zimmerman, and Richard Schultz. 2024. "Influence of Floodplain Forest Structure on Overbank Sediment and Phosphorus Deposition in an Agriculturally Dominated Watershed in Iowa, USA" Hydrology 11, no. 4: 57. https://doi.org/10.3390/hydrology11040057
APA StyleGeer, S., Beck, W., Zimmerman, E., & Schultz, R. (2024). Influence of Floodplain Forest Structure on Overbank Sediment and Phosphorus Deposition in an Agriculturally Dominated Watershed in Iowa, USA. Hydrology, 11(4), 57. https://doi.org/10.3390/hydrology11040057