Integrating Remote Sensing Methods for Monitoring Lake Water Quality: A Comprehensive Review
Abstract
:1. Introduction
2. Bibliometric Analysis
3. Materials and Methods
3.1. Analytical Methods
3.2. Semi-Analytical Methods
3.3. Empirical Methods
3.4. Semi-Empirical Methods
3.5. Machine Learning (ML) Methods
4. Optically Active Water Quality Parameters
4.1. Chlorophyll-α (Chl-α)
4.2. Turbidity
4.3. Transparency (Secchi Disk Depth (SDD))
4.4. Water Temperature (WT)
4.5. Salinity
4.6. Electrical Conductivity (EC)
5. Sensors for Assessing Water Quality Parameters
Satellite Sensor | Full Name of the Sensor | Platform | Sensor Type | Agency | Operational Years | Reference |
---|---|---|---|---|---|---|
AISA | Airborne Imaging Spectrometer for Applications | Airborne | Hyperspectral | Specim | - | [125] |
CASI | Compact Airborne Spectrographic Imager | Airborne | Hyperspectral | Itres Research | - | [126] |
Daedalus ATM | Airborne Thematic Mapper | Airborne | Multispectral | Daedalus Enterprises | - | [127] |
HyMap | - | Airborne | Hyperspectral | NASA | - | [128] |
HyperOCR | Ocean Colour Radiometer | Airborne | Hyperspectral | Sea-Bird | - | [129] |
MIVIS | Multispectral Infrared and Visible Imaging Spectrometer | Airborne | Hyperspectral | Italian National Research Council | - | [130] |
Envisat MERIS | Medium Resolution Imaging Spectrometer | Satellite | Hyperspectral | ESA | 2002–2012 | [131] |
EO-1 Hyperion | - | Satellite | Hyperspectral | NASA | 2000–2017 | [132] |
Ikonos OSA | Optical Sensor Assembly | Satellite | Multispectral | GeoEye | 1999–2015 | [133] |
ISS HICO | Hyperspectral Imager for the Coastal Ocean | Satellite | Hyperspectral | NASA | 2009–2014 | |
Landsat-5 MSS | Multi-Spectral Scanner | Satellite | Multispectral | NASA | 1972–2011 | [134] |
Landsat-5 TM | Thematic Mapper | Satellite | Multispectral | NASA | 1982–2011 | [134] |
Landsat-7 ETM+ | Enhanced Thematic Mapper Plus | Satellite | Multispectral | NASA | 1999–present | [135] |
Landsat-8 OLI | Operational Land Imager | Satellite | Multispectral | NASA | 2013–present | [136] |
Landsat-8 TIRS | Thermal Infra-Red Sensor | Satellite | Multispectral | NASA | 2013–present | [136] |
NOAA AVHRR | Advanced Very High-Resolution Radiometer | Satellite | Radiometer | NOAA | 1998–present | [137] |
PlanetScope | - | Satellite | Multispectral | Planet | 2014–present | [138] |
PROBA-CHRIS | Compact High Resolution Imaging Spectrometer | Satellite | Hyperspectral | UKSA | 2002–present | [139] |
Sentinel-2 MSI | Multispectral Instrument | Satellite | Multispectral | ESA | 2015–present | [140] |
Sentinel-3 OLCI | Ocean and Land Colour Instrument | Satellite | Multispectral | ESA | 2016–present | [141] |
Terra ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer | Satellite | Multispectral | NASA | 2000–present | [142] |
Terra MODIS | Moderate Resolution Imaging Spectroradiometer | Satellite | Multispectral | NASA | 2000–present | [143] |
WorldView-2 | - | Satellite | Multispectral | DigitalGlobe | 2010–present | [144] |
6. Discussion and Recommendations
- (1)
- Conducting a thorough time analysis of the waterbody and its surroundings (for a period of 10 to 15 years, utilizing meteorological and in situ data) under various conditions (dry period, rainfall period, etc.).
- (2)
- Determining and evaluating all internal and external factors that may influence water quality.
- (3)
- Referring to relevant scientific research.
- (4)
- Determining which water quality parameters will be included in the study.
- (5)
- Determining the study period based on historical analysis by recognizing various environmental scenarios such as seasons, dry periods, and heavy rainfall. If a lake is susceptible to ice or snow, the study period should focus on the coldest months when the lake is affected by these conditions. Similarly, if a brackish lake experiences dry periods leading to increased salinity due to evaporation and low water influx, the study period should include this phenomenon.
- (6)
- Analysing temporal statistical data and water quality parameter distribution throughout the waterbody, taking into account the hydrological model of the lake’s bathymetry and important tributaries, to determine the sampling grid and the quantity and locations of in situ measurement locations.
- (7)
- Choosing the appropriate satellite or airborne sensor(s) for data collection based on spectral characteristics, number of bands, spatial resolution, time resolution (if the system is a satellite), lake size and depth, and chosen water quality parameters.
- (1)
- In situ measurement collection is based on a defined study period and sampling grid; data collection should occur on the day of the chosen sensor’s overpassing or in a small window frame (±4 days) around that day.
- (2)
- In situ data should be analysed by removing outliers and normalizing the data. This is important in order to make the measured values for different parameters comparable, even if they are measured in different units (e.g., chl-α is usually measured in µg/L, while WT is measured in °C).
- (3)
- A total of 30% of in situ measurements shall be utilized for validation purposes, while the remaining 70% shall be utilized to calibrate the calculated values of water quality parameters via the spectral band combinations of the chosen sensor(s).
- (4)
- To ensure accurate remote sensing data, it is important to collect the data using a suitable satellite, aircraft, or UAV platform.
- (5)
- All imagery should be resampled to the same spatial resolution and undergo necessary corrections such as geometric, radiometric, and atmospheric correction. Any obstructions like clouds, haze, or other obstacles covering water pixels on an image should be masked out. Satellite measurements use a grid-based method to gather water quality data simultaneously, so the reflectance values of different water sampling locations are extracted to analyse the spectral characteristics.
- (6)
- Remote sensing technology is used to monitor water quality by analysing the interaction of water quality parameters with the spectrum and identifying specific bands. These bands are combined as single bands, band ratios, and band combinations to obtain the parameter’s value and its distribution over the lake.
- (7)
- A correlation analysis is performed between measured in situ data and band combinations from selected sensors. This analysis is conducted on a training dataset in order to determine the best method (e.g., analytical, empirical, or ML), which is the one with the highest correlation coefficient.
- (8)
- The developed models are validated using 30% of in situ measurements as a testing dataset.
- (1)
- Conducting spatiotemporal distribution analysis and generating accurate spatial distribution maps based on validation results.
- (2)
- Optimizing sampling locations by using spatiotemporal analysis and GIS multicriteria analysis. This involves considering various influencing factors such as key water quality parameters, meteorological data, and environmental influences (e.g., distance to the tributaries and land cover-land use data).
- (3)
- Creating a database of outputs for different lake environment scenarios, which can be used by ML methods to simulate and forecast lake behaviour in similar scenarios.
- (4)
- Recommendations to the authorities in charge of managing the lake on how to improve lake resource management based on data collection, analysis, and modelling. Developed models can be used by local authorities to obtain surface water quality parameters of the lake during periods with similar weather conditions as the ones used for model generation. This approach offers reduced cost and time while maintaining reasonable accuracy.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stendera, S.; Adrian, R.; Bonada, N.; Cañedo-Argüelles, M.; Hugueny, B.; Januschke, K.; Pletterbauer, F.; Hering, D. Drivers and Stressors of Freshwater Biodiversity Patterns across Different Ecosystems and Scales: A Review. Hydrobiologia 2012, 696, 1–28. [Google Scholar] [CrossRef]
- Ho, L.T.; Goethals, P.L.M. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef]
- Abell, J.M.; Özkundakci, D.; Hamilton, D.P.; Reeves, P. Restoring Shallow Lakes Impaired by Eutrophication: Approaches, Outcomes, and Challenges. Crit. Rev. Environ. Sci. Technol. 2020, 52, 1199–1246. [Google Scholar] [CrossRef]
- Hering, D.; Borja, A.; Carstensen, J.; Carvalho, L.; Elliott, M.; Feld, C.K.; Heiskanen, A.-S.; Johnson, R.K.; Moe, J.; Pont, D.; et al. The European Water Framework Directive at the Age of 10: A Critical Review of the Achievements with Recommendations for the Future. Sci. Total Environ. 2010, 408, 4007–4019. [Google Scholar] [CrossRef] [PubMed]
- Poikane, S.; Birk, S.; Böhmer, J.; Carvalho, L.; de Hoyos, C.; Gassner, H.; Hellsten, S.; Kelly, M.; Lyche Solheim, A.; Olin, M.; et al. A Hitchhiker’s Guide to European Lake Ecological Assessment and Intercalibration. Ecol. Indic. 2015, 52, 533–544. [Google Scholar] [CrossRef]
- Qu, J.; Fan, M. The Current State of Water Quality and Technology Development for Water Pollution Control in China. Crit. Rev. Environ. Sci. Technol. 2010, 40, 519–560. [Google Scholar] [CrossRef]
- Trottet, A.; George, C.; Drillet, G.; Lauro, F.M. Aquaculture in Coastal Urbanized Areas: A Comparative Review of the Challenges Posed by Harmful Algal Blooms. Crit. Rev. Environ. Sci. Technol. 2021, 52, 2888–2929. [Google Scholar] [CrossRef]
- Brivio, P.A.; Giardino, C.; Zilioli, E. Validation of Satellite Data for Quality Assurance in Lake Monitoring Applications. Sci. Total Environ. 2001, 268, 3–18. [Google Scholar] [CrossRef]
- Chang, N.-B.; Imen, S.; Vannah, B. Remote Sensing for Monitoring Surface Water Quality Status and Ecosystem State in Relation to the Nutrient Cycle: A 40-Year Perspective. Crit. Rev. Environ. Sci. Technol. 2014, 45, 101–166. [Google Scholar] [CrossRef]
- El-Din, M.S.; Gaber, A.; Koch, M.; Ahmed, R.S.; Bahgat, I. Remote Sensing Application for Water Quality Assessment in Lake Timsah, Suez Canal, Egypt. J. Remote Sens. Technol. 2013, 1, 61–74. [Google Scholar] [CrossRef]
- Reyjol, Y.; Argillier, C.; Bonne, W.; Borja, A.; Buijse, A.D.; Cardoso, A.C.; Daufresne, M.; Kernan, M.; Ferreira, M.T.; Poikane, S.; et al. Assessing the Ecological Status in the Context of the European Water Framework Directive: Where Do We Go Now? Sci. Total Environ. 2014, 497–498, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Ran, Y.; Zhao, S.; Zhao, H.; Tian, Q. Remotely Assessing and Monitoring Coastal and Inland Water Quality in China: Progress, Challenges and Outlook. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1266–1302. [Google Scholar] [CrossRef]
- Visser, F.; Wallis, C.; Sinnott, A.M. Optical Remote Sensing of Submerged Aquatic Vegetation: Opportunities for Shallow Clearwater Streams. Limnologica 2013, 43, 388–398. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W. Water Quality Monitoring and Evaluation Using Remote Sensing Techniques in China: A Systematic Review. Ecosyst. Health Sustain. 2019, 5, 47–56. [Google Scholar] [CrossRef]
- Scarpace, F.; Holmquist, K.; Fisher, L. Landsat Analysis of Lake Quality. Photogramm. Eng. Remote Sens. 1979, 45, 623–633. [Google Scholar]
- Matthews, M.W. A Current Review of Empirical Procedures of Remote Sensing in Inland and Near-Coastal Transitional Waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R.V. Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving towards Multidisciplinary Applications. Water 2020, 12, 169. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote Sensing for Lake Research and Monitoring—Recent Advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Hestir, E.L.; Brando, V.E.; Bresciani, M.; Giardino, C.; Matta, E.; Villa, P.; Dekker, A.G. Measuring Freshwater Aquatic Ecosystems: The Need for a Hyperspectral Global Mapping Satellite Mission. Remote Sens. Environ. 2015, 167, 181–195. [Google Scholar] [CrossRef]
- European Communities. River and Lakes: Typology, Reference Conditions and Classification Systems; OPOCE: Luxembourg, 2003. [Google Scholar]
- EN 16039; Water Quality—Guidance Standard on Assessing the Hydromorphological Features of Lakes 2011. CEN: Brussels, Belgium, 2011.
- Palmer, S.C.J.; Hunter, P.D.; Lankester, T.; Hubbard, S.; Spyrakos, E.; Tyler, A.N.; Présing, M.; Horváth, H.; Lamb, A.; Balzter, H.; et al. Validation of Envisat MERIS Algorithms for Chlorophyll Retrieval in a Large, Turbid and Optically-Complex Shallow Lake. Remote Sens. Environ. 2015, 157, 158–169. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Wu, G. Retrieval of Suspended Sediment Concentration in the Yangtze Estuary and Its Spatiotemporal Dynamics Analysis Based on GOCI Image Data. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2015. [Google Scholar]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- IOCCG. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters; Sathyendranath, S., Ed.; Reports of the International Ocean Colour Coordinating Group (IOCCG); International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2000. [Google Scholar]
- Chen, Y.; Zheng, G.; Wang, X.; Chen, X. Retrieval of Chlorophyll-a Concentration with Multi-Sensor Data by GSM01 Merging Algorithm. J. Geo-Inf. Sci. 2013, 15, 911–917. [Google Scholar] [CrossRef]
- Gege, P. WASI-2D: A Software Tool for Regionally Optimized Analysis of Imaging Spectrometer Data from Deep and Shallow Waters. Comput. Geosci. 2014, 62, 208–215. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Duan, H.; Barnes, B.; Ma, R. An EOF-Based Algorithm to Estimate Chlorophyll a Concentrations in Taihu Lake from MODIS Land-Band Measurements: Implications for near Real-Time Applications and Forecasting Models. Remote Sens. 2014, 6, 10694–10715. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring Inland Water Quality Using Remote Sensing: Potential and Limitations of Spectral Indices, Bio-Optical Simulations, Machine Learning, and Cloud Computing. Earth Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Dekker, A.G.; Zamurović-Nenad, Ž.; Hoogenboom, H.J.; Peters, S.W.M. Remote Sensing, Ecological Water Quality Modelling and in Situ Measurements: A Case Study in Shallow Lakes. Hydrol. Sci. J. 1996, 41, 531–547. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Han, X.; Chen, X.; Qi, L. Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach. Remote Sens. 2014, 7, 275–299. [Google Scholar] [CrossRef]
- Hunter, P.D.; Tyler, A.N.; Carvalho, L.; Codd, G.A.; Maberly, S.C. Hyperspectral Remote Sensing of Cyanobacterial Pigments as Indicators for Cell Populations and Toxins in Eutrophic Lakes. Remote Sens. Environ. 2010, 114, 2705–2718. [Google Scholar] [CrossRef]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsäläinen, J.; Pyhälahti, T. Retrieval of Water Quality from Airborne Imaging Spectrometry of Various Lake Types in Different Seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping Lake CDOM by Satellite Remote Sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Lei, L.; Pang, R.; Han, Z.; Wu, D.; Xie, B.; Su, Y. Current Applications and Future Impact of Machine Learning in Emerging Contaminants: A Review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1817–1835. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Bui, V.K.H.; Cho, K.H.; Hur, J. Practical Application of Machine Learning for Organic Matter and Harmful Algal Blooms in Freshwater Systems: A Review. Crit. Rev. Environ. Sci. Technol. 2024, 54, 953–975. [Google Scholar] [CrossRef]
- Singh, K.P.; Basant, N.; Gupta, S. Support Vector Machines in Water Quality Management. Anal. Chim. Acta 2011, 703, 152–162. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Tedesco, L.P.; Li, S.; Duan, H.; Liu, D.; Hall, B.E.; Du, J.; Li, Z.; Shi, K.; et al. Remote Estimation of Chlorophyll-a in Turbid Inland Waters: Three-Band Model versus GA-PLS Model. Remote Sens. Environ. 2013, 136, 342–357. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, P.; Yu, Y.; Hu, W.; Li, S. A CNN with Multiscale Convolution and Diversified Metric for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3599–3618. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Peterson, K.; Sagan, V.; Sidike, P.; Cox, A.; Martinez, M. Suspended Sediment Concentration Estimation from Landsat Imagery along the Lower Missouri and Middle Mississippi Rivers Using an Extreme Learning Machine. Remote Sens. 2018, 10, 1503. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed.; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Dekker, A.G.; Brando, V.E.; Anstee, J.M.; Pinnel, N.; Kutser, T.; Hoogenboom, E.J.; Peters, S.; Pasterkamp, R.; Vos, R.; Olbert, C.; et al. Imaging Spectrometry of Water. In Imaging Spectrometry; van der Meer, F.D., Jong, S.M.D., Eds.; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2002; Volume 4, pp. 307–359. ISBN 978-1-4020-0194-9. [Google Scholar]
- El Din, E.S.; Zhang, Y.; Suliman, A. Mapping Concentrations of Surface Water Quality Parameters Using a Novel Remote Sensing and Artificial Intelligence Framework. Int. J. Remote Sens. 2017, 38, 1023–1042. [Google Scholar] [CrossRef]
- Gómez, J.A.D.; Alonso, C.A.; García, A.A. Remote Sensing as a Tool for Monitoring Water Quality Parameters for Mediterranean Lakes of European Union Water Framework Directive (WFD) and as a System of Surveillance of Cyanobacterial Harmful Algae Blooms (SCyanoHABs). Environ. Monit. Assess. 2011, 181, 317–334. [Google Scholar] [CrossRef]
- Sharaf El Din, E.; Zhang, Y. Estimation of Both Optical and Nonoptical Surface Water Quality Parameters Using Landsat 8 OLI Imagery and Statistical Techniques. J. Appl. Remote Sens. 2017, 11, 046008. [Google Scholar] [CrossRef]
- Torbick, N.; Hession, S.; Hagen, S.; Wiangwang, N.; Becker, B.; Qi, J. Mapping Inland Lake Water Quality across the Lower Peninsula of Michigan Using Landsat TM Imagery. Int. J. Remote Sens. 2013, 34, 7607–7624. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Svirčev, Z.; Simeunović, J.; Subakov-Simić, G.; Krstić, S.; Pantelić, D.; Dulić, T. Cyanobacterial Blooms and Their Toxicity in Vojvodina Lakes, Serbia. Int. J. Environ. Res. 2013, 7, 745–758. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate Change: A Catalyst for Global Expansion of Harmful Cyanobacterial Blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Gower, J.F.R.; Brown, L.; Borstad, G.A. Observation of Chlorophyll Fluorescence in West Coast Waters of Canada Using the MODIS Satellite Sensor. Can. J. Remote Sens. 2004, 30, 17–25. [Google Scholar] [CrossRef]
- Harrington, J.; Repic, R. Hyperspectral and Video Remote Sensing of Oklahoma Lakes. In Proceedings of the Applied Geography Conferences, Denton, TX, USA, 15–20 January 1995; Volume 18, pp. 79–86. [Google Scholar]
- Giardino, C.; Brando, V.E.; Dekker, A.G.; Strömbeck, N.; Candiani, G. Assessment of Water Quality in Lake Garda (Italy) Using Hyperion. Remote Sens. Environ. 2007, 109, 183–195. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Valentini, E.; Gasperini, L.; Bolpagni, R.; Brando, V.E. Airborne Hyperspectral Data to Assess Suspended Particulate Matter and Aquatic Vegetation in a Shallow and Turbid Lake. Remote Sens. Environ. 2015, 157, 48–57. [Google Scholar] [CrossRef]
- Gilerson, A.A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for Remote Estimation of Chlorophyll-a in Coastal and Inland Waters Using Red and near Infrared Bands. Opt. Express 2010, 18, 24109. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Gurlin, D.; Moses, W.J.; Barrow, T. A Bio-Optical Algorithm for the Remote Estimation of the Chlorophyll-a Concentration in Case 2 Waters. Environ. Res. Lett. 2009, 4, 045003. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A. Effect of Bio-Optical Parameter Variability and Uncertainties in Reflectance Measurements on the Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters: Modeling Results. Appl. Opt. 2006, 45, 3577. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A Simple Semi-Analytical Model for Remote Estimation of Chlorophyll-a in Turbid Waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A Four-Band Semi-Analytical Model for Estimating Chlorophyll a in Highly Turbid Lakes: The Case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Boucher, J.; Weathers, K.C.; Norouzi, H.; Steele, B. Assessing the Effectiveness of Landsat 8 Chlorophyll a Retrieval Algorithms for Regional Freshwater Monitoring. Ecol. Appl. 2018, 28, 1044–1054. [Google Scholar] [CrossRef]
- Keith, D.J.; Milstead, B.; Walker, H.; Snook, H.; Szykman, J.; Wusk, M.; Kagey, L.; Howell, C.; Mellanson, C.; Drueke, C. Trophic Status, Ecological Condition, and Cyanobacteria Risk of New England Lakes and Ponds Based on Aircraft Remote Sensing. J. Appl. Remote Sens. 2012, 6, 063577. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Perk, R.L.; Gurlin, D.; Rundquist, D.C.; Leavitt, B.C.; Barrow, T.M.; Brakhage, P. Estimation of Chlorophyll-a Concentration in Turbid Productive Waters Using Airborne Hyperspectral Data. Water Res. 2012, 46, 993–1004. [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Blackwell, J.; Zhang, B.; Li, F.; Zhang, Y.; Jiang, G. Water Quality Monitoring Using Landsat Themate Mapper Data with Empirical Algorithms in Chagan Lake, China. J. Appl. Remote Sens. 2011, 5, 053506. [Google Scholar] [CrossRef]
- Flores-Anderson, A.I.; Griffin, R.; Dix, M.; Romero-Oliva, C.S.; Ochaeta, G.; Skinner-Alvarado, J.; Ramirez Moran, M.V.; Hernandez, B.; Cherrington, E.; Page, B.; et al. Hyperspectral Satellite Remote Sensing of Water Quality in Lake Atitlán, Guatemala. Front. Environ. Sci. 2020, 8, 7. [Google Scholar] [CrossRef]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef] [PubMed]
- Thiemann, S.; Kaufmann, H. Lake Water Quality Monitoring Using Hyperspectral Airborne Data—A Semiempirical Multisensor and Multitemporal Approach for the Mecklenburg Lake District, Germany. Remote Sens. Environ. 2002, 81, 228–237. [Google Scholar] [CrossRef]
- Blix, K.; Pálffy, K.; Tóth, V.; Eltoft, T. Remote Sensing of Water Quality Parameters over Lake Balaton by Using Sentinel-3 OLCI. Water 2018, 10, 1428. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, W.; Wang, X.; Luo, D. Application of MODIS Satellite Data in Monitoring Water Quality Parameters of Chaohu Lake in China. Environ. Monit. Assess. 2009, 148, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Alparslan, E.; Coskun, H.G.; Alganci, U. Water Quality Determination of Küçükçekmece Lake, Turkey by Using Multispectral Satellite Data. Sci. World J. 2009, 9, 1215–1229. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Chaubey, I.; Garg, V. Lake Water Quality Assessment from Landsat Thematic Mapper Data Using Neural Network: An Approach to Optimal Band Combination Selection. J. Am. Water Resour. Assoc. 2006, 42, 1683–1695. [Google Scholar] [CrossRef]
- Mancino, G.; Nolè, A.; Urbano, V.; Amato, M.; Ferrara, A. Assessing Water Quality by Remote Sensing in Small Lakes: The Case Study of Monticchio Lakes in Southern Italy. iForest 2009, 2, 154–161. [Google Scholar] [CrossRef]
- Allee, R.J.; Johnson, J.E. Use of Satellite Imagery to Estimate Surface Chlorophyll a and Secchi Disc Depth of Bull Shoals Reservoir, Arkansas, USA. Int. J. Remote Sens. 1999, 20, 1057–1072. [Google Scholar] [CrossRef]
- Chao Rodríguez, Y.; el Anjoumi, A.; Domínguez Gómez, J.A.; Rodríguez Pérez, D.; Rico, E. Using Landsat Image Time Series to Study a Small Water Body in Northern Spain. Environ. Monit. Assess. 2014, 186, 3511–3522. [Google Scholar] [CrossRef]
- Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting Chlorophyll, Secchi Disk Depth and Surface Temperature in a Sub-Alpine Lake Using Landsat Imagery. Sci. Total Environ. 2001, 268, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, L.; Kung, H.-T.; Van Arsdale, R.B. Applications of Landsat-5 TM Imagery in Assessing and Mapping Water Quality in Reelfoot Lake, Tennessee. Int. J. Remote Sens. 2006, 27, 5269–5283. [Google Scholar] [CrossRef]
- Mansaray, A.S.; Dzialowski, A.R.; Martin, M.E.; Wagner, K.L.; Gholizadeh, H.; Stoodley, S.H. Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds. Remote Sens. 2021, 13, 1847. [Google Scholar] [CrossRef]
- Menken, K.D.; Brezonik, P.L.; Bauer, M.E. Influence of Chlorophyll and Colored Dissolved Organic Matter (CDOM) on Lake Reflectance Spectra: Implications for Measuring Lake Properties by Remote Sensing. Lake Reserv. Manag. 2006, 22, 179–190. [Google Scholar] [CrossRef]
- Havens, K.E. Submerged Aquatic Vegetation Correlations with Depth and Light Attenuating Materials in a Shallow Subtropical Lake. Hydrobiologia 2003, 493, 173–186. [Google Scholar] [CrossRef]
- Abdelmalik, K.W. Role of Statistical Remote Sensing for Inland Water Quality Parameters Prediction. Egypt. J. Remote Sens. Space Sci. 2018, 21, 193–200. [Google Scholar] [CrossRef]
- Hicks, B.J.; Stichbury, G.A.; Brabyn, L.K.; Allan, M.G.; Ashraf, S. Hindcasting Water Clarity from Landsat Satellite Images of Unmonitored Shallow Lakes in the Waikato Region, New Zealand. Environ. Monit. Assess. 2013, 185, 7245–7261. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Du, J.; Yang, Q.; Li, S.; Tao, H.; et al. Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images with Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9132–9146. [Google Scholar] [CrossRef]
- Mushtaq, F.; Nee Lala, M.G. Remote Estimation of Water Quality Parameters of Himalayan Lake (Kashmir) Using Landsat 8 OLI Imagery. Geocarto Int. 2017, 32, 274–285. [Google Scholar] [CrossRef]
- Papoutsa, C.; Retalis, A.; Toulios, L.; Hadjimitsis, D.G. Defining the Landsat TM/ETM+ and CHRIS/PROBA Spectral Regions in Which Turbidity Can Be Retrieved in Inland Waterbodies Using Field Spectroscopy. Int. J. Remote Sens. 2014, 35, 1674–1692. [Google Scholar] [CrossRef]
- González-Márquez, L.C.; Torres-Bejarano, F.M.; Torregroza-Espinosa, A.C.; Hansen-Rodríguez, I.R.; Rodríguez-Gallegos, H.B. Use of LANDSAT 8 Images for Depth and Water Quality Assessment of El Guájaro Reservoir, Colombia. J. S. Am. Earth Sci. 2018, 82, 231–238. [Google Scholar] [CrossRef]
- He, W.; Chen, S.; Liu, X.; Chen, J. Water Quality Monitoring in a Slightly-Polluted Inland Water Body through Remote Sensing—Case Study of the Guanting Reservoir in Beijing, China. Front. Environ. Sci. Eng. China 2008, 2, 163–171. [Google Scholar] [CrossRef]
- Teubner, K.; Teubner, I.; Pall, K.; Kabas, W.; Tolotti, M.; Ofenböck, T.; Dokulil, M.T. New Emphasis on Water Transparency as Socio-Ecological Indicator for Urban Water: Bridging Ecosystem Service Supply and Sustainable Ecosystem Health. Front. Environ. Sci. 2020, 8, 573724. [Google Scholar] [CrossRef]
- Bowers, D.G.; Roberts, E.M.; Hoguane, A.M.; Fall, K.A.; Massey, G.M.; Friedrichs, C.T. Secchi Disk Measurements in Turbid Water. J. Geophys. Res. Ocean. 2020, 125, 1–9. [Google Scholar] [CrossRef]
- Maciel, D.A.; Novo, E.M.L.D.M.; Barbosa, C.C.F.; Martins, V.S.; Flores Júnior, R.; Oliveira, A.H.; Sander De Carvalho, L.A.; Lobo, F.D.L. Evaluating the Potential of CubeSats for Remote Sensing Reflectance Retrieval over Inland Waters. Int. J. Remote Sens. 2020, 41, 2807–2817. [Google Scholar] [CrossRef]
- Keller, S.; Maier, P.; Riese, F.; Norra, S.; Holbach, A.; Börsig, N.; Wilhelms, A.; Moldaenke, C.; Zaake, A.; Hinz, S. Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll a, Diatoms, Green Algae and Turbidity. Int. J. Environ. Res. Public Health 2018, 15, 1881. [Google Scholar] [CrossRef] [PubMed]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-Year Landsat Water Clarity Census of Minnesota’s 10,000 Lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S.; Winter, K. Remote Sensing of Cyanobacteria-Dominant Algal Blooms and Water Quality Parameters in Zeekoevlei, a Small Hypertrophic Lake, Using MERIS. Remote Sens. Environ. 2010, 114, 2070–2087. [Google Scholar] [CrossRef]
- Isenstein, E.M.; Park, M.-H. Assessment of Nutrient Distributions in Lake Champlain Using Satellite Remote Sensing. J. Environ. Sci. China 2014, 26, 1831–1836. [Google Scholar] [CrossRef]
- Sriwongsitanon, N.; Surakit, K.; Thianpopirug, S. Influence of Atmospheric Correction and Number of Sampling Points on the Accuracy of Water Clarity Assessment Using Remote Sensing Application. J. Hydrol. 2011, 401, 203–220. [Google Scholar] [CrossRef]
- Allan, M.G.; Hicks, B.J.; Brabyn, L. Remote Sensing of Water Quality in the Rotorua Lakes; Environment Bay of Plenty: Whakatāne, New Zealand, 2007; p. 27. [Google Scholar]
- Osinska-Skotak, K.; Kruk, M.; Mróz, M. The Spatial Diversification of Lake Water Quality Parameters in Mazurian Lakes in Summertime. In New Developments and Challenges in Remote Sensing; Millpress: Rotterdam, The Netherlands, 2007; pp. 591–602. [Google Scholar]
- Ekercin, S. Water Quality Retrievals from High Resolution IKONOS Multispectral Imagery: A Case Study in Istanbul, Turkey. Water Air Soil Pollut. 2007, 183, 239–251. [Google Scholar] [CrossRef]
- Koponen, S.; Pulliainen, J.; Kallio, K.; Hallikainen, M. Lake Water Quality Classification with Airborne Hyperspectral Spectrometer and Simulated MERIS Data. Remote Sens. Environ. 2002, 79, 51–59. [Google Scholar] [CrossRef]
- Smith, W.L.; Knuteson, R.O.; Revercomb, H.E.; Feltz, W.; Howell, H.B.; Menzel, W.P.; Nalli, N.R.; Brown, O.; Brown, J.; Minnett, P.; et al. Observations of the Infrared Radiative Properties of the Ocean–Implications for the Measurement of Sea Surface Temperature via Satellite Remote Sensing. Bull. Am. Meteorol. Soc. 1996, 77, 41–52. [Google Scholar] [CrossRef]
- Vesecky, J.F.; Onstott, R.G.; Wang, N.-Y.; Lettvin, E.; Slawski, J.; Shuchman, R.A. Water Surface Temperature Estimates Using Active and Passive Microwave Remote Sensing: Preliminary Results from an Outdoor Wind-Wave Tank. In Proceedings of the IGARSS ’94–1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 2, pp. 1021–1023. [Google Scholar]
- Sima, S.; Ahmadalipour, A.; Tajrishy, M. Mapping Surface Temperature in a Hyper-Saline Lake and Investigating the Effect of Temperature Distribution on the Lake Evaporation. Remote Sens. Environ. 2013, 136, 374–385. [Google Scholar] [CrossRef]
- Wloczyk, C.; Richter, R.; Borg, E.; Neubert, W. Sea and Lake Surface Temperature Retrieval from Landsat Thermal Data in Northern Germany. Int. J. Remote Sens. 2006, 27, 2489–2502. [Google Scholar] [CrossRef]
- Politi, E.; Cutler, M.E.J.; Rowan, J.S. Using the NOAA Advanced Very Highresolution Radiometer to Characterise Temporal and Spatial Trends in Watertemperature of Large European Lakes. Remote Sens. Environ. 2012, 126, 1–11. [Google Scholar] [CrossRef]
- Reinart, A.; Reinhold, M. Mapping Surface Temperature in Large Lakes with MODIS Data. Remote Sens. Environ. 2008, 112, 603–611. [Google Scholar] [CrossRef]
- Lotfi, S.; Ranjbar, S.; Amani, M.; Zarei, A. Lake Urmia Water Salinity Mapping Using Sentinel-2 Multi-Spectral Imagery. In Proceedings of the 2022 10th International Conference on Agro-geoinformatics (Agro-Geoinformatics), Quebec City, QC, Canada, 11–14 July 2022; pp. 1–5. [Google Scholar]
- Bayati, M.; Danesh-Yazdi, M. Mapping the Spatiotemporal Variability of Salinity in the Hypersaline Lake Urmia Using Sentinel-2 and Landsat-8 Imagery. J. Hydrol. 2021, 595, 126032. [Google Scholar] [CrossRef]
- Elachi, C.; Van Zyl, J.J. Introduction to the Physics and Techniques of Remote Sensing; John Wiley & Sons: New York, NY, USA, 2021; Volume 28. [Google Scholar]
- Hu, C.; Chen, Z.; Clayton, T.D.; Swarzenski, P.; Brock, J.C.; Muller–Karger, F.E. Assessment of Estuarine Water-Quality Indicators Using MODIS Medium-Resolution Bands: Initial Results from Tampa Bay, FL. Remote Sens. Environ. 2004, 93, 423–441. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency Conductivity. Available online: https://archive.epa.gov/water/archive/web/html/vms59.html (accessed on 12 July 2023).
- Hayashi, M.; Vogt, T.; Mächler, L.; Schirmer, M. Diurnal Fluctuations of Electrical Conductivity in a Pre-Alpine River: Effects of Photosynthesis and Groundwater Exchange. J. Hydrol. 2012, 450–451, 93–104. [Google Scholar] [CrossRef]
- Mohamed, H.M.; Khalil, M.T.; El-Kafrawy, S.B.; El-Zeiny, A.M.; Khalifa, N.; Emam, W.W.M. Can Statistical Remote Sensing Aid in Predicting the Potential Productivity of Inland Lakes? Case Study: Lake Qaroun, Egypt. Stoch. Environ. Res. Risk Assess. 2022, 36, 3221–3238. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-Based Remote Sensing of Lake Water Quality Characteristics, Including Chlorophyll and Colored Dissolved Organic Matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.-N.; Tian, Y.Q.; Yu, Q. Estimation of Colored Dissolved Organic Matter from Landsat-8 Imagery for Complex Inland Water: Case Study of Lake Huron. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2201–2212. [Google Scholar] [CrossRef]
- Dekker, A.G. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1993. [Google Scholar]
- Li, J.; Chen, X.; Tian, L.; Huang, J.; Feng, L. Improved Capabilities of the Chinese High-Resolution Remote Sensing Satellite GF-1 for Monitoring Suspended Particulate Matter (SPM) in Inland Waters: Radiometric and Spatial Considerations. ISPRS J. Photogramm. Remote Sens. 2015, 106, 145–156. [Google Scholar] [CrossRef]
- Oppelt, N.; Scheiber, R.; Gege, P.; Wegmann, M.; Taubenböck, H.; Berger, M. Fundamentals of Remote Sensing for Terrestrial Applications: Evolution, Current State-of-the-Art and Future Possibilities. In Remotely Sensed Data Characterization, Classification, and Accuracies; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 24. ISBN 978-0-429-08939-8. [Google Scholar]
- Pyo, J.; Ligaray, M.; Kwon, Y.; Ahn, M.-H.; Kim, K.; Lee, H.; Kang, T.; Cho, S.; Park, Y.; Cho, K. High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-a Using Airborne Hyperspectral Imagery. Remote Sens. 2018, 10, 1180. [Google Scholar] [CrossRef]
- Chang, N.-B.; Vannah, B.W.; Yang, Y.J.; Elovitz, M. Integrated Data Fusion and Mining Techniques for Monitoring Total Organic Carbon Concentrations in a Lake. Int. J. Remote Sens. 2014, 35, 1064–1093. [Google Scholar] [CrossRef]
- Cillero Castro, C.; Domínguez Gómez, J.A.; Delgado Martín, J.; Hinojo Sánchez, B.A.; Cereijo Arango, J.L.; Cheda Tuya, F.A.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists. Remote Sens. 2021, 13, 623. [Google Scholar] [CrossRef]
- Lo, Y.; Fu, L.; Lu, T.; Huang, H.; Kong, L.; Xu, Y.; Zhang, C. Medium-Sized Lake Water Quality Parameters Retrieval Using Multispectral UAV Image and Machine Learning Algorithms: A Case Study of the Yuandang Lake, China. Drones 2023, 7, 244. [Google Scholar] [CrossRef]
- Specim. AISA Systems. Available online: https://www.specim.com/aisa/ (accessed on 21 June 2024).
- NASA. CASI. Available online: https://impact.earthdata.nasa.gov/casei/instrument/CASI (accessed on 21 June 2024).
- NASA. Airborne Imagery. Available online: https://ntrs.nasa.gov/api/citations/20030001734/downloads/20030001734.pdf (accessed on 21 June 2024).
- NASA. HyMap. Available online: https://airbornescience.nasa.gov/instrument/HyMap (accessed on 21 June 2024).
- Sea Bird. HyperOCR Radiometer. Available online: https://www.seabird.com/hyperocr-radiometer/product?id=60762467730 (accessed on 21 June 2024).
- Bianchi, R.; Marino, C.M.; Pignatti, S. Airborne Hyperspectral Remote Sensing in Italy. In Proceedings of the Recent Advances in Remote Sensing and Hyperspectral Remote Sensing, Proceedings of the Satellite Remote Sensing, Rome, Italy, 28–30 September 1994; pp. 29–37. [Google Scholar]
- ESA. MERIS. Available online: https://earth.esa.int/eogateway/instruments/meris (accessed on 21 June 2024).
- Earth Resources Observation and Science (EROS) Center. USGS EROS Archive—Earth Observing One (EO-1)—Hyperion. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-earth-observing-one-eo-1-hyperion#overview (accessed on 21 June 2024).
- Maxar. Ikonos. Available online: https://resources.maxar.com/data-sheets/ikonos (accessed on 21 June 2024).
- Landsat. Landsat 5. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-5/ (accessed on 21 June 2024).
- NASA. LANDSAT 7. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-7/ (accessed on 21 June 2024).
- NASA. LANDSAT 8. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-8/ (accessed on 21 June 2024).
- NOAA. AVHRR. Available online: https://coastwatch.noaa.gov/cwn/instruments/avhrr.html (accessed on 21 June 2024).
- Planet. PlanetScope. Available online: https://developers.planet.com/docs/data/planetscope/ (accessed on 21 June 2024).
- ESA. CHRIS. Available online: https://earth.esa.int/eogateway/instruments/chris (accessed on 21 June 2024).
- ESA. Copernicus: Sentinel-2. Available online: https://www.eoportal.org/satellite-missions/copernicus-sentinel-2 (accessed on 21 June 2024).
- ESA. Copernicus: Sentinel-3. Available online: https://www.eoportal.org/satellite-missions/copernicus-sentinel-3 (accessed on 21 June 2024).
- NASA. ASTER. Available online: https://asterweb.jpl.nasa.gov/index.asp (accessed on 21 June 2024).
- NASA. MODIS. Available online: https://modis.gsfc.nasa.gov/ (accessed on 21 June 2024).
- Maxar. WorldView-2. Available online: https://resources.maxar.com/data-sheets/worldview-2 (accessed on 21 June 2024).
- Stipaničev, D.; Šerić, L.; Braović, M. Uvod u Umjetnu Inteligenciju, 1st ed.; Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split: Split, Croatia, 2021; ISBN 978-953-290-108-5. [Google Scholar]
- Wang, K.; Wan, Z.; Wang, P.; Sparrow, M.; Liu, J.; Zhou, X.; Haginoya, S. Estimation of Surface Long Wave Radiation and Broadband Emissivity Using Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity Products. J. Geophys. Res. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Keith, D.J.; Schaeffer, B.A.; Lunetta, R.S.; Gould, R.W.; Rocha, K.; Cobb, D.J. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor. Int. J. Remote Sens. 2014, 35, 2927–2962. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Satellite Estimation of Chlorophyll-a Concentration Using the Red and NIR Bands of MERIS—The Azov Sea Case Study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845–849. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Gons, H.J.; Rijkeboer, M.; Tilstone, G. Optical Remote Sensing of Chlorophyll a in Case 2 Waters by Use of an Adaptive Two-Band Algorithm with Optimal Error Properties. Appl. Opt. 2001, 40, 3575. [Google Scholar] [CrossRef] [PubMed]
- Peña-Martínez, R.; Ruiz-Verdú, A.; Domínguez-Gómez, J.A. Mapping of Photosynthetic Pigments in Spanish Inland Waters Using MERIS Imagery. In Proceedings of the 2004 Envisat & ERS Symposium, Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Le, C.; Hu, C.; Cannizzaro, J.; English, D.; Muller-Karger, F.; Lee, Z. Evaluation of Chlorophyll-a Remote Sensing Algorithms for an Optically Complex Estuary. Remote Sens. Environ. 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Ruiz-Verdú, A.; Domínguez-Gómez, J.-A.; Peña-Martínez, R. Use of CHRIS for Monitoring Water Quality in Rosarito Reservoir. In Proceedings of the 3rd CHRIS/Proba Workshop, Frascati, Italy, 21–23 March 2005; p. 26. [Google Scholar]
- Han, L.; Jordan, K.J. Estimating and Mapping Chlorophyll-a Concentration in Pensacola Bay, Florida Using Landsat ETM+ Data. Int. J. Remote Sens. 2005, 26, 5245–5254. [Google Scholar] [CrossRef]
- Zhang, C.; Han, M. Mapping Chlorophyll-a Concentration in Laizhou Bay Using Landsat 8 OLI Data. In Proceedings of the 36th IAHR World Congress, Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar]
- Hadjimitsis, D.G.; Clayton, C. Assessment of Temporal Variations of Water Quality in Inland Water Bodies Using Atmospheric Corrected Satellite Remotely Sensed Image Data. Environ. Monit. Assess. 2009, 159, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Osińska-Skotak, K.; Kruk, M.; Mróz, M.; Szumilo, M. Chris/Proba Superspectral Data for Inland Water Quality Studies. In Proceedings of the 4th EARSeL Workshop on Imaging Spectroscopy, Warsaw, Poland, 27–30 April 2005; pp. 317–325. [Google Scholar]
- George, D.G. The Airborne Remote Sensing of Phytoplankton Chlorophyll in the Lakes and Tarns of the English Lake District. Int. J. Remote Sens. 1997, 18, 1961–1975. [Google Scholar] [CrossRef]
- Dekker, A.G.; Peters, S.W.M. The Use of the Thematic Mapper for the Analysis of Eutrophic Lakes: A Case Study in the Netherlands. Int. J. Remote Sens. 1993, 14, 799–821. [Google Scholar] [CrossRef]
- Mannheim, S.; Segl, K.; Heim, B.; Kaufmann, H. Monitoring of Lake Water Quality Using Hyperspectral CHRIS/Proba Data. In Proceedings of the 2nd CHRIS/Proba Workshop, Frascati, Italy, 28–30 April 2004. [Google Scholar]
- Bhatti, A.M.; Rundquist, D.; Schalles, J.; Ramirez, L. Application of Hyperspectral Remotely Sensed Data for Water Quality Monitoring: Accuracy and Limitation. In Proceedings of the 9th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Leicester, UK, 20–23 July 2010; pp. 349–352. [Google Scholar]
- González-Márquez, L.C.; Torres-Bejarano, F.M.; Rodríguez-Cuevas, C.; Torregroza-Espinosa, A.C.; Sandoval-Romero, J.A. Estimation of Water Quality Parameters Using Landsat 8 Images: Application to Playa Colorada Bay, Sinaloa, Mexico. Appl. Geomat. 2018, 10, 147–158. [Google Scholar] [CrossRef]
- Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending Satellite Remote Sensing to Local Scales: Land and Water Resource Monitoring Using High-Resolution Imagery. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A Procedure for Regional Lake Water Clarity Assessment Using Landsat Multispectral Data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Powell, R.; Brooks, C.; French, N.; Shuchman, R. Remote Sensing of Lake Clarity; Michigan Tech Research Institute: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Kloiber, S.M.; Brezonik, P.L.; Bauer, M.E. Application of Landsat Imagery to Regional-Scale Assessments of Lake Clarity. Water Res. 2002, 36, 4330–4340. [Google Scholar] [CrossRef] [PubMed]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for Regional Measurements of CDOM and Water Clarity in Lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Fisher, J.; Mustard, J.F. High Spatial Resolution Sea Surface Climatology from Landsat Thermal Infrared Data. Remote Sens. Environ. 2004, 90, 293–307. [Google Scholar] [CrossRef]
- Thomas, A.; Byrne, D.; Weatherbee, R. Coastal Sea Surface Temperature Variability from Landsat Infrared Data. Remote Sens. Environ. 2002, 81, 262–272. [Google Scholar] [CrossRef]
- Ahn, Y.-H.; Shanmugam, P.; Lee, J.-H.; Kang, Y.Q. Application of Satellite Infrared Data for Mapping of Thermal Plume Contamination in Coastal Ecosystem of Korea. Mar. Environ. Res. 2006, 61, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.N.; Tormos, T.; Danis, P.-A. Retrieving Water Surface Temperature from Archive LANDSAT Thermal Infrared Data: Application of the Mono-Channel Atmospheric Correction Algorithm over Two Freshwater Reservoirs. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 247–250. [Google Scholar] [CrossRef]
- Brando, V.E.; Braga, F.; Zaggia, L.; Giardino, C.; Bresciani, M.; Matta, E.; Bellafiore, D.; Ferrarin, C.; Maicu, F.; Benetazzo, A.; et al. High-Resolution Satellite Turbidity and Sea Surface Temperature Observations of River Plume Interactions during a Significant Flood Event. Ocean Sci. 2015, 11, 909–920. [Google Scholar] [CrossRef]
- Syariz, M.A.; Jaelani, L.M.; Subehi, L.; Pamungkas, A.; Koenhardono, E.S.; Sulisetyono, A. Retrieval of Sea Surface Temperature over Poteran Island Water of Indonesia with Landsat 8 Tirs Image: A Preliminary Algorithm. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-2/W4, 87–90. [Google Scholar] [CrossRef]
- Alcântara, E.H.; Stech, J.L.; Lorenzzetti, J.A.; Bonnet, M.P.; Casamitjana, X.; Assireu, A.T.; de Moraes Novo, E.M.L. Remote Sensing of Water Surface Temperature and Heat Flux over a Tropical Hydroelectric Reservoir. Remote Sens. Environ. 2010, 114, 2651–2665. [Google Scholar] [CrossRef]
- Dewidar, K.; Khedr, A.A. Remote Sensing of Water Quality for Burullus Lake, Egypt. Geocarto Int. 2005, 20, 43–49. [Google Scholar] [CrossRef]
- Mitchell, D.E. Identifying Salinization through Multispectral Band Analysis: Lake Urmia, Iran; Ryerson University: Toronto, ON, Canada, 2014. [Google Scholar]
- Mallick, J.; Hasan, M.A.; Alashker, Y.; Ahmed, M. Bathymetric and Geochemical Analysis of Lake Al-Saad, Abha, Kingdom of Saudi Arabia Using Geoinformatics Technology. J. Geogr. Syst. 2014, 06, 440–452. [Google Scholar] [CrossRef]
- Ferdous, J.; Rahman, M.T.U. Developing an Empirical Model from Landsat Data Series for Monitoring Water Salinity in Coastal Bangladesh. J. Environ. Manag. 2020, 255, 109861. [Google Scholar] [CrossRef] [PubMed]
Lake Parameter | Value | Description |
---|---|---|
Depth | <3 m | Very shallow |
3–15 m | Shallow | |
>15 m | Deep | |
Surface area | <1 km2 | Small |
1–10 km2 | Medium | |
10–100 km2 | Large | |
>100 km2 | Very large |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batina, A.; Krtalić, A. Integrating Remote Sensing Methods for Monitoring Lake Water Quality: A Comprehensive Review. Hydrology 2024, 11, 92. https://doi.org/10.3390/hydrology11070092
Batina A, Krtalić A. Integrating Remote Sensing Methods for Monitoring Lake Water Quality: A Comprehensive Review. Hydrology. 2024; 11(7):92. https://doi.org/10.3390/hydrology11070092
Chicago/Turabian StyleBatina, Anja, and Andrija Krtalić. 2024. "Integrating Remote Sensing Methods for Monitoring Lake Water Quality: A Comprehensive Review" Hydrology 11, no. 7: 92. https://doi.org/10.3390/hydrology11070092
APA StyleBatina, A., & Krtalić, A. (2024). Integrating Remote Sensing Methods for Monitoring Lake Water Quality: A Comprehensive Review. Hydrology, 11(7), 92. https://doi.org/10.3390/hydrology11070092