Spatial and Temporal Variability of Extreme Hydroclimatic Events in the Bani River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Assessment of Observed and CHIRPS Rainfall Data
2.3.2. Overview of Selected Extreme Rainfall and River Flow Indices
2.3.3. Trend and Change-Point Detection
Tests for Trend Analysis
Change-Point Detection Tests
3. Results
3.1. Assessment of CHIRPS Data Quality
3.2. Spatial Variation in Extreme Rainfall Indices over the BRB
3.3. Trend and Significance of Extreme Indices
3.4. Interannual Variation and Trends in Extreme Rainfall Indices
3.5. Analysis of Extreme Flow Characteristics
3.5.1. Interannual Variation in Discharge
3.5.2. Trends and Interannual Variability of Extreme Flows
3.5.3. Breakpoint Detection on the Trends of Extreme Flows
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sylla, M.B.; Faye, A.; Klutse, N.A.B.; Dimobe, K. Projected Increased Risk of Water Deficit over Major West African River Basins Under Future Climates. Clim. Chang. 2018, 151, 247–258. [Google Scholar] [CrossRef]
- Oyerinde, G.T.; Fademi, I.O.; Denton, O.A. Modeling Runoff with Satellite-Based Rainfall Estimates in the Niger Basin. Cogent Food Agric. 2017, 3, 1363340. [Google Scholar] [CrossRef]
- Roudier, P.; Mahe, G. Study of Water Stress and Droughts with Indicators Using Daily Data on the Bani River (Niger Basin, Mali). Int. J. Climatol. 2010, 30, 1689–1705. [Google Scholar] [CrossRef]
- Dos Santos, M.R.W. Water Cooperation Within West Africa’s Major Transboundary River Basins. Reg. Cohes. 2023, 13, 25–52. [Google Scholar] [CrossRef]
- Descroix, L.; Genthon, P.; Amogu, O.; Rajot, J.-L.; Sighomnou, D.; Vauclin, M. Change in Sahelian Rivers Hydrograph: The Case of Recent Red Floods of the Niger River in the Niamey Region. Glob. Planet. Chang. 2012, 98–99, 18–30. [Google Scholar] [CrossRef]
- Ndiaye, A.; Mbaye, M.L.; Arnault, J.; Camara, M.; Lawin, A.E. Characterization of Extreme Rainfall and River Discharge over the Senegal River Basin from 1982 to 2021. Hydrology 2023, 10, 204. [Google Scholar] [CrossRef]
- Bodian, A.; Diop, L.; Panthou, G.; Dacosta, H.; Deme, A.; Dezetter, A.; Ndiaye, P.M.; Diouf, I.; Vischel, T. Recent Trend in Hydroclimatic Conditions in the Senegal River Basin. Water 2020, 12, 436. [Google Scholar] [CrossRef]
- Louvet, S.; Paturel, J.E.; Mahé, G.; Rouché, N.; Koité, M. Comparison of the Spatiotemporal Variability of Rainfall from Four Different Interpolation Methods and Impact on the Result of GR2M Hydrological Modeling—Case of Bani River in Mali, West Africa. Theor. Appl. Climatol. 2016, 123, 303–319. [Google Scholar] [CrossRef]
- Mahe, G. Surface/Groundwater Interactions in the Bani and Nakambe Rivers, Tributaries of the Niger and Volta Basins, West Africa. Hydrol. Sci. J. 2009, 54, 704–712. [Google Scholar] [CrossRef]
- Dembélé, M.; Zwart, S.J. Evaluation and Comparison of Satellite-Based Rainfall Products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [Google Scholar] [CrossRef]
- Diop, L.; Samadianfard, S.; Bodian, A.; Yaseen, Z.M.; Ghorbani, M.A.; Salimi, H. Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm. Water Resour. Manag. 2020, 34, 733–746. [Google Scholar] [CrossRef]
- Chaibou Begou, J.; Jomaa, S.; Benabdallah, S.; Bazie, P.; Afouda, A.; Rode, M. Multi-Site Validation of the SWAT Model on the Bani Catchment: Model Performance and Predictive Uncertainty. Water 2016, 8, 178. [Google Scholar] [CrossRef]
- Ruelland, D.; Ardoin-Bardin, S.; Collet, L.; Roucou, P. How Could Hydro-Climatic Conditions Evolve in the Long Term in West Africa? The Case Study of the Bani River Catchment. Hydro-Climatol. Var. Chang. 2011, 344, 195–201. [Google Scholar]
- Rameshwaran, P.; Bell, V.A.; Davies, H.N.; Kay, A.L. How Might Climate Change Affect River Flows Across West Africa? Clim. Chang. 2021, 169, 21. [Google Scholar] [CrossRef]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate Change Impacts on Runoff in West Africa: A Review. Hydrol. Earth Syst. Sci. 2014, 18, 2789–2801. [Google Scholar] [CrossRef]
- Mahe, G.; Lienou, G.; Descroix, L.; Bamba, F.; Paturel, J.E.; Laraque, A.; Meddi, M.; Habaieb, H.; Adeaga, O.; Dieulin, C.; et al. The Rivers of Africa: Witness of Climate Change and Human Impact on the Environment. Hydrol. Process. 2013, 27, 2105–2114. [Google Scholar] [CrossRef]
- Houngnibo, M.C.M.; Minoungou, B.; Traore, S.B.; Maidment, R.I.; Alhassane, A.; Ali, A. Validation of High-Resolution Satellite Precipitation Products over West Africa for Rainfall Monitoring and Early Warning. Front. Clim. 2023, 5, 1185754. [Google Scholar] [CrossRef]
- De Luca, P.; Messori, G.; Wilby, R.L.; Mazzoleni, M.; Di Baldassarre, G. Concurrent Wet and Dry Hydrological Extremes at the Global Scale. Earth Syst. Dyn. 2020, 11, 251–266. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of Prewhitening to Eliminate the Influence of Serial Correlation on the Mann-Kendall Test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Ehsanzadeh, E.; Adamowski, K. Trends in Timing of Low Stream Flows in Canada: Impact of Autocorrelation and Long-term Persistence. Hydrol. Process. 2010, 24, 970–980. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Robson, A.J. Change Detection in Hydrological Records—A Review of the Methodology/Revue Méthodologique de La Détection de Changements Dans Les Chroniques Hydrologiques. Hydrol. Sci. J. 2004, 49, 7–19. [Google Scholar] [CrossRef]
- Hamitouche, Y.; Zeroual, A.; Meddi, M.; Assani, A.A.; Alkama, R.; Şen, Z.; Zhang, X. Projected Changes in Extreme Precipitation Patterns across Algerian Sub-Regions. Water 2024, 16, 1353. [Google Scholar] [CrossRef]
- Burn, D.H.; Hag Elnur, M.A. Detection of Hydrologic Trends and Variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. The Importance of Prewhitening in Change Point Analysis Under Persistence. Stoch. Environ. Res. Risk Assess. 2016, 30, 763–777. [Google Scholar] [CrossRef]
- Sang, Y.-F.; Wang, Z.; Liu, C. Comparison of the MK Test and EMD Method for Trend Identification in Hydrological Time Series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. Appl. Stat. 1979, 28, 126. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of Hydrological Trends in the Presence of Serial and Cross Correlations: A Review of Selected Methods and Their Application to Annual Flow Regimes of Canadian Rivers. J. Hydrol. 2009, 368, 117–130. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Ogunrinde, A.T.; Oguntunde, P.G.; Akinwumiju, A.S.; Fasinmirin, J.T. Evaluation of the Impact of Climate Change on the Characteristics of Drought in Sahel Region of Nigeria: 1971–2060. Afr. Geogr. Rev. 2021, 40, 192–210. [Google Scholar] [CrossRef]
- Quenum, G.M.L.D.; Nkrumah, F.; Klutse, N.A.B.; Sylla, M.B. Spatiotemporal Changes in Temperature and Precipitation in West Africa. Part I: Analysis with the CMIP6 Historical Dataset. Water 2021, 13, 3506. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6.
- Nicholson, S.E. The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol. 2013, 2013, 1–32. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected Changes in the Annual Cycle of High-Intensity Precipitation Events over West Africa for the Late Twenty-First Century*. J. Clim. 2015, 28, 6475–6488. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Drought Modeling—A Review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Ward, P.J.; Jongman, B.; Kummu, M.; Dettinger, M.D.; Sperna Weiland, F.C.; Winsemius, H.C. Strong Influence of El Niño Southern Oscillation on Flood Risk Around the World. Proc. Natl. Acad. Sci. USA 2014, 111, 15659–15664. [Google Scholar] [CrossRef] [PubMed]
- Di Baldassarre, G.; Sivapalan, M.; Rusca, M.; Cudennec, C.; Garcia, M.; Kreibich, H.; Konar, M.; Mondino, E.; Mård, J.; Pande, S.; et al. Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals. Water Resour. Res. 2019, 55, 6327–6355. [Google Scholar] [CrossRef] [PubMed]
- Biasutti, M. Rainfall Trends in the African Sahel: Characteristics, Processes, and Causes. WIREs Clim. Chang. 2019, 10, e591. [Google Scholar] [CrossRef] [PubMed]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Front. Plant Sci. 2016, 7, 1262. [Google Scholar] [CrossRef] [PubMed]
- Dinku, T.; Ceccato, P.; Cressman, K.; Connor, S.J. Evaluating Detection Skills of Satellite Rainfall Estimates over Desert Locust Recession Regions. J. Appl. Meteorol. Climatol. 2010, 49, 1322–1332. [Google Scholar] [CrossRef]
- Carr, T.W.; Mkuhlani, S.; Segnon, A.C.; Ali, Z.; Zougmoré, R.; Dangour, A.D.; Green, R.; Scheelbeek, P. Climate Change Impacts and Adaptation Strategies for Crops in West Africa: A Systematic Review. Environ. Res. Lett. 2022, 17, 053001. [Google Scholar] [CrossRef]
- Fofana, M.; Adounkpe, J.; Larbi, I.; Hounkpe, J.; Djan’na Koubodana, H.; Toure, A.; Bokar, H.; Dotse, S.-Q.; Limantol, A.M. Urban Flash Flood and Extreme Rainfall Events Trend Analysis in Bamako, Mali. Environ. Chall. 2022, 6, 100449. [Google Scholar] [CrossRef]
Values | Class |
---|---|
≥ 2 | Extremely wet |
1.5 ≤ ≤ 1.99 | Very wet |
1.0 ≤ ≤ 1.49 | Moderately wet |
−0.99 ≤ ≤ 0.99 | Close to normal |
−1.0 ≤ ≤ −1.49 | Moderately dry |
−1.5 ≤ ≤ −1.99 | Very dry |
≤ −2 | Extremely dry |
Index | Name of the Index | Index Description | Units |
---|---|---|---|
SDII | Simple daily rainfall index | Ratio of yearly total rainfall to the number of rainy days | mm/day |
RX1DAY | Max 1-day rainfall | Highest single-day rainfall total recorded within a year | mm |
RX5DAY | Max 5-day rainfall | Highest total rainfall over any 5 consecutive days in a year | mm |
R95P | Very wet days | Total yearly rainfall exceeding the 95th percentile (1991–2020) | mm |
R99P | Extremely wet day | Total yearly rainfall exceeding the 99th percentile (1991–2020) | mm |
Qmax | Peak discharge | Highest yearly river discharge (1991–2020) | m3/s |
Q95P | High-flow days | Total yearly streamflow from days exceeding the 95th percentile (1991–2020) | m3/s |
Q99P | Very-high-flow days | Total yearly streamflow from days exceeding the 99th percentile (1991–2020) | m3/s |
Indices | p-Value | Zc | Sen’s Slope (mm/Year) | Tau | Var(s) | Units |
---|---|---|---|---|---|---|
R95P | 11 × | 0.67 | 0 | 0.08 | 500.15 | mm/year |
R99P | 17 × | 1.18 | 0.07 | 0.15 | 300.42 | mm/year |
SDII | 43 × | 0.98 | 0.008 | 0.13 | 739.44 | mm/year |
RX1DAY | −1.14 | −0.2 | −0.15 | 382.43 | mm/year | |
RX5DAY | −1.18 | −0.15 | −0.15 | 680.5 | mm/year |
Index | p-Value | Breakpoint |
---|---|---|
R95p | 1 | 2007 |
R99p | 0.4229 | 2005 |
SDII | 0.487 | 2007 |
RX1DAY | 0.66 | 2012 |
RX5DAY | 0.68 | 2000 |
Indices | p-Value | Zc | Sen’s Slope | Tau | Var(s) | Units |
---|---|---|---|---|---|---|
Q95P | 24 × | 2.12 | 19.75 | 0.28 | 494.27 | m3/s/year |
Q99P | 68 × | 2.35 | 21.04 | 0.3 | 518 | m3/s/year |
Qmax | 25 × | 2.35 | 20.92 | 0.3 | 490 | m3/s/year |
Indices | Pettitt’s Test | SNHT | ||
---|---|---|---|---|
p-Value | Breakpoint | p-Value | Breakpoint | |
Q95p | 0.013 | 1993 | 0.013 | 1993 |
Q99p | 0.042 | 1993 | 0.0166 | 1993 |
Qmax | 0.042 | 1993 | 0.139 | 1993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouyaté, F.; Guédjé, F.K.; Ndiaye, A.; Ganni Mampo, O.M. Spatial and Temporal Variability of Extreme Hydroclimatic Events in the Bani River Basin. Hydrology 2025, 12, 5. https://doi.org/10.3390/hydrology12010005
Kouyaté F, Guédjé FK, Ndiaye A, Ganni Mampo OM. Spatial and Temporal Variability of Extreme Hydroclimatic Events in the Bani River Basin. Hydrology. 2025; 12(1):5. https://doi.org/10.3390/hydrology12010005
Chicago/Turabian StyleKouyaté, Fousseini, François Kossi Guédjé, Assane Ndiaye, and Orou Moctar Ganni Mampo. 2025. "Spatial and Temporal Variability of Extreme Hydroclimatic Events in the Bani River Basin" Hydrology 12, no. 1: 5. https://doi.org/10.3390/hydrology12010005
APA StyleKouyaté, F., Guédjé, F. K., Ndiaye, A., & Ganni Mampo, O. M. (2025). Spatial and Temporal Variability of Extreme Hydroclimatic Events in the Bani River Basin. Hydrology, 12(1), 5. https://doi.org/10.3390/hydrology12010005