High-Resolution Flow and Phosphorus Forecasting Using ANN Models, Catering for Extremes in the Case of the River Swale (UK)
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Description of the River Stretch and the Field Data
2.2. Building the ANN Models
2.2.1. Travel Time Evaluation
2.2.2. Performance Evaluation Methods
- 1.
- The ANNs’ prediction performance for water flows, SRP, and TP was assessed using NSE, Equation (1) [52]; KGE, Equation (2) [53]; PFC, Equation (4); and LFC, Equation (5) [49]. A perfect prediction is indicated by an NSE and KGE of 1.00 and a PFC and LFC of 0.00.
- 2.
- where R is the linear correlation coefficient between predictions and observations, CovPO the covariance between the predictions and observed values, σP and σO the standard deviations of the predictions and observations, and the mean of the predictions.
2.2.3. Slitting of Data
2.2.4. Exploring Wide Ranges of ANN Hyperparameters
2.2.5. Reducing the ANN Hyperparameter Search Ranges
2.2.6. Generating Better-Performing ANNs
2.2.7. Evaluating Forecast Performance Using UNSEEN Data
3. Results
3.1. ANNs’ Architectures
3.2. ANNs’ Calibration Results (Training, Validation, and Testing) Using TRAIN Data
3.3. ANNs’ Forecast Results Using UNSEEN Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bak, G.; Bae, Y. Deep Learning Algorithm Development for River Flow Prediction: PNP Algorithm. Soft Comput. 2023, 27, 13487–13515. [Google Scholar] [CrossRef]
- Park, K.; Jung, Y.; Kim, K.; Park, S.K. Determination of Deep Learning Model and Optimum Length of Training Data in the River with Large Fluctuations in Flow Rates. Water 2020, 12, 3537. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Sayed, S.; Abdoulhalik, A.; Moutari, S.; Oyedele, L. Applications of Machine Learning to Water Resources Management: A Review of Present Status and Future Opportunities. J. Clean. Prod. 2024, 441, 140715. [Google Scholar] [CrossRef]
- Noori, N.; Kalin, L.; Isik, S. Water Quality Prediction Using SWAT-ANN Coupled Approach. J. Hydrol. 2020, 590, 125220. [Google Scholar] [CrossRef]
- Avramenko, Y.; Ani, E.C.; Kraslawski, A.; Agachi, P.S. Mining of Graphics for Information and Knowledge Retrieval. Comput. Chem. Eng. 2009, 33, 618–627. [Google Scholar] [CrossRef]
- Zhang, Q.; You, X.Y. Recent Advances in Surface Water Quality Prediction Using Artificial Intelligence Models. Water Resour. Manag. 2024, 38, 235–250. [Google Scholar] [CrossRef]
- Hòa, P.T.; Mogoş-Kirner, M.; Mircea Cristea, V.; Alexandra, C.; Agachi, P.Ş. Simulation and Control of Floods in a Water Network. Case Study Jijia River Catchment. Environ. Eng. Manag. J. 2017, 16, 587–595. [Google Scholar]
- Timis, E.C.; Hutchins, M.G.; Cristea, V.M. Advancing Understanding of In-River Phosphorus Dynamics Using an Advection–Dispersion Model (ADModel-P). J. Hydrol. 2022, 612, 128173. [Google Scholar] [CrossRef]
- Tan, W.Y.; Lai, S.H.; Teo, F.Y.; El-Shafie, A. State-of-the-Art Development of Two-Waves Artificial Intelligence Modeling Techniques for River Streamflow Forecasting. Arch. Comput. Methods Eng. 2022, 29, 5185–5211. [Google Scholar] [CrossRef]
- Difi, S.; Elmeddahi, Y.; Hebal, A.; Singh, V.P.; Heddam, S.; Kim, S.; Kisi, O. Monthly Streamflow Prediction Using Hybrid Extreme Learning Machine Optimized by Bat Algorithm: A Case Study of Cheliff Watershed, Algeria. Hydrol. Sci. J. 2023, 68, 189–208. [Google Scholar] [CrossRef]
- Khatun, A.; Chatterjee, C.; Sahu, G.; Sahoo, B. A Novel Smoothing-Based Long Short-Term Memory Framework for Short-to Medium-Range Flood Forecasting. Hydrol. Sci. J. 2023, 68, 488–506. [Google Scholar] [CrossRef]
- Martins, L.L.; Martins, W.A.; Rodrigues, I.C.d.A.; Xavier, A.C.F.; de Moraes, J.F.L.; Blain, G.C. Gap-Filling of Daily Precipitation and Streamflow Time Series: A Method Comparison at Random and Sequential Gaps. Hydrol. Sci. J. 2023, 68, 148–160. [Google Scholar] [CrossRef]
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A Review of the Hybrid Artificial Intelligence and Optimization Modelling of Hydrological Streamflow Forecasting. Alex. Eng. J. 2022, 61, 279–303. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Matta, E.; Cominola, A.; Xia, X.; Zhang, Q.; Liang, Q.; Hinkelmann, R. Neurocomputing in Surface Water Hydrology and Hydraulics: A Review of Two Decades Retrospective, Current Status and Future Prospects. J. Hydrol. 2020, 588, 125085. [Google Scholar] [CrossRef]
- Dodig, A.; Ricci, E.; Kvascev, G.; Stojkovic, M. A Novel Machine Learning-Based Framework for the Water Quality Parameters Prediction Using Hybrid Long Short-Term Memory and Locally Weighted Scatterplot Smoothing Methods. J. Hydroinform. 2024, 26, 1059–1079. [Google Scholar] [CrossRef]
- Irwan, D.; Ali, M.; Ahmed, A.N.; Jacky, G.; Nurhakim, A.; Ping Han, M.C.; AlDahoul, N.; El-Shafie, A. Predicting Water Quality with Artificial Intelligence: A Review of Methods and Applications. Arch. Comput. Methods Eng. 2023, 30, 4633–4652. [Google Scholar] [CrossRef]
- Cojbasic, S.; Dmitrasinovic, S.; Kostic, M.; Sekulic, M.T.; Radonic, J.; Dodig, A.; Stojkovic, M. Application of Machine Learning in River Water Quality Management: A Review. Water Sci. Technol. 2023, 88, 2297–2308. [Google Scholar] [CrossRef]
- Devi, G.; Sharma, M.; Sarma, P.; Phukan, M.; Sarma, K.K. Flood Frequency Modeling and Prediction of Beki and Pagladia Rivers Using Deep Learning Approach. Neural Process. Lett. 2022, 54, 3263–3282. [Google Scholar] [CrossRef]
- Nur Adli Zakaria, M.; Abdul Malek, M.; Zolkepli, M.; Najah Ahmed, A. Application of Artificial Intelligence Algorithms for Hourly River Level Forecast: A Case Study of Muda River, Malaysia. Alex. Eng. J. 2021, 60, 4015–4028. [Google Scholar] [CrossRef]
- Feinstein, J.; Ploussard, Q.; Veselka, T.; Yan, E. Using Data-Driven Prediction of Downstream 1D River Flow to Overcome the Challenges of Hydrologic River Modeling. Water 2023, 15, 3843. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Mahdavi-Meymand, A.; Hinkelmann, R. A Comprehensive Survey on Conventional and Modern Neural Networks: Application to River Flow Forecasting. Earth Sci. Inf. 2021, 14, 893–911. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F.; de Marinis, G. Stacked Machine Learning Algorithms and Bidirectional Long Short-Term Memory Networks for Multi-Step Ahead Streamflow Forecasting: A Comparative Study. J. Hydrol. 2022, 613, 128431. [Google Scholar] [CrossRef]
- Hayder, G.; Solihin, M.I.; Najwa, M.R.N. Multi-Step-Ahead Prediction of River Flow Using NARX Neural Networks and Deep Learning LSTM. H2Open J. 2022, 5, 42–59. [Google Scholar] [CrossRef]
- Chu, H.; Wei, J.; Wu, W.; Jiang, Y.; Chu, Q.; Meng, X. A Classification-Based Deep Belief Networks Model Framework for Daily Streamflow Forecasting. J. Hydrol. 2021, 595, 125967. [Google Scholar] [CrossRef]
- Martinho, A.D.; Saporetti, C.M.; Goliatt, L. Approaches for the Short-Term Prediction of Natural Daily Streamflows Using Hybrid Machine Learning Enhanced with Grey Wolf Optimization. Hydrol. Sci. J. 2023, 68, 16–33. [Google Scholar] [CrossRef]
- Yeoh, K.L.; Puay, H.T.; Abdullah, R.; Manan, T.S.A. Appraisal of Data-Driven Techniques for Predicting Short-Term Streamflow in Tropical Catchment. Water Sci. Technol. 2023, 88, 75–91. [Google Scholar] [CrossRef]
- Jhong, Y.-D.; Lin, H.P.; Chen, C.S.; Jhong, B.C. Real-Time Neural-Network-Based Ensemble Typhoon Flood Forecasting Model with Self-Organizing Map Cluster Analysis: A Case Study on the Wu River Basin in Taiwan. Water Resour. Manag. 2022, 36, 3221–3245. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods Used for the Development of Neural Networks for the Prediction of Water Resource Variables in River Systems: Current Status and Future Directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Tiyasha; Tung, T.M.; Yaseen, Z.M. A Survey on River Water Quality Modelling Using Artificial Intelligence Models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar] [CrossRef]
- Elsayed, A.; Rixon, S.; Levison, J.; Binns, A.; Goel, P. Machine Learning Models for Prediction of Nutrient Concentrations in Surface Water in an Agricultural Watershed. J. Environ. Manag. 2024, 372, 123305. [Google Scholar] [CrossRef]
- Bisht, A.K.; Singh, R.; Bhutiani, R.; Bhatt, A. Artificial Neural Network Based Water Quality Forecasting Model for Ganga River. Int. J. Eng. Adv. Technol. 2019, 8, 2778–2785. [Google Scholar] [CrossRef]
- Novianta, M.A.; Syafrudin; Warsito, B.; Rachmawati, S. Monitoring River Water Quality through Predictive Modeling Using Artificial Neural Networks Backpropagation. AIMS Environ. Sci. 2024, 11, 649–664. [Google Scholar] [CrossRef]
- Li, X.; Song, J. A New ANN-Markov Chain Methodology for Water Quality Prediction. In Proceedings of the International Joint Conference on Neural Networks, Killarney, Ireland, 12–17 July 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; p. 7280320. [Google Scholar]
- Affandi, F.; Rahman, M.F.A.; Ani, A.I.C.; Sulaiman, M.S. Artificial Neural Network Modeling for Predicting the Quality of Water in the Sabak Bernam River. Indones. J. Electr. Eng. Comput. Sci. 2022, 3, 1684–1691. [Google Scholar] [CrossRef]
- Ubah, J.I.; Orakwe, L.C.; Ogbu, K.N.; Awu, J.I.; Ahaneku, I.E.; Chukwuma, E.C. Forecasting Water Quality Parameters Using Artificial Neural Network for Irrigation Purposes. Sci. Rep. 2021, 11, 24438. [Google Scholar] [CrossRef]
- Abdullah, D.; Gartsiyanova, K.; Mansur Qizi, K.E.M.; Javlievich, E.A.; Bulturbayevich, M.B.; Zokirova, G.; Nordin, M.N. An Artificial Neural Networks Approach and Hybrid Method with Wavelet Transform to Investigate the Quality of Tallo River, Indonesia. Casp. J. Environ. Sci. 2023, 21, 647–656. [Google Scholar] [CrossRef]
- Ghazali, R.; Fuzi, N.A.M.; Mostafa, S.A.; Khattak, U.F.; Ali, R.R. An Application of Multilayer Perceptron for the Prediction of River Water Quality. In International Conference on Innovative Computing and Communications; Lecture Notes in Networks and Systems; Hassanien, A.E., Castillo, O., Anand, S., Jaiswal, A., Eds.; Springer Science and Business Media Deutschland GmbH: Delhi, India, 2023. [Google Scholar]
- Chen, J.; Li, H.; Felix, M.; Chen, Y.; Zheng, K. Water Quality Prediction of Artificial Intelligence Model: A Case of Huaihe River Basin, China. Environ. Sci. Pollut. Res. 2024, 31, 14610–14640. [Google Scholar] [CrossRef]
- Baek, S.S.; Pyo, J.; Chun, J.A. Prediction of Water Level and Water Quality Using a Cnn-Lstm Combined Deep Learning Approach. Water 2020, 12, 3399. [Google Scholar] [CrossRef]
- Song, J.; Meng, H.; Kang, Y.; Zhu, M.; Zhu, Y.; Zhang, J. A Method for Predicting Water Quality of River Basin Based on OVMD-GAT-GRU. Stoch. Environ. Res. Risk Assess. 2024, 38, 339–356. [Google Scholar] [CrossRef]
- Tian, Q.; Luo, W.; Guo, L. Water Quality Prediction in the Yellow River Source Area Based on the DeepTCN-GRU Model. J. Water Process. Eng. 2024, 59, 105052. [Google Scholar] [CrossRef]
- Yao, J.; Chen, S.; Ruan, X. Interpretable CEEMDAN-FE-LSTM-Transformer Hybrid Model for Predicting Total Phosphorus Concentrations in Surface Water. J. Hydrol. 2024, 629, 130609. [Google Scholar] [CrossRef]
- Hunter, J.M.; Maier, H.R.; Gibbs, M.S.; Foale, E.R.; Grosvenor, N.A.; Harders, N.P.; Kikuchi-Miller, T.C. Framework for Developing Hybrid Process-Driven, Artificial Neural Network and Regression Models for Salinity Prediction in River Systems. Hydrol. Earth Syst. Sci. 2018, 22, 2987–3006. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Khatibi, R.; Danandeh Mehr, A.; Asadi, H. Chaos-Based Multigene Genetic Programming: A New Hybrid Strategy for River Flow Forecasting. J. Hydrol. 2018, 562, 455–467. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Souag-Gamane, D.; Najah Ahmed, A.; Kisi, O.; El-Shafie, A. Improving Artificial Intelligence Models Accuracy for Monthly Streamflow Forecasting Using Grey Wolf Optimization (GWO) Algorithm. J. Hydrol. 2020, 582, 124435. [Google Scholar] [CrossRef]
- See, L.; Openshaw, S. Applying Soft Computing Approaches to River Level Forecasting. Hydrol. Sci. J. 1999, 44, 763–778. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Vu, D.Q.; Mai, S.T.; Dang, T.D. Streamflow Prediction in the Mekong River Basin Using Deep Neural Networks. IEEE Access 2023, 11, 97930–97943. [Google Scholar] [CrossRef]
- Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.M.; Pain, C.C. Long Lead-Time Daily and Monthly Streamflow Forecasting Using Machine Learning Methods. J. Hydrol. 2020, 590, 125376. [Google Scholar] [CrossRef]
- Tan, W.Y.; Lai, S.H.; Pavitra, K.; Teo, F.Y.; El-Shafie, A. Deep Learning Model on Rates of Change for Multi-Step Ahead Streamflow Forecasting. J. Hydroinform. 2023, 25, 1667–1689. [Google Scholar] [CrossRef]
- Latif, S.D.; Ahmed, A.N. A Review of Deep Learning and Machine Learning Techniques for Hydrological Inflow Forecasting. Environ. Dev. Sustain. 2023, 25, 12189–12216. [Google Scholar] [CrossRef]
- Hadiyan, P.P.; Moeini, R.; Ehsanzadeh, E. Application of Static and Dynamic Artificial Neural Networks for Forecasting Inflow Discharges, Case Study: Sefidroud Dam Reservoir. Sustain. Comput. Inform. Syst. 2020, 27, 100401. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- NRFA Station Data for 27071—Swale at Crakehill. Available online: https://nrfa.ceh.ac.uk/data/station/info/27071 (accessed on 15 December 2024).
- Bowes, M.J.; House, W.A. Phosphorus and Dissolved Silicon Dynamics an the River Swale Catchment, UK: A Mass-Balance Approach. Hydrol. Process. 2001, 15, 261–280. [Google Scholar] [CrossRef]
- Dennis, I. The Impact of Historical Metal Mining on the River Swale Catchment, North Yorkshire, UK. Ph.D. Thesis, University of Wales, Aberystwyth, UK, 2005. [Google Scholar]
- House, W.A.; Leachb, D.; Warwick, M.S.; Whitton, B.A.; Pattinsonc, S.N.; Rylandb, G.; Pinderb, A.; Ingramb, J.; Lishmand, J.P.; Smith, S.; et al. Nutrient Transport in the Humber Rivers. Sci. Total Environ. 1997, 194, 303–320. [Google Scholar] [CrossRef]
- House, W.A.; Warwick, M.S. A Mass-Balance Approach to Quantify the Importance of in-Stream Processes during Nutrient Transport in a Large River Catchment. Sci. Total Environ. 1998, 210–211, 139–152. [Google Scholar] [CrossRef]
- Ani, E.C.; Hutchins, M.; Kraslawski, A.; Agachi, P.S. Mathematical Model to Identify Nitrogen Variability in Large Rivers. River Res. Appl. 2011, 27, 1216–1236. [Google Scholar] [CrossRef]
- NRFA Station Data for 27090—Swale at Catterick Bridge. Available online: https://nrfa.ceh.ac.uk/data/station/info/27090 (accessed on 15 December 2024).
- NRFA Station Data for 27085—Cod Beck at Dalton Bridge. Available online: https://nrfa.ceh.ac.uk/data/station/info/27085 (accessed on 15 December 2024).
- NRFA Station Data for 27069—Wiske at Kirby Wiske. Available online: https://nrfa.ceh.ac.uk/data/station/info/27069 (accessed on 15 December 2024).
- NRFA Station Data for 27075—Bedale Beck at Leeming. Available online: https://nrfa.ceh.ac.uk/data/station/info/27075 (accessed on 15 December 2024).
- Locational Information | National River Flow Archive. Available online: https://nrfa.ceh.ac.uk/locational-information (accessed on 15 December 2024).
- Rainfall Statistics|National River Flow Archive. Available online: https://nrfa.ceh.ac.uk/rainfall-statistics (accessed on 11 January 2025).
- FEH Catchment Descriptors|National River Flow Archive. Available online: https://nrfa.ceh.ac.uk/feh-catchment-descriptors (accessed on 11 January 2025).
- Hannaford, J.; Mastrantonas, N.; Vesuviano, G.; Turner, S. An Updated National-Scale Assessment of Trends in UK Peak River Flow Data: How Robust Are Observed Increases in Flooding? Hydrol. Res. 2021, 52, 699–718. [Google Scholar] [CrossRef]
- Harrigan, S.; Hannaford, J.; Muchan, K.; Marsh, T.J. Designation and Trend Analysis of the Updated UK Benchmark Network of River Flow Stations: The UKBN2 Dataset. Hydrol. Res. 2018, 49, 552–567. [Google Scholar] [CrossRef]
- Macdonald, N. Trends in Flood Seasonality of the River Ouse (Northern England) from Archive and Instrumental Sources since AD 1600. Clim. Change 2012, 110, 901–923. [Google Scholar] [CrossRef]
- Shikhar, K.C.; Bhattarai, K.P.; De Shan, T.; Mishra, S.; Joshi, I.; Singh, A.K. Comprehensive Performance Analysis of Training Functions in Flow Prediction Modeusing Artificial Neural Network. Water SA 2024, 50, 190–200. [Google Scholar] [CrossRef]
- Hangan, H.; Timis, E.C.; Cristea, V.M.; Hutchins, M.G. ANNs to Forecast Waterflow, Soluble Reactive Phosphorus and Total Phosphorus at the Lower End of a River Stretch. 2023 HydroShare. Available online: http://www.hydroshare.org/resource/02f5b6093a5941d8ba471b2b387765dd (accessed on 11 January 2025).
- Bowes, M.J.; House, W.A.; Hodgkinson, R.A. Phosphorus Dynamics along a River Continuum. Sci. Total Environ. 2003, 313, 199–212. [Google Scholar] [CrossRef]
- Bowes, M.J.; House, W.A.; Hodgkinson, R.A.; Leach, D.V. Phosphorus-Discharge Hysteresis during Storm Events along a River Catchment: The River Swale, UK. Water Res. 2005, 39, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.M. An Active Learning Convolutional Neural Network for Predicting River Flow in a Human Impacted System. Front. Water 2023, 5, 1271780. [Google Scholar] [CrossRef]
- Letessier, C.; Cardi, J.; Dussel, A.; Ebtehaj, I.; Bonakdari, H. Enhancing Flood Prediction Accuracy through Integration of Meteorological Parameters in River Flow Observations: A Case Study Ottawa River. Hydrology 2023, 164, 164. [Google Scholar] [CrossRef]
- Li, F.F.; Wang, Z.Y.; Qiu, J. Long-Term Streamflow Forecasting Using Artificial Neural Network Based on Preprocessing Technique. J. Forecast. 2019, 38, 192–206. [Google Scholar] [CrossRef]
- Henonin, J.; Russo, B.; Mark, O.; Gourbesville, P. Real-Time Urban Flood Forecasting and Modelling—A State of the Art. J. Hydroinform. 2013, 15, 717–736. [Google Scholar] [CrossRef]
- Li, Q.; Yang, Y.; Yang, L.; Wang, Y. Comparative Analysis of Water Quality Prediction Performance Based on LSTM in the Haihe River Basin, China. Environ. Sci. Pollut. Res. 2023, 30, 7498–7509. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J. Support Vector Machine―An Alternative to Artificial Neuron Network for Water Quality Forecasting in an Agricultural Nonpoint Source Polluted River? Environ. Sci. Pollut. Res. 2014, 21, 11036–11053. [Google Scholar] [CrossRef]
- Petrea, S.M.; Zamfir, C.; Simionov, I.A.; Mogodan, A.; Nuţă, F.M.; Rahoveanu, A.T.; Nancu, D.; Cristea, D.S.; Buhociu, F.M. A Forecasting and Prediction Methodology for Improving the Blue Economy Resilience to Climate Change in the Romanian Lower Danube Euroregion. Sustainability 2021, 13, 11563. [Google Scholar] [CrossRef]
- Leach, D.; Neal, M.; Bachiller-Jareno, N.; Tindall, I.; Moore, R. Major Ion and Nutrient Data from Rivers [LOIS]—EIDC. Available online: https://catalogue.ceh.ac.uk/documents/4482fa14-aee2-4c7f-9c62-a08dc9704051 (accessed on 8 November 2024).
Drawbacks | Mitigation Measures |
---|---|
An often-time-consuming process of trial-and-error to identify the optimum ANN type and structure, avoiding overfitting | Automated algorithms can be set up for the handling of the trial-and-error process to minimize time |
The danger of large errors during extrapolations | Increased model accuracy may be achieved using multiple models, hybrid models, or combinations of ANNs with optimization techniques [13,44,45] |
The lack of process understanding and limited possibility of correlating phenomena with the model parameters | Additional datasets for independent verifications after model developmentThe combination of ANNs with mechanistic models |
Missing data | Using other types of data in the system or relying on data in the literature [17] |
Site Name and Notation | Geographical Coordinates, NGR | Elevation, m | SAAR, mm | Historical Daily Flow Data | ||||
---|---|---|---|---|---|---|---|---|
Period | BFI | Mean, m3/s | Q10, m3/s | Q5, m3/s | ||||
Swale in Catterick Bridge, M1 | SE226993 | 60 m | 1123 | 1992–2023 | 0.37 | 12.9 | 31 | 47 |
Bedale Beck in Leeming, T1 | SE306902 | 24 m | 729 | 1983–2023 | 0.31 | 3.2 | 5 | 14 |
Wiske in Kirby Wiske, T2 | SE375843 | 20 m | 632 | 1980–2023 | 0.16 | 4.8 | 14 | 29 |
Cod Beck in Dalton Bridge, T3 | SE421766 | 19 m | 696 | 1988–2023 | 0.48 | 1.7 | 4 | 6 |
Swale in Crakehill, M2 | SE426734 | 12 m | 835 | 1955–2023 | 0.48 | 20.2 | 47 | 68 |
Water Flow Range | Indicator | Flow at M1 [m3/s] | Flow at M2 [m3/s] | Travel Time Range [h] |
---|---|---|---|---|
All flows (entire dataset) | Minimum | 0.74 | 1.97 | 14–15 |
Average | 11.82 | 18.69 | ||
Maximum | 484 | 224 | ||
Lower-flows subset | Minimum | 0.74 | 1.97 | 14–16 |
Average | 3.58 | 5.57 | ||
Maximum | 84.4 | 52.5 | ||
Higher-flows subset | Minimum | 0.995 | 3.04 | 12–14 |
Average | 18.72 | 29.68 | ||
Maximum | 484 | 224 |
ANN Type | ANN Sub-Type | ANN Notation | Details for ANN Input and Output Data |
---|---|---|---|
1 | 1.1 | #1.1.1 | Inputs: one set of observed water flows at M1, T1, T2, and T3 in a single time stamp. Output: water flow at M2. |
2 | 2.1 | #2.1.1; #2.1.2; #2.1.3; #2.1.4 | Inputs: time series of observed water flows at M1, T1, T2, and T3. Output: water flow at M2. |
2 | 2.2 | #2.2.1; #2.2.2 | Inputs: time series of observed water flows at M1. No tributaries’ data. Output: water flow at M2. |
2 | 2.3 | #2.3.1; #2.3.2 | Inputs: time series of observed water flows, SRP, and TP concentrations at M1, T2, and T3, water temperature, and seasonality. Output: water flow and SRP and TP at M2. |
3 | 3.1 | #3.1.1 | Inputs: time series of observed water flows at M1 and previous predictions of water flows at M2. No tributaries’ data. Output: water flow at M2. |
ANN No. | Predicted Indicators | Hidden Layers’ Neurons | Transfer Functions for Hidden Layers | Resolution [h] | Input Window [h] | Output Timing [h] | Forecast Horizon [h] |
---|---|---|---|---|---|---|---|
#1.1.1 | flow | [3, 3] | [logsig, tansig] | 3 | 0 | 15 | 15 |
#2.1.1 | flow | [3, 3] | [logsig, tansig] | 3 | 0–12 | 21 | 9 |
#2.1.2 | flow | [1, 7, 6] | [logsig, purelin tansig] | 3 | 0–6 | 18 | 12 |
#2.1.3 | flow | [5, 10, 7] | [tansig, tansig, logsig] | 0.25 | 0–12 | 18 | 6 |
#2.1.4 | flow | [6, 6, 4] | [tansig, purelin, logsig] | 1 | 0–12 | 18 | 6 |
#2.2.1 | flow | [3, 2, 7, 5] | [logsig, tansig, logsig, purelin] | 1 | 0–9 | 17 | 8 |
#2.2.2 | flow | [7, 6, 4] | [logsig, logsig, logsig] | 1 | 0–9 | 21 | 12 |
#2.3.1 | flow, SRP, OP | [2] | [purelin] | 3 | 0–12 | 27 | 15 |
#2.3.2 | flow, SRP, OP | [4, 6, 5] | [purelin, purelin, purelin] | 3 | 0–12 | 24 | 12 |
#3.1.1 | flow | [6, 1, 1] | [purelin, purelin, purelin] | 1 | 0–19 | 20 | 1 |
ANN No. | Indicator | Forecast Horizon, h | Prediction Performance (TRAIN Data) | |||
---|---|---|---|---|---|---|
KGE | NSE | PFC | LFC | |||
#1.1.1. | flow | 15 | 0.98 | 0.97 | 0.17 | 0.17 |
#2.1.1. | flow | 9 | 0.97 | 0.96 | 0.19 | 0.17 |
#2.1.2. | flow | 12 | 0.89 | 0.97 | 0.26 | 0.15 |
#2.1.3. | flow | 6 | 0.99 | 0.99 | 0.02 | 0.12 |
#2.1.4. | flow | 6 | 0.99 | 0.99 | 0.14 | 0.24 |
#2.2.1. | flow | 8 | 0.92 | 0.89 | 0.20 | 0.12 |
#2.2.2. | flow | 12 | 0.94 | 0.91 | 0.20 | 0.12 |
#2.3.1. | flow | 15 | 0.92 | 0.94 | 0.10 | 0.19 |
SRP | 15 | 0.78 | 0.69 | 0.17 | 0.33 | |
TP | 15 | 0.45 | 0.48 | 0.44 | 0.37 | |
#2.3.2. | flow | 12 | 0.99 | 0.99 | 0.26 | 0.19 |
SRP | 12 | 0.74 | 0.61 | 0.19 | 0.32 | |
TP | 12 | 0.73 | 0.53 | 0.41 | 0.34 | |
#3.1.1. | flow | 1 | 0.99 | 0.99 | 0.13 | 0.09 |
ANN No. | Indicator | Forecast Horizon, h | Prediction Performance (UNSEEN Data) | |||
---|---|---|---|---|---|---|
KGE | NSE | PFC | LFC | |||
#1.1.1. | flow | 15 | 0.93 | 0.97 | 0.15 | 0.15 |
#2.1.1. | flow | 9 | 0.96 | 0.97 | 0.19 | 0.18 |
#2.1.2. | flow | 12 | 0.88 | 0.96 | 0.17 | 0.13 |
#2.1.3. | flow | 6 | 0.89 | 0.85 | 0.38 | 0.19 |
#2.1.4. | flow | 6 | 0.97 | 0.96 | 0.21 | 0.15 |
#2.2.1. | flow | 8 | 0.91 | 0.85 | 0.21 | 0.18 |
#2.2.2. | flow | 12 | 0.94 | 0.89 | 0.19 | 0.16 |
#2.3.1. | flow | 15 | 0.74 | 0.70 | 0.44 | 0.28 |
SRP | 15 | 0.74 | 0.74 | 0.28 | 0.24 | |
TP | 15 | 0.79 | 0.60 | 0.29 | 0.28 | |
#2.3.2. | flow | 12 | 0.79 | 0.70 | 0.29 | 0.38 |
SRP | 12 | 0.85 | 0.75 | 0.25 | 0.27 | |
TP | 12 | 0.40 | 0.08 | 0.31 | 0.39 | |
#3.1.1. | flow | 1 | 0.99 | 0.99 | 0.13 | 0.11 |
ANN Number | Applicability and Observations |
---|---|
#1.1.1 | A water flow forecast at M2 if a single set of measurements is available at M1 and in main tributaries at a resolution of 1 h. The travel time along the stretch is covered by the forecast horizon of 15 h. No perfect estimations of large peaks are needed. |
#2.1.1 #2.1.2 #2.1.4 | A water flow forecast at M2 when flows are monitored at M1 and in tributaries. Applicable to a well-monitored watercourse. Different resolutions of data can be used (1 h for #2.1.4 and 3 h for the other two). Better prediction performance compared to 1.1.1, but a lower forecast horizon (6 h, 9 h, 12 h) would not be problematic. Better peak predictions compared to types 1.1.1 and 2.2.2. |
#2.2.2 | A water flow forecast at M2 with 12 h of anticipation based on hourly data at M1, when knowledge on tributaries is not available. Very good prediction of high peaks (up to 225 m3/s) and flows under 50 m3/s. Reduced need for observations. |
#3.1.1 | A water flow forecast at M2 with 1 h of anticipation in situations without monitoring data in tributaries and at M2. Used when very accurate predictions are needed and a short forecast horizon (>1 h) is sufficient. Trends are captured very well and there are better peak predictions compared to earlier ANNs. Reduced need for observations. |
#2.3.1 | For when water flows and concentrations need to be predicted. Data from two of the main tributaries and the upstream end are available. The travel time along the stretch is covered by the forecast horizon of 15 h. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timis, E.C.; Hangan, H.; Cristea, V.M.; Mihaly, N.B.; Hutchins, M.G. High-Resolution Flow and Phosphorus Forecasting Using ANN Models, Catering for Extremes in the Case of the River Swale (UK). Hydrology 2025, 12, 20. https://doi.org/10.3390/hydrology12020020
Timis EC, Hangan H, Cristea VM, Mihaly NB, Hutchins MG. High-Resolution Flow and Phosphorus Forecasting Using ANN Models, Catering for Extremes in the Case of the River Swale (UK). Hydrology. 2025; 12(2):20. https://doi.org/10.3390/hydrology12020020
Chicago/Turabian StyleTimis, Elisabeta Cristina, Horia Hangan, Vasile Mircea Cristea, Norbert Botond Mihaly, and Michael George Hutchins. 2025. "High-Resolution Flow and Phosphorus Forecasting Using ANN Models, Catering for Extremes in the Case of the River Swale (UK)" Hydrology 12, no. 2: 20. https://doi.org/10.3390/hydrology12020020
APA StyleTimis, E. C., Hangan, H., Cristea, V. M., Mihaly, N. B., & Hutchins, M. G. (2025). High-Resolution Flow and Phosphorus Forecasting Using ANN Models, Catering for Extremes in the Case of the River Swale (UK). Hydrology, 12(2), 20. https://doi.org/10.3390/hydrology12020020