Water Balance to Recharge Calculation: Implications for Watershed Management Using Systems Dynamics Approach
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Water Balance Analysis
3.2. Modeling Approach
4. Results and Discussion
4.1. Water-Balance and Recharge to Aquifers
4.2. Aquifer Storage
4.3. Simulation of Groundwater Volume of the Aquifers
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Konikow, L.F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 2011, 38, L17401. [Google Scholar] [CrossRef]
- Gleeson, T.; Alley, W.M.; Allen, D.M.; Sophocleous, M.A.; Zhou, Y.; Taniguchi, M.; VanderSteen, J. Towards Sustainable Groundwater Use: Setting Long-Term Goals, Backcasting, and Managing Adaptively. Ground Water 2012, 50, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Shamsudduha, M.; Taylor, R.G.; Longuevergne, L. Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water Resour. Res. 2012, 48, W02508. [Google Scholar] [CrossRef]
- Lund, J.; Harter, T. California’s Groundwater Problems and Prospects. Available online: https://californiawaterblog.com/2013/01/30/californias-groundwater-problems-and-prospects/ (accessed on 11 March 2016).
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; de Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Werner, A.D.; Zhang, Q.; Xue, L.; Smerdon, B.D.; Li, X.; Zhu, X.; Yu, L.; Li, L. An Initial Inventory and Indexation of Groundwater Mega-Depletion Cases. Water Resour. Manag. 2012, 27, 507–533. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Change 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Leblanc, M.; Tweed, S.; Liu, W. Groundwater depletion in the Hai River Basin, China, from in situ and GRACE observations. Hydrol. Sci. J. 2015, 60, 671–687. [Google Scholar] [CrossRef]
- Castle, S.L.; Thomas, B.F.; Reager, J.T.; Rodell, M.; Swenson, S.C.; Famiglietti, J.S. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett. 2014, 41, 2014GL061055. [Google Scholar] [CrossRef] [PubMed]
- Konikow, L.F. Long-Term Groundwater Depletion in the United States. Groundwater 2015, 53, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Richey, A.S.; Thomas, B.F.; Lo, M.-H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Xu, Y.; Beekman, H.E. Review of Groundwater Recharge Estimation in Arid and Semi-Arid Southern Africa. 2003. Available online: http://unesdoc.unesco.org/images/0013/001324/132404e.pdf (accessed on 11 March 2016).
- Obuobie, E.; Diekkrueger, B.; Agyekum, W.; Agodzo, S. Groundwater level monitoring and recharge estimation in the White Volta River basin of Ghana. J. Afr. Earth Sci. 2012, 71–72, 80–86. [Google Scholar] [CrossRef]
- McMahon, P.B.; Plummer, L.N.; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R. A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeol. J. 2011, 19, 779–800. [Google Scholar] [CrossRef]
- Tyler, S.W.; Chapman, J.B.; Conrad, S.H.; Hammermeister, D.P.; Blout, D.O.; Miller, J.J.; Sully, M.J.; Ginanni, J.M. Soil-water flux in the Southern Great Basin, United States: Temporal and spatial variations over the last 120,000 years. Water Resour. Res. 1996, 32, 1481–1499. [Google Scholar] [CrossRef]
- Wolock, D.M. Estimated Mean Annual Natural Groundwater Recharge in the Conterminous United States; U.S. Geological Survey: Reston, VA, USA, 2003.
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Crosbie, R.; Jolly, I.D.; Leaney, F.W.J.; Petheram, C.; Wohling, D.; Commission, N.W. Review of Australian Groundwater Recharge Studies. CSIRO, 2010. Available online: http://www.clw.csiro.au/publications/waterforahealthycountry/2010/wfhc-review-Australian-recharge.pdf (accessed on 11 March 2016).
- McKenna, J.M. Water Use in the Palouse Basin. The Palouse Basin Aquifer Committee 2000 Annual report. , 2001. Available online: http://www.webpages.uidaho.edu/pbac/pubs/00report.pdf (accessed on 11 March 2016).
- Stevens, P.R. Ground-Water Problems in the Vicinity of Moscow, Latah County, Idaho: Idaho Waters Digital Library. Available online: http://digital.lib.uidaho.edu/cdm/ref/collection/idahowater/id/286 (accessed on 4 January 2016).
- Smoot, J.L.; Ralston, D.R. Hydrogeology and Mathematical Model of Ground Water Flow in the Pullman-Moscow Region, Washington And Idaho. Available online: http://digital.lib.uidaho.edu/cdm/ref/collection/idahowater/id/310 (accessed on 11 March 2016).
- Johnson, G.E. Estimating Groundwater Recharge Beneath Different Slope Positions in the Palouse formation Using a Numerical Unsaturated Flow Model. Master’s Thesis, Washington State University, Pullman, WA, USA, 1991. [Google Scholar]
- Muniz, H.R. Computer Modeling of Vadose. Zone Groundwater Flux at a Hazardous Waste Site; Washington State University: Pullman, WA, USA, 1991. [Google Scholar]
- O’Brien, R.; Keller, C.K.; Smith, J.L. Multiple Tracers of Shallow Ground-Water Flow and Recharge in Hilly Loess. Groundwater 1996, 34, 675–682. [Google Scholar] [CrossRef]
- Lum, W.E.; Smoot, J.L.; Ralston, D.R. Geohydrology and Numerical Model Analysis of Ground-Water Flow in the Pullman-Moscow area, Washington and Idaho. Water-Resources Investigations Report. Available online: https://pubs.er.usgs.gov/publication/wri894103 (accessed on 11 March 2016).
- O’Geen, A.T. Assessment of Hydrologic Processes Across Multiple Scales in Soils/Paleosol Sequences Using Environmental Tracers: Idaho Waters Digital Library. Available online: http://digital.lib.uidaho.edu/cdm/ref/collection/idahowater/id/333 (accessed on 4 January 2016).
- Larson, K.R.; Keller, C.K.; Larson, P.B.; Allen-King, R.M. Water resource implications of 18O and 2H distributions in a basalt aquifer system. Groundwater 2000, 38, 947–953. [Google Scholar] [CrossRef]
- Dhungel, R. Water Resource Sustainability of the Palouse Region: A Systems Approach; University of Idaho: Moscow, ID, USA, 2007. [Google Scholar]
- Reeves, M. Estimating Recharge Uncertainty Using Bayesian Model. Averaging and Expert Elicitation with Social Implications; University of Idaho: Moscow, ID, USA, 2009. [Google Scholar]
- Dijksma, R.; Brooks, E.S.; Boll, J. Groundwater recharge in Pleistocene sediments overlying basalt aquifers in the Palouse Basin, USA: Modeling of distributed recharge potential and identification of water pathways. Hydrogeol. J. 2011, 19, 489–500. [Google Scholar] [CrossRef]
- Crosby, J.W. Water Dating Techniques as Applied to the Pullman-Moscow Ground-Water Basin; Technical Extension Service, Washington State University: Pullman, WA, USA, 1965. [Google Scholar]
- Foxworthy, B.L.; Washburn, R.L. Ground Water in the Pullman Area, Whitman County, Washington. Water Supply Paper. Available online: http://pubs.usgs.gov/wsp/1655/report.pdf (accessed on 11 March 2016).
- Barker, R.A. Computer Simulation and Geohydrology of a Basalt Aquifer System in the Pullman-Moscow Basin, Washington and Idaho; Stanford University: Stanford, CA, USA, 1979. [Google Scholar]
- Hydrogeology and a Mathematical Model of Ground-Water Flow in the Pullman-Moscow Region, Washington and Idaho: Idaho Waters Digital Library. Available online: http://digital.lib.uidaho.edu/cdm/ref/collection/idahowater/id/310 (accessed on 4 January 2016).
- Porter, D.E. Industrial Dynamics. Jay Forrester. M.I.T. Press, Cambridge, Mass.; Wiley, New York, 1961. xv + 464 pp. Illus. $18. Science 1962, 135, 426–427. [Google Scholar] [CrossRef]
- Stephenson, K. The What and Why of Shared Vision Planning for Water Supply 2000. Available online: http://www.sharedvisionplanning.us/docs/WaterSecurity03Stephenson.pdf (accessed on 11 March 2016).
- Palmer, R.N.; Keyes, A.M.; Fisher, S. Empowering stakeholders through simulation in water resources planning. In Proceedings of the 20th Anniversary Conference: Water Management in the ’90s. A Time for Innovation, Seattle, WA, USA, 1–5 May 1993.
- Simonovic, S.P.; Fahmy, H.; El-Shorbagy, A. The Use of Object-Oriented Modeling for Water Resources Planning in Egypt. Water Resour. Manag. 1997, 11, 243–261. [Google Scholar] [CrossRef]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H.; Zhang, X.W. Sustainability Analysis for Yellow River Water Resources Using the System Dynamics Approach. Water Resour. Manag. 2002, 16, 239–261. [Google Scholar] [CrossRef]
- Spatial System Dynamics: New Approach for Simulation of Water Resources Systems. J. Comput. Civ. Eng. 2004, 18, 331–340.
- Tidwell, V.C.; Passell, H.D.; Conrad, S.H.; Thomas, R.P. System dynamics modeling for community-based water planning: Application to the Middle Rio Grande. Aquat. Sci. 2004, 66, 357–372. [Google Scholar] [CrossRef]
- Sehlke, G.; Jacobson, J. System dynamics modeling of transboundary systems: The bear river basin model. Ground Water 2005, 43, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Winz, I.; Brierley, G.; Trowsdale, S. The Use of System Dynamics Simulation in Water Resources Management. Water Resour. Manag. 2008, 23, 1301–1323. [Google Scholar] [CrossRef]
- Beall, A.; Fiedler, F.; Boll, J.; Cosens, B. Sustainable Water Resource Management and Participatory System Dynamics. Case Study: Developing the Palouse Basin Participatory Model. Sustainability 2011, 3, 720–742. [Google Scholar] [CrossRef]
- Ryu, J.H.; Contor, B.; Johnson, G.; Allen, R.; Tracy, J. System Dynamics to Sustainable Water Resources Management in the Eastern Snake Plain Aquifer Under Water Supply Uncertainty1. J. Am. Water Resour. Assoc. 2012, 48, 1204–1220. [Google Scholar] [CrossRef]
- Hoekema, D.J.; Sridhar, V. A System Dynamics Model for Conjunctive Management of Water Resources in the Snake River Basin. J. Am. Water Resour. Assoc. 2013, 49, 1327–1350. [Google Scholar] [CrossRef]
- Dhungel, R.; Fiedler, F. Price Elasticity of Water Demand in a Small College Town: An Inclusion of System Dynamics Approach for Water Demand Forecast. Air Soil Water Res. 2014, 7, 77–91. [Google Scholar] [CrossRef]
- Fernald, A.; Tidwell, V.; Rivera, J.; Rodríguez, S.; Guldan, S.; Steele, C.; Ochoa, C.; Hurd, B.; Ortiz, M.; Boykin, K.; et al. Modeling Sustainability of Water, Environment, Livelihood, and Culture in Traditional Irrigation Communities and Their Linked Watersheds. Sustainability 2012, 4, 2998–3022. [Google Scholar] [CrossRef]
- Roach, J.; Tidwell, V. A compartmental-spatial system dynamics approach to ground water modeling. Ground Water 2009, 47, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Balali, H.; Viaggi, D. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios. Water 2015, 7, 5258–5271. [Google Scholar] [CrossRef]
- Niazi, A.; Prasher, S.O.; Adamowski, J.; Gleeson, T. A System Dynamics Model to Conserve Arid Region Water Resources through Aquifer Storage and Recovery in Conjunction with a Dam. Water 2014, 6, 2300–2321. [Google Scholar] [CrossRef]
- Mirchi, A.; Madani, K.; Watkins, D., Jr.; Ahmad, S. Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resour. Manag. 2012, 26, 2421–2442. [Google Scholar] [CrossRef]
- 2002-2005 Palouse Ground Water Basin Water Use Report, Palouse Basin Aquifer Committee 2005. Available online: http://www.webpages.uidaho.edu/pbac/Annual_Report/Final_PBAC_Annual_Report_2002_2005_low_res.pdf (accessed on 11 March 2016).
- Water Matter in the City of Moscow, 10th Annual Palouse Basin Water Summit. Available online: https://www.ci.moscow.id.us/records/Publications/Fall14_Draft14_FinalWebRes.pdf (accessed on 11 March 2016).
- Ground Water Mangement Plan Pullman-Moscow Water Resources Committte, 1992. Available online: https://www.idwr.idaho.gov/waterboard/WaterPlanning/CAMP/RP_CAMP/PDF/2010/05-07-10_GW-MngmntPlan.pdf (accessed on 11 March 2016).
- Bush, J.; Hinds, J. Geologic overview of the Palouse Basin. In Presented at the Palouse Basin Water Summit, Moscow, ID, USA, 2006.
- Leek, F. Hydrogeological Characterization of the Palouse Basin Basalt Aquifer System, Washington and Idaho; Washington State University: Pullman, WA, USA, 2006. [Google Scholar]
- Douglas, A.A.; Osiensky, J.L.; Keller, C.K. Carbon-14 dating of ground water in the Palouse Basin of the Columbia river basalts. J. Hydrol. 2007, 334, 502–512. [Google Scholar] [CrossRef]
- Osiensky, J.L. The do’s and dont’s in current understanding of the Palouse Basin Grande Ronde 459 Aquifer system. In Presented at the Palouse Basin Water Summit, Moscow, ID, USA, 2006.
- Piersol, M.W.; Sprenke, K.F. A Columbia River Basalt Group Aquifer in Sustained Drought: Insight from Geophysical Methods. Resources 2015, 4, 577–596. [Google Scholar] [CrossRef]
- Moran, K. Interpretation of Long-Term Grande Ronde Aquifer Testing in the Palouse Basin of Idaho and Washington; University of Idaho: Moscow, ID, USA, 2011. [Google Scholar]
- Bennett, B. Recharge Implications of Strategic Pumping of the Wanapum. Aquifer System in the Moscow Sub-Basin; University of Idaho: Moscow, ID, USA, 2009. [Google Scholar]
- PRISM Climate Group. Oregon State University. Available online: http://prism.oregonstate.edu (accessed on 11 March 2016).
- Rushton, K.R.; Ward, C. The estimation of groundwater recharge. J. Hydrol. 1979, 41, 345–361. [Google Scholar] [CrossRef]
- Flerchinger, G.; Cooley, K. A ten-year water balance of a mountainous semi-arid watershed. J. Hydrol. 2000, 237, 86–99. [Google Scholar] [CrossRef]
- Everson, C.S. The water balance of a first order catchment in the montane grasslands of South Africa. J. Hydrol. 2001, 241, 110–123. [Google Scholar] [CrossRef]
- Estimating Groundwater Recharge. Available online: http://www.cambridge.org/us/academic/subjects/earth-and-environmental-science/hydrology-hydrogeology-and-water-resources/estimating-groundwater-recharge (accessed on 4 January 2016).
- Scanlon, B.R.; Dutton, A.R.; Sophocleous, M.A. Groundwater Recharge in Texas; Bureau of Economic Geology, University of Texas at Austin: Austin, TX, USA, 2002. [Google Scholar]
- Risser, D.W.; Gburek, W.J.; Folmar, G.J. Comparison of Methods for Estimating Ground-Water Recharge and Base Flow at a Small Watershed underlain by Fractured Bedrock in the Eastern United States; Scientific Investigations Report; 2005. Available online: http://pubs.usgs.gov/sir/2005/5038/pdf/sir2005-5038.pdf (accessed on 11 March 2016).
- Lee, C.-H.; Chen, W.-P.; Lee, R.-H. Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis. Environ. Geol. 2006, 51, 73–82. [Google Scholar] [CrossRef]
- Estimation of Natural Groundwater Recharge; Simmers, I. (Ed.) Springer: Dordrecht, The Netherlands, 1988.
- Nimmo, J.R.; Healy, R.W.; Stonestrom, D.A. Aquifer Recharge. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: New York, NY, USA, 2006. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance; Laboratory of Climatology: Centerton, NJ, USA, 1957. [Google Scholar]
- Hargreaves, G.H. Estimation of Potential and Crop Evapotranspiration. Trans. ASAE 1974. [Google Scholar] [CrossRef]
- Sharda, V.N.; Kurothe, R.S.; Sena, D.R.; Pande, V.C.; Tiwari, S.P. Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. J. Hydrol. 2006, 329, 224–243. [Google Scholar] [CrossRef]
- Hydrologic Conditions in the Palouse Aquifer. Available online: http://www.powershow.com/view/39753-ODYzN/Hydrologic_Conditions_in_the_Palouse_Aquifer_powerpoint_ppt_presentation (accessed on 4 January 2016).
- STELLA Research Technical Documentation; High Performance Systems, Inc.: Lebanon, NH, USA, 1996.
- Baines, C.A. Determination of Sustained Yield for the Shallow Basalt Aquifer in the Moscow Area, Idaho; Idaho Water Resources Research Institute: Moscow, ID, USA, 1992. [Google Scholar]
- Bauer, H.H.; Vaccaro, J.J. Estimates of Ground-Water Recharge to the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho, for Predevelopment and Current Land-Use Conditions; Water-Resources Investigations Report; U.S. Geological Survey; Books and Open-File Reports Section; 1990. Available online: http://pubs.usgs.gov/wri/1988/4108/report.pdf (accessed on 11 March 2016).
Stations (Y) | Site Name | Stations Used for Filling Gaps (X) | Linear Regression Equation | Period of Availability |
---|---|---|---|---|
13349210 | Entire Basin | 13345000 | y = 1.3951x + 22.83, R2 = 0.8916 | 10/01/1963-09/30/1995 |
13345300 | Palouse River at Palouse, WA | 13345000 | y = 1.0381x + 1.54, R2 = 0.9708 | 04/19/1973–10/02/1980 |
13346100 | Palouse River at Colfax, WA (North Fork) | 13345000 | y = 1.0798x + 13.60, R2 = 0.9352 | 10/01/1963–05/31/1979 |
13346800 | Paradise Creek at UI at Moscow, ID | 13348000 | y = 0.2032x − 0.29, R2 = 0.719 | 10/01/1978–09/30/2006 |
13348000 | South Fork Palouse river at Pullman, WA | 13346800 | y = 3.5385x + 10.11, R2 = 0.719 | 02/01/1934–09/30/2006 |
Site Name | USGS Gauging Stations | Precipitation | Evapotranspiration | Runoff | Recharge |
---|---|---|---|---|---|
(cm) | (cm) | (cm) | (cm) | ||
P | E | Qs | R | ||
Entire Basin | 13349210 | 70.9 | 49.0 | 17.2 | 4.7 |
Palouse River at Colfax, WA (North Fork) | 13346100 | 59.3 | 45.2 | 7.7 | 6.4 |
South Fork above Colfax, WA (local) | N/A | 58.9 | 44.8 | 10.4 | 3.7 |
Palouse River near Potlatch, ID | 13345000 | 84.7 | 53.8 | 29.2 | 1.7 |
Palouse River at Palouse, WA | 13345300 | 66.7 | 46.6 | 4.9 | 15.2 |
Paradise Creek at University of Idaho at Moscow, ID | 13346800 | 75.1 | 49.8 | 16.4 | 8.9 |
South Fork Palouse River at Pullman, WA | 13348000 | 66.1 | 46.7 | 10.2 | 9.2 |
SN | Name | Method | Recharge Rate |
---|---|---|---|
(cm·year−1) | |||
1 | Stevens [21] | Mass-balance | 3.0 |
2 | Johnson [23] | One dimensional infiltration model (LEACHM) | 10.5 |
3 | Muniz [24] | One dimensional infiltration model (LEACHM) | 2.5 to 10.3 |
4 | O’ Brien and Others [25] | Chloride mass-balance | 0.2 to 2 |
5 | O’Geen [27] | Chloride mass-balance | 0.3–1 |
6 | Foxworthy and Washburn [33] | Mass-balance | 1.6 |
8 | Barker [34] | Darcy’s Law | 1.70 |
9 | Reeves [30] | Storage equation | 12.19 |
10 | Baines [79] | Hill method and zero change method | 4.5 |
11 | Bauer and Vaccaro [80] | USGS Daily Deep Percolation Model | 3.8 |
Name | Groundwater Area | Storativity | Average Thickness of Aquifers | Total Groundwater Volume (Total Depth) |
---|---|---|---|---|
(km2) | (m) | (Billion gallons) | ||
Wanapum | S | A | V | |
Moscow | 81.75 | 10−4 | 137.19 | 0.29 |
Total | 0.29 | |||
Grande Ronde | ||||
Moscow | 63.94 | 10−4 | 271 | 0.45 |
Pullman | 235.97 | 10−4 | 305 | 1.90 |
Viola | 21.25 | 10−4 | 244 | 0.14 |
Palouse | 74.32 | 10−4 | 152 | 0.29 |
Colfax | 332.13 | 244 | 2.14 | |
Total | 728 | Total | 4.94 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhungel, R.; Fiedler, F. Water Balance to Recharge Calculation: Implications for Watershed Management Using Systems Dynamics Approach. Hydrology 2016, 3, 13. https://doi.org/10.3390/hydrology3010013
Dhungel R, Fiedler F. Water Balance to Recharge Calculation: Implications for Watershed Management Using Systems Dynamics Approach. Hydrology. 2016; 3(1):13. https://doi.org/10.3390/hydrology3010013
Chicago/Turabian StyleDhungel, Ramesh, and Fritz Fiedler. 2016. "Water Balance to Recharge Calculation: Implications for Watershed Management Using Systems Dynamics Approach" Hydrology 3, no. 1: 13. https://doi.org/10.3390/hydrology3010013
APA StyleDhungel, R., & Fiedler, F. (2016). Water Balance to Recharge Calculation: Implications for Watershed Management Using Systems Dynamics Approach. Hydrology, 3(1), 13. https://doi.org/10.3390/hydrology3010013