Critical Analysis of the Snow Survey Network According to the Spatial Variability of Snow Water Equivalent (SWE) on Eastern Mainland Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Territory at Study
2.2. Snow Cover Data
2.3. Spatial Variability Structures of the Snow Cover
2.4. Methods
2.4.1. Analysis of the Spatial Structures
- -γ(h) is half of the difference of the mean square deviation between SWE dataset pairs at the stations Xi, … Xn;
- -N(h) (h) is the number of station pairs separated by h (translation vector);
- -Z is the random function (the mean annual maximum SWE);
- -Xi = (Xi1, … Xid) is the coordinate of the ith station; Xi stations belong to a domain D;
- -h is the distance vector between two arbitrary stations Xi and Xj, defined by:hij = xi, … xj = (xi1–xij, …, xid–xjd).
- ✓
- If β is high, the nugget effect is small (<0.5), which translates into increased spatial variability due to the distance between the stations. In which case, C0 < 10% × C.
- ✓
- If β is low, the nugget effect is high (>0.5), and the spatial variability can be explained by the nugget effect.
2.4.2. Study of the Spatial Distribution of Snow Survey Stations
3. Results
3.1. Analysis of Spatial Structures
3.2. Spatial Distribution of the Snow Survey Stations in Areas with Homogeneous Spatial Structures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richardson-Näslund, C. Spatial characteristics of snow accumulation in Dronning Maud Land, Antarctica. Glob. Planet. Change 2004, 42, 31–43. [Google Scholar] [CrossRef]
- Deleglise, C. Hétérogénéité Spatiale des Composantes Spécifiques et Fonctionnelles des Communautés Prairiales Subalpines Dans un Contexte de Déprise Pastorale. Master’s Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères, France, 2011. [Google Scholar]
- Lhotellier, R. Spatialisation des Températures en Zone de Montagne Alpine. Master’s Thesis, Université Joseph Fourier-Grenoble 1, Grenoble, France, 2005. [Google Scholar]
- Vyve, N. Caractérisation de la Variabilité Spatio-Temporelle de la Pluie au Fakara, Niger. Master’s Thesis, Université Catholique de Louvain , Louvain-la-Neuve, France, 2006; p. 75. [Google Scholar]
- Martin-Vide, J. Daily concentration of precipitation in peninsular Spain. A map of torrential rainfall risk. Advers. Weather Spain 2013, 161, 149–161. [Google Scholar]
- Viau, A.A.; Daloze, P.; Audet, R.; Paquet, F. Intégration des données satellitaires, physiographiques et météorologiques à des fins d’optimisation et de régionalisation des réseaux agrométéorologiques du Québec. Can. J. Remote Sens. 2000, 26, 38–53. [Google Scholar] [CrossRef]
- Knapp, V.; Markus, M. Evaluation of the Illinois Streamflow Gaging Network; Illinois Department of Natural Resources: Springfield, IL, USA, 2003; p. 109. [Google Scholar]
- Mishra, A.K.; Coulibaly, P. Developments in hydrometric network design: A review. Rev. Geophys. 2009, 47, RG2001. [Google Scholar] [CrossRef]
- Pilon, P.J.; Yuzyk, T.R.; Hale, R.A.; Day, T.J. Challenges facing surface water monitoring in Canada. Can. Water Resour. J. 1996, 21, 157–164. [Google Scholar] [CrossRef]
- Charbonneau, R.; Fortin, J.-P.; Lardeau, J.-P.; Morin, G.; Sochanska, W. Analyse des Précipitations du Bassin Versant de la Rivière Eaton; INRS: Québec, QC, Canada, 1978; p. 103. [Google Scholar]
- Fortin, J.P.; Morin, G.; Dupont, L. La rationalisation du réseau météorologique du Québec: stratégie d’intervention et méthodes d’analyse des données. Atmosphère-Océan 1983, 21, 365–386. [Google Scholar] [CrossRef]
- Tapsoba, D.; Fortin, V.; Anctil, F.; Hache, M. Use of the kriging technique with external drift for a map of the water equivalent of snow: application to the Gatineau River Basin. Apport de la technique du krigeage avec dérive externe pour une cartographie raisonnable de l’équivalent en eau de la neige: Application aux Bassins de la Rivière Gatineau 2005, 32, 289–297. [Google Scholar]
- Sena, N.; Chokmani, K.; Gloaguen, E.; Bernier, M. Multi-scale analysis of the spatial variability of the water equivalent of snow (EEN) on the eastern territories of Canada. Hydrol. Sci. J. 2017, 62, 359–377. [Google Scholar]
- Brown, R.D. Analysis of snow cover variability and change in Québec, 1948-2005. Hydrol. Process. 2010. [Google Scholar] [CrossRef]
- Brown, R.D.; Brasnett, B.; Robinson, D. Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos. Ocean 2003, 41, 1–14. [Google Scholar] [CrossRef] [Green Version]
- MDDELCC. Manuel d’Instructions à l’Usage des Observateurs en Nivométrie, Québec; Ministère du Développement Durable, de l’Environnement de la Lutte Contre les Changements Climatiques: Québec, QC, Canada, 2008; p. 32. ISBN 978-2-550-52028-3. [Google Scholar]
- MSC. Aerological Observer’s Course. Module 2.5-Snow Survey; Environnement Canada, Service Météorologie du Canada: Québec, QC, Canada, 2004; p. 43. [Google Scholar]
- Rasmussen, P.; Fortin, V.; Slivitzky, M.; Bobée, B. Impact des Oscillations Climatiques a Basse Fréquence sur les Apports des Rivières Québécoises: Étude Statistique Exploratoire; Institut National de Recherche Scientifique, INRS-Eau: Sainte-Foy, QC, Canada, 1999. [Google Scholar]
- Sobolowski, S.; Frei, A. Lagged relationships between North American snow mass and atmospheric teleconnection indices. Int. J. Climatol. 2007, 27, 221–231. [Google Scholar] [CrossRef]
- Chokmani, K.; Ouarda, T. Physiographical space-based kriging for regional flood frequency estimation at ungauged sites. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Haché, M.; Ouarda, T.B.; Bruneau, P.; Bobée, B. Estimation régionale par la méthode de l’analyse canonique des corrélations: Comparaison des types de variables hydrologiques. Can. J. Civil Eng. 2002, 29, 899–910. [Google Scholar] [CrossRef]
- Muirhead, R.J. Aspects of Multivariate Statistical Analysis; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Fortin, J.P.; Jacques, G.; Morin, G. Analyse des Réseaux Nivométriques de Québec en Vue de leur Rationalisation. In Integrated Design of Hydrological Network; IAHS: Budapest, Hungery, 1986; p. 14. [Google Scholar]
- Bohnenstengel, S.I.; Schlünzen, K.H.; Beyrich, F. Representativity of in situ precipitation measurements—A case study for the LITFASS area in North-Eastern Germany. J. Hydrol. 2011, 400, 387–395. [Google Scholar] [CrossRef]
- Taupin, J.-D. Caractérisation de la variabilité spatiale des pluies aux échelles inférieures au kilomètre en région semi-aride (région de Niamey, Niger). Comptes Rendus de l’Académie des Sciences Series IIA Earth Planet. Sci. 1997, 325, 251–256. [Google Scholar] [CrossRef]
- Emery, X. Géostatistique Linéaire. In Géostatistique Linéaire; École des Mines de Paris. Centre de Géostatistique: Paris, France, 2001; p. 405. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997; Volume 135, pp. xiv, 483. [Google Scholar]
- Kronholm, K.; Schweizer, J. Snow stability variation on small slopes. Cold Reg. Sci. Technol. 2003, 37, 453–465. [Google Scholar] [CrossRef]
- Marcotte, D. Géostatistique. Available online: http://www.groupes.polymtl.ca/geo/marcotte/glq3401geo/chapitre2.pdf (accessed on 21 June 2019).
- Webster, R.; Oliver, M.A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 1992, 43, 177–192. [Google Scholar] [CrossRef]
- Aubert, M.; Hedde, M.; Decaëns, T.; Margerie, P.; Alard, D.; Bureau, F. Facteurs contrôlant la variabilité spatiale de la macrofaune du sol dans une hêtraie pure et une hêtraie–charmaie. Comptes Rendus Biol. 2005, 328, 57–74. [Google Scholar] [CrossRef]
- Dakak, H.; Soudi, B.; Mohammadi, A.B.; Douaik, A.; Badraoui, M.; Moussadek, R. Prospection de la salinité des sols par induction électromagnétique sur la plaine du Tadla (Maroc): Tentative d’optimisation par analyse géostatistique. Science et Changements Planétaires/Sécheresse 2011, 22, 178–185. [Google Scholar]
- Biraben, J.-N.; Duhourcau, F. La mesure de la population dans l’espace. Population 1974, 29, 113–137. [Google Scholar] [CrossRef]
- Canard, A.; Poinsot, D. Quelques Méthodes Statistiques:Typiques de l’Étude des Populations et des Peuplements par la Méthode des Quadrats; Fiche Technique; Université de Renne1: Rennes, France, 2014. [Google Scholar]
- Sangüesa, C.; Pizarro, R.; Ibañez, A.; Pino, J.; Rivera, D.; García-Chevesich, P.; Ingram, B. Spatial and temporal analysis of rainfall concentration using the Gini index and PCI. Water 2018, 10, 112. [Google Scholar] [CrossRef]
- Burgueño, A.; Martinez, M.D.; Serra, C.; Lana, X. Statistical distributions of daily rainfall regime in Europe for the period 1951–2000. Theor. Appl. Climatol. 2010, 102, 213–226. [Google Scholar] [CrossRef]
- Monjo, R.; Martin-Vide, J. Daily precipitation concentration around the world according to several indices. Int. J. Climatol. 2016, 36, 3828–3838. [Google Scholar] [CrossRef]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Bretagnolle, A. Étude des indices de concentration d’une population. l’Espace Géographique 1996, 25, 145–157. [Google Scholar] [CrossRef]
- Mussard, S.; Terraza, V. Méthodes de décomposition de la volatilité d’un portefeuille. Une nouvelle approche d’estimation des risques par l’indice de Gini. Revue d’Économie Politique 2004, 114, 557–571. [Google Scholar] [CrossRef]
- Brown, M. Using Gini-style indices to evaluate the spatial patterns of health practitioners: Theoretical considerations and an application based on Alberta data. Soc. Sci. Med. 1994, 9, 1243–1256. [Google Scholar] [CrossRef]
- Erxleben, J.; Elder, K.; Davis, R. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrol. Process. 2002, 16, 3627–3649. [Google Scholar] [CrossRef]
- Evora, N.D.; Tapsoba, D.; De Sève, D. Combining artificial neural network models, geostatistics, and passive microwave data for snow water equivalent retrieval and mapping. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1925–1939. [Google Scholar] [CrossRef]
- Turcotte, R.; Fortin, L.G.; Fortin, V.; Fortin, J.; Villeneuve, J. Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada. Nord. Hydrol. 2006, 38, 211–234. [Google Scholar] [CrossRef]
Spatial Variability | |||||
---|---|---|---|---|---|
Regional Scale (10 km × 10 km) | Local Scale (300 m × 300 m) | ||||
Homogeneous Zone | Number of SWE Stations | Mean * | Min ** | Max *** | Number of Local Homogeneous Zones |
A | 18 | 183.08 | 0 | 240.1 | 4 |
B | 103 | 146.6 | 0 | 398.17 | 33 |
C | 3 | 262.8 | 0 | 337.8 | 3 |
D | 50 | 248.06 | 0 | 515.02 | 23 |
E | 128 | 165.04 | 0 | 398.05 | 46 |
F | 58 | 208.27 | 98.25 | 350.64 | 2 |
Zone | Nugget Effect (C0) (mm2) | Range (km) | Variance C = γ(h) (mm2) | β = C/(C0 + C) |
---|---|---|---|---|
B | 200 | 600 | 2890 | 0.93 |
D | 950 | 210 | 11,000 | 0.92 |
E | 154 | 174 | 2100 | 0.93 |
F | 300 | 360 | 3300 | 0.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sena, Y.N.; Chokmani, K.; Gloaguen, E.; Bernier, M. Critical Analysis of the Snow Survey Network According to the Spatial Variability of Snow Water Equivalent (SWE) on Eastern Mainland Canada. Hydrology 2019, 6, 55. https://doi.org/10.3390/hydrology6020055
Sena YN, Chokmani K, Gloaguen E, Bernier M. Critical Analysis of the Snow Survey Network According to the Spatial Variability of Snow Water Equivalent (SWE) on Eastern Mainland Canada. Hydrology. 2019; 6(2):55. https://doi.org/10.3390/hydrology6020055
Chicago/Turabian StyleSena, Yawu Noumonvi, Karem Chokmani, Erwan Gloaguen, and Monique Bernier. 2019. "Critical Analysis of the Snow Survey Network According to the Spatial Variability of Snow Water Equivalent (SWE) on Eastern Mainland Canada" Hydrology 6, no. 2: 55. https://doi.org/10.3390/hydrology6020055
APA StyleSena, Y. N., Chokmani, K., Gloaguen, E., & Bernier, M. (2019). Critical Analysis of the Snow Survey Network According to the Spatial Variability of Snow Water Equivalent (SWE) on Eastern Mainland Canada. Hydrology, 6(2), 55. https://doi.org/10.3390/hydrology6020055