Assessment and Mitigation of Streamflow and Sediment Yield under Climate Change Conditions in Diyala River Basin, Iraq
Abstract
:1. Introduction
2. Methods and Materials
2.1. Methodology
2.2. Study Area
2.3. Input Data
2.4. Setting the SWAT Model
2.5. Calibration, Validation, and Sensitivity Analysis
3. Results and Discussion
3.1. Certainty of Weather Data and Climate Change Effect
3.2. Calibration, Validation, and Sensitivity Analysis
3.3. Temporal Distribution of Streamflow and Sediment Yield
3.4. Impact of Climate Change on Streamflow and Sediment Yield
3.5. Spatial Distribution of Streamflow and Sediment
3.6. Mitigation of Sediment Yield
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Owor, M.; Taylor, R.G.; Tindimugaya, C.; Mwesigwa, D. Rainfall intensity and groundwater recharge: Empirical evidence from the Upper Nile Basin. Environ. Res. Lett. 2009, 4, 035009. [Google Scholar] [CrossRef]
- Şen, Z. Climate Change Expectations in the Upper Tigris River Basin, Turkey. Theor. Appl. Climatol. 2018, 1–17. [Google Scholar] [CrossRef]
- Al-Ansari, N.A. Hydro Politics of the Tigris and Euphrates Basins. Engineering 2016, 8, 140–172. [Google Scholar] [CrossRef]
- UN-ESCWA (United Nations Economic and Social Commission for Western Asia); BGR (BundesanstaltfürGeowissenschaften und Rohstoffe). Inventory of Shared Water Resources in Western Asia; Wishlist: Beirut, Lebanon, 2013; ISBN 978-1-53612-111-7. [Google Scholar]
- Pauw, E.D.; Saba, M.; Sabah, H.A. Mapping Climate Change in Iraq and Jordan; ICARDA Working; International Center for Agricultural Research in Dry Areas (ICARDA): Beirut, Lebanon, 2015. [Google Scholar] [CrossRef]
- Abbas, N.; Wasimi, S.A.; Al-Ansari, N. Impacts of Climate Change on Water Resources in Diyala River Basin, Iraq. J. Civ. Eng. Archit. 2016, 10, 1059–1074. [Google Scholar]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.K.; Knutsson, S.; Laue, J. Climate Change: Consequences on Iraq’s Environment. J. Earth Sci. Geotech. Eng. 2018, 8, 43–58. [Google Scholar]
- IssaI, E.; Al-Ansari, N.A.; Sherwany, G.; Knutsson, S. Expected Future of Water Resources within Tigris-Euphrates Rivers Basin, Iraq. J. Water Resour. Prot. 2014, 6, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Ezz-Aldeen, M.; Hassan, R.; Ali, A.; Al-Ansari, N.; Knutsson, S. Watershed Sediment and Its Effect on Storage Capacity: Case Study of Dokan Dam Reservoir. Water 2018, 10, 858. [Google Scholar] [CrossRef]
- Al-Ansari1, N.; Issa, E.I.; Sherwani, G.; Knutsson, S. Sediment in the Mosul Reservoir of Northern Iraq. J. Environ. Hydrol. 2013, 21, 1–10. [Google Scholar]
- Ankit, C.; Nitin, J.; Himanshu, P. Rainfall Runoff Analysis Using the Artificial Neural Network. Indian J. Sci. Technol. 2015, 8, 1–7. [Google Scholar]
- Bakker, M.M.; Govers, G.; van Doorn, A.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Grassland, Soil and Water Research Laboratory, Agricultural Research Service and Blackland Research Center, Texas Agricultural Experiment Station: College Station, TX, USA, 2011. [Google Scholar]
- Alwan, I.A.; Karim, I.R.; Mohamad, M.J. Modeling Water Harvesting System Using Soil Water Assessment Tool (Case study in Iraq). In Proceedings of the 2nd International Conference on Buildings, Construction and Environmental Engineering, Beirut, Lebanon, 17–18 October 2015. [Google Scholar]
- Adeogun, A.G.; Sule, B.F.; Salami, A.W. Cost Effectiveness of Sediment Management Strategies for Mitigation of Sedimentation at Jebba Hydropower Reservoir, Nigeria. J. King Saud Univ. Eng. Sci. 2018, 30, 141–149. [Google Scholar] [CrossRef]
- Leta, M.K.; Chakravarti, A. Sediment Yield Assessment and Mitigation Measures in Finchaa Watershed, Ethiopia. Int. J. Eng. Res. Technol. 2017, 6, 220–226. [Google Scholar]
- Principe, J.A. Exploring Climate Change Effects on Watershed Sediment Yield and Land cover-based Mitigation Measures Using SWAT Model. In Proceedings of the 2012 XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; Volume XXXIX-B8. [Google Scholar]
- Li, T.; Gao, Y. Streamflow and Sediment Yield Variations in Response to Precipitation Changes: A Case Study of Xichuan Watershed in the Loess Plateau, China. Water 2015, 7, 5639. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Xiao, W.; Wang, J.; Huang, Y.; Yang, H. Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast. Water 2017, 9, 966. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Mukhtar, M.M.; Mohena, A.S. Assessed the performance of SWAT Model for Long-Term Streamflow modeling within Al Adhaim Watershed, Iraq. Int. J. Sci. Eng. Res. 2017, 8, 1510. [Google Scholar]
- Alwan, I.A.; Karim, I.R.; Mohamad, M.J. Sediment predictions in Wadi Al-Naft Using Soil Water Assessment Tool. In Proceedings of the 3rd International Conference on Buildings, Construction and Environmental Engineering, BCEE3, Sharm el-Shiekh, Egypt, 23–24 October 2017; Volume 162, p. 03008. [Google Scholar] [CrossRef]
- Sehgal, V.; Sridhar, V. Watershed-scale Retrospective Drought Analysis and Seasonal Forecasting using Multi-layer, High-resolution Simulated Soil Moisture for Southeastern, U.S. Weather Clim. Extrem. 2018, 23, 100191. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Saeed, F.H. Effect of DEM and Land Cover Resolutions on Simulated Streamflow of Adhaim Watershed by SWAT Model. Eng. Technol. J. 2018, 36, 439–448. [Google Scholar]
- Abbas, N.; Wasimi, S.; Al-Ansari, N.; Nasrin Baby, S. Recent Trends and Long-Range Forecasts of Water Resources of Northeast Iraq and Climate Change Adaptation Measures. Water 2018, 10, 1562. [Google Scholar] [CrossRef]
- Tomya, T.; Sumamb, K.S. Determining the Adequacy of CFSR Data for Rainfall-Streamflow Modeling Using SWAT. Procedia Technol. 2016, 24, 309–316. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulation. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Fuka, D.R.; Walter, M.T.; MacAlister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol. Process. 2013, 28, 5613–5623. [Google Scholar] [CrossRef]
- Al-Faraj, F.A.; Scholz, M. Incorporation of the Flow Duration Curve Method within Digital Filtering Algorithms to Estimate the Base Flow Contribution to Total Streamflow. Water Resour. Manag. 2014, 28, 5477–5489. [Google Scholar] [CrossRef]
- Khassaf, S.I.; Al-Adili, A.S.; Rasheed, R.S. Seepage Analysis Underneath Diyala Weir Foundation. In Proceedings of the Thirteen International Water Technology Conference, IWTC, Hurghada, Egypt, 12–15 March 2009. [Google Scholar]
- Muchoney, D.; Borak, J.; Chi, H.; Friedl, M.; Gopal, S.; Hodges, J.; Morrow, N.; Strahler, A. Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America. Int. J. Remote Sens. 2000, 21, 1115–1138. [Google Scholar] [CrossRef]
- Al-Ansari, N.; Al-Jabary, M. Hydrology and sedimentation of the Diyala River. Arabic. unpublished. 1988. [Google Scholar]
- Maurer, E.P.; Brekke, L.; Pruitt, T.; Thrasher, B.; Long, J.; Duffy, P.B.; Dettinger, M.D.; Cayan, D.; Arnold, J. An enhanced archive facilitating climate impacts analysis, B. Am. Meteorol. Soc. 2014, in press. [Google Scholar] [CrossRef]
- NASH, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models Part1. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe:Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- SWAT-CUP User Manual. SWAT Calibration and Uncertainty Programs—A User Manual, Eawag Aquatic Research, Eawag Swiss Fedral Insatiate of Aquatic Sciences and Technology. 2015. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 6 June 2019).
Topographic Character | Derbendkhan | Hemrin |
---|---|---|
Total area km2 | 16,750 | 12,822 |
Percentage of Iraqi Part (%) | 20 | 68 |
Percentage of Iranian Part (%) | 80 | 32 |
Minimum ground elevation (m.a.s.l) | 376 | 86 |
Maximum ground elevation (m.a.s.l) | 3345 | 2556 |
Mean ground elevation (m.a.s.l) | 1574 | 533 |
Minimum slope | 0 | 0 |
Maximum slope | 319 | 217 |
Mean slope | 25.7 | 9.28 |
Rank | Change | Parameter | Min. | Max. | Description | t-Test | p-Value |
---|---|---|---|---|---|---|---|
1 | r | CN2.mgt | −0.5 | 0.3 | SCS streamflow curve number | −20.08 | 0.00 |
2 | r | SOL_AWC().sol | −0.3 | 0.5 | Available water capacity of the soil layer | 2.36 | 0.02 |
3 | r | ESCO.hru | −0.3 | 0.5 | Soil evaporation compensation factor | −0.74 | 0.46 |
4 | r | GWQMN.gw | −0.5 | 0.3 | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0.72 | 0.47 |
5 | r | GW_REVAP.gw | −0.5 | 0.3 | Groundwater “revap” coefficient | 0.49 | 0.63 |
6 | r | REVAPMN.gw | −0.3 | 0.5 | Threshold depth of water in the shallow aquifer for “revap” to occur (mm). | −0.49 | 0.63 |
7 | v | GW_DELAY.gw | 30 | 450 | Groundwater delay (days) | 0.17 | 0.87 |
8 | v | SFTMP.bsn | −10 | 10 | Snowfall temperature | −4.57 | 0.00 |
9 | v | SMTMP.bsn | −10 | 10 | Snow melt base temperature | −5.30 | 0.00 |
10 | v | SMFMX.bsn | 0 | 20 | Maximum melt rate for snow during year | −2.96 | 0.00 |
11 | v | TIMP.bsn | 0 | 20 | Snow pack temperature lag factor | −0.53 | 0.60 |
12 | v | SMFMN.bsn | 0 | 1 | Minimum melt rate for snow during the year | −1.37 | 0.17 |
13 | v | ALPHA_BF.gw | 0 | 1 | Base flow alpha factor (days) | 0.77 | 0.44 |
Rank | Change | Parameter | Min. | Max. | Description | t-Test | p-Value |
---|---|---|---|---|---|---|---|
1 | r | CN2.mgt | −0.5 | 0.4 | SCS streamflow curve number | −0.12 | 0.91 |
2 | r | SOL_AWC().sol | −0.5 | 0.5 | Available water capacity of the soil layer | −0.24 | 0.81 |
3 | r | ESCO.hru | −0.5 | 0.5 | Soil evaporation compensation factor | −0.53 | 0.61 |
4 | r | GWQMN.gw | −0.5 | 0.5 | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0.90 | 0.38 |
5 | r | GW_REVAP.gw | −0.5 | 0.5 | Groundwater “revap” coefficient | 1.15 | 0.27 |
6 | r | REVAPMN.gw | −0.5 | 0.5 | Threshold depth of water in the shallow aquifer for “revap” to occur (mm). | 1.71 | 0.11 |
7 | r | RCHRG_DP.gw | −0.5 | 0.5 | Deep aquifer percolation fraction. | 2.21 | 0.04 |
8 | v | ALPHA_BF.gw | 0 | 1 | Base flow alpha factor (days) | 2.91 | 0.01 |
Watershed | Streamflow Decreasing (%) | Sediment Yield Decreasing (%) |
---|---|---|
Hemrin | 20 | 30 |
Derbendkhan | 49 | 43.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khafaji, M.S.; Al-Chalabi, R.D. Assessment and Mitigation of Streamflow and Sediment Yield under Climate Change Conditions in Diyala River Basin, Iraq. Hydrology 2019, 6, 63. https://doi.org/10.3390/hydrology6030063
Al-Khafaji MS, Al-Chalabi RD. Assessment and Mitigation of Streamflow and Sediment Yield under Climate Change Conditions in Diyala River Basin, Iraq. Hydrology. 2019; 6(3):63. https://doi.org/10.3390/hydrology6030063
Chicago/Turabian StyleAl-Khafaji, Mahmoud S., and Rana D. Al-Chalabi. 2019. "Assessment and Mitigation of Streamflow and Sediment Yield under Climate Change Conditions in Diyala River Basin, Iraq" Hydrology 6, no. 3: 63. https://doi.org/10.3390/hydrology6030063
APA StyleAl-Khafaji, M. S., & Al-Chalabi, R. D. (2019). Assessment and Mitigation of Streamflow and Sediment Yield under Climate Change Conditions in Diyala River Basin, Iraq. Hydrology, 6(3), 63. https://doi.org/10.3390/hydrology6030063