Analytical and Numerical Groundwater Flow Solutions for the FEMME-Modeling Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. FEMME Modeling Environment and STRIVE Package
2.2. Hydrodynamic Module in STRIVE Package
2.3. Analytical Solutions for Groundwater-Surface Water Interaction
2.3.1. Edelman Analytical Solution
2.3.2. Lockington Analytical Solution
2.3.3. Bruggeman Analytical Solution
2.4. Numerical Solutions for Groundwater-Surface Water Interaction
2.4.1. One-Dimensional Flow in a Confined Aquifer
2.4.2. One and Two-Dimensional Flow in an Unconfined Aquifer
3. Application and Discussion
3.1. One-Dimensional Analytical and Numerical Solutions for Confined and Unconfined Aquifers
3.2. Two-Dimensional Numerical Solution in an Unconfined Aquifer
3.3. Comparison between STRIVE and MODFLOW Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water: A Single Resource, Circular 1139; U.S. Geological Survey: Reston, VA, USA, 1998; p. 87.
- European Commission. E.U. Water Framework Directive, European Parliament and Commission, Official Journal, Directive 2000/60/Ec on 22 December (Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy); European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. J. Hydrol. 2002, 10, 52–67. [Google Scholar]
- Makovníková, J.; Kanianska, R.; Kizeková, M. The ecosystem services supplied by soil in relation to land use. Hung. Geogr. Bull. 2017, 66, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Oxtobee, J.P.A.; Novakowski, K. A field study of groundwater/surface water interaction in a fractured bedrock environment. J. Hydrol. 2002, 269, 169–193. [Google Scholar] [CrossRef]
- Barlow, P.M.; Moench, A.F. Analytical Solutions and Computer Programs for Hydraulic Interaction of Stream-Aquifer Systems; U.S. Geological Survey: Open-File Report 98-415A; United States Geological Survey: Reston, VA, USA, 1998; p. 85.
- Woessner, W.W. Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Ground Water 2000, 38, 423–429. [Google Scholar] [CrossRef]
- Moutsopoulos, K.N.; Tsihrintzis, V.A. Approximate analytical solutions of the Forchheimer equation. J. Hydrol. 2005, 309, 93–103. [Google Scholar] [CrossRef]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater-surface water interactions: A review. Hydrol. Earth Syst. Sci. 2006, 10, 873–887. [Google Scholar] [CrossRef] [Green Version]
- Intaraprasong, T.; Zhan, H. A general framework of stream-aquifer interaction caused by variable stream stages. J. Hydrol. 2009, 373, 112–121. [Google Scholar] [CrossRef]
- Moutsopoulos, K.N. Solutions of the Boussinesq equation subject to a nonlinear robin boundary condition. Water Resour. Res. 2013, 49, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. Modflow-2000, the U.S. Geological Survey Modular Ground-Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process; Open-File Report 00-92; U.S. Geological Survey: Reston, VA, USA, 2000; p. 121.
- Harbaugh, A.W. MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; U.S Geological Survey Techniques and Methods 6-A16; U.S. Geological Survey: Reston, VA, USA, 2005; p. 253.
- Niswonger, R.G.; Panday, S.; Ibaraki, M. MODFLOW-NWT, a Newton Formulation for MODFLOW-2005; U.S. Geological Survey: Reston, VA, USA, 2011.
- Markstrom, S.; Niswonger, R.; Regan, R.; Prudic, D.; Barlow, P. GSFLOW: Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-430 2005); U.S. Geological Survey Techniques and Methods 6-d1; U.S. Geological Survey: Reston, VA, USA, 2008; p. 240.
- Seo, H.; Šimůnek, J.; Poeter, E. Documentation of the HYDRUS package for MODFLOW-2000, the US geological survey modular ground-water model. IGWMI 2007-01. Integr. In Ground Water Modeling Ctr.; Colorado School of Mines: Golden, CO, USA, 2007; p. 96. [Google Scholar]
- Twarakavi, N.K.C.; Šimůnek, J.; Seo, H.S. Evaluating Interactions between Groundwater and Vadose Zone Using the HYDRUS-Based Flow Package for MODFLOW. Vadose Zone J. 2008, 7, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone J. 2016, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Niswonger, R.G.; Prudic, D.E.; Regan, R.S. Documentation of the Unsaturated-Zone Flow (UZF1) Package for Modeling Unsaturated Flow between the Land Surface and the Water Table with MODFLOW—2005; US Geological Survey Techniques and Methods 6-A19, Book 6, Chapter A19; USGS: Reston, VA, USA, 2006; 62p.
- Mayer, K.; Amos, R.T.; Molins, S.; Gerard, F. Reactive Transport Modeling in Variably Saturated Media with MIN3P: Basic Model Formulation and Model Enhancements. In Groundwater Reactive Transport Models; Zhang, F., Yeh, G.T., Parker, J.C., Shi, X., Eds.; Bentham Science Publishers Ltd.: Sharjah, UAE, 2012; pp. 187–212. [Google Scholar]
- Maxwell, R.M.; Kollet, S.J.; Smith, S.G.; Woodward, C.S.; Falgout, R.D.; Ferguson, I.M.; Ferguson, N.; Condon, L.E.; Hector, B.; Lopez, S.; et al. User’s Manual. Integrated GroundWater Modeling Center Report GWMI 2016-01; Free Software Foundation: Boston, MA, USA, 2016; p. 167. [Google Scholar]
- Dogrul, E.C. Integrated Water Flow Model. (IWFM–2015): Theoretical Documentation. Modeling Support Branch, Bay-Delta Office, Department of Water Resources: Sacramento, CA, USA, 2016. Available online: http://baydeltaoffice.water.ca.gov/modeling/hydrology/iwfm/iwfm2015/v2015_0_475/downloadables/iwfm-2015.0.475_theoreticaldocumentation.pdf (accessed on 28 September 2016).
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Yang, L.; Song, X.; Zhang, Y.; Han, D.; Zhang, B.; Long, D. Characterizing interactions between surface water and groundwater in the Jialu river basin using major ion chemistry and stable isotopes. Hydrol. Earth Syst. Sci. 2012, 16, 4265–4277. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zheng, Y.; Wu, B.; Wu, X.; Liu, J.; Zheng, C. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture, environ. Model. Softw. 2015, 63, 170–184. [Google Scholar] [CrossRef]
- El-Rawy, M.; Zlotnik, V.A.; Al-Raggad, M.; Al-Maktoumi, A.; Kacimov, A.; Abdalla, O. Conjunctive use of groundwater and surface water resources with aquifer recharge by treated wastewater: Evaluation of management scenarios in the Zarqa River Basin, Jordan. Environ. Earth Sci. 2016, 75, 1146. [Google Scholar] [CrossRef]
- Gannett, M.; Lite, K.J.; Risley, J.; Pischel, E.; La Marche, J. Simulation of Groundwater and Surface-Water Flow in the Upper Deschutes Basin, Oregon, Scientific Investigations Report; U.S. Geological Survey: Portland, OR, USA, 2017; pp. 2017–5097.
- Salem, A.; Dezső, J.; Lóczy, D.; El-Rawy, M.; Słowik, M. Modeling surface water-groundwater interaction in an oxbow of the Drava floodplain. In Proceedings of the HIC 2018—13th International Conference on Hydroinformatics, Palermo, Italy, 20 September 2018. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.; Eldeeb, H.; El-Rawy, M. Assessment of surface water and groundwater interaction using field measurements: A case study of dairut city, Assuit, Egypt. J. Eng. Sci. Technol. 2020, 1, 406–425. [Google Scholar]
- Salem, A.; Dezső, J.; El-Rawy, M.; Lóczy, D. Hydrological Modeling to Assess the Efficiency of Groundwater Replenishment through Natural Reservoirs in the Hungarian Drava River Floodplain. Water 2020, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Edelman, J.H. Over de Berekening van Grondwaterstroomingen (about the Calculation of Groundwater Flow). Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1947. [Google Scholar]
- Lockington, D.A. Response of unconfined aquifer to sudden change in boundary head. J. Irrig. Drain. Eng. 1997, 123, 24–27. [Google Scholar] [CrossRef]
- Bruggeman, G.A. Analytical Solutions of Geohydrological Problems: Developments in Water Science 46; Elsevier: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA, 1999; 959p. [Google Scholar]
- Cooper, H.; Rorabaugh, M. Groundwater Movements and Bank Storage Due to Flood Stages in Surface Streams; US Government Printing Office: Washington, DC, USA, 1963.
- Sahuquillq, A. Quantitative Characterization of the Interaction between Groundwater and Surface Water: Conjunctive Water Use (Proceedings of the Budapest Symposium); IAHS Publ: Wallingford, UK, 1986. [Google Scholar]
- Hogarth, W.L.; Parlange, J.Y.; Parlange, M.B.; Lockington, D. Approximation analytical solution of the boussinesq equation with numerical validation. Water Resour. Res. 1999, 23, 3193–3197. [Google Scholar] [CrossRef]
- Barlow, P.M.; Moench, A.F. Aquifer response to stream-stage and recharge variations: I. Analytical step-response functions. J. Hydrol. 2000, 230, 192–210. [Google Scholar] [CrossRef]
- Soetaert, K.; Declippele, V.; Herman, P.M.J. FEMME, a flexible environment for mathematically modelling the environment. Ecol. Model. 2002, 152, 177–193. [Google Scholar] [CrossRef]
- Wang, H.F.; Anderson, M.P. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- De Doncker, l.; Troch, P.; Buis, K. A Fundamental Study on Exchange Processes in River Ecosystems: FWO Project, Progress Report, Femme-Modelling; Faculty of Engineering, Ghent University: Ghent, Belgium, 2007. [Google Scholar]
- Buis, K.; Anibas, C.; Bal, K.; Banasiak, R.; De doncker, L.; Desmet, N.; Gerard, M.; van belleghem, S.; Batelaan, O.; Troch, P.; et al. Fundamentele studie van uitwisselingsprocessen in rivierecosystemen-geïntegreerde modelontwikkeling (a fundamental study on exchange processes in river ecosystems). Congres Watersysteemkennis, studiedag WSK8 ‘Modellen voor integraal waterbeheer’, Universiteit Antwerpen. Water Tijdschr. Integraal Waterbeleid 2007, 32, 51–54. [Google Scholar]
- Anibas, C.; Fleckenstein, J.H.; Volze, N.; Buis, K.; Verhoeven, R.; Meire, P.; Batelaan, O. Transient or steady-state? Using vertical temperature profiles to quantify groundwater–surface water exchange. Hydrol. Process. 2009, 23, 2165–2177. [Google Scholar] [CrossRef]
- Anibas, C.; Tolche, A.D.; Ghysels, G.; Nossent, J.; Schneidewind, U.; Huysmans, M.; Batelaan, O. Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling. Hydrogeol. J. 2018, 26, 819–835. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, I.W. Applied Hydrology; Mcgraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Vekerdy, Z.; Meijerink, A.M.J. Statistic and analytical study of the propagation of flood-induced groundwater rise in an alluvial aquifer. J. Hydrol. 1998, 205, 112–125. [Google Scholar] [CrossRef]
- De Ridder, N.A.; Zijlstra, G. Seepage and Groundwater Flow; Ritzema, H.P., Ed.; Drainage Principles and Applications; ILRI 16: Wageningen, The Netherlands, 1994; pp. 305–339. [Google Scholar]
- Parlange, J.Y.; Barry, D.A.; Parlange, M.B.; Lockington, D.A.; Haverkamp, R. Sorptivity calculation for arbitrary diffusivity. Transp. Porous Media 1994, 15, 197–208. [Google Scholar] [CrossRef]
Parameter | Value | Dimension |
---|---|---|
Hydraulic conductivity (K) | 10 | m d−1 |
Storage coefficient (S) | 0.2 | (−) |
Thickness of the aquifer (b) | 10 | m |
Specific yield (Sy ) | 0.2 | (−) |
Initial head everywhere in the aquifer | 10.4 | m |
Head in the river | 10.9 | m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Rawy, M.; Batelaan, O.; Buis, K.; Anibas, C.; Mohammed, G.; Zijl, W.; Salem, A. Analytical and Numerical Groundwater Flow Solutions for the FEMME-Modeling Environment. Hydrology 2020, 7, 27. https://doi.org/10.3390/hydrology7020027
El-Rawy M, Batelaan O, Buis K, Anibas C, Mohammed G, Zijl W, Salem A. Analytical and Numerical Groundwater Flow Solutions for the FEMME-Modeling Environment. Hydrology. 2020; 7(2):27. https://doi.org/10.3390/hydrology7020027
Chicago/Turabian StyleEl-Rawy, Mustafa, Okke Batelaan, Kerst Buis, Christian Anibas, Getachew Mohammed, Wouter Zijl, and Ali Salem. 2020. "Analytical and Numerical Groundwater Flow Solutions for the FEMME-Modeling Environment" Hydrology 7, no. 2: 27. https://doi.org/10.3390/hydrology7020027
APA StyleEl-Rawy, M., Batelaan, O., Buis, K., Anibas, C., Mohammed, G., Zijl, W., & Salem, A. (2020). Analytical and Numerical Groundwater Flow Solutions for the FEMME-Modeling Environment. Hydrology, 7(2), 27. https://doi.org/10.3390/hydrology7020027