Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA
Abstract
:1. Introduction
2. Study Site
3. Methodology
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Event | Description | Location | Timing |
---|---|---|---|
Stage I of the Cheyenne—Little Snake River Project | Dam, reservoir, water collection system, and pipeline constructed and put into operation | Study Watershed | 1960s, full operation approx. 1965 |
Stage II of the Cheyenne—Little Snake River Project | Dam, reservoir, water collection system, and pipeline enlarged and put into operation | Study Watershed | 1980s, full operation approx. 1987 |
Measured Flow Records | Complete flow record available from CBPU and WSEO | Study Watershed Outlet | 1995–2005 |
Measured Flow Records | USGS flow station moved to upstream of Hog Park Creek confluence | Reference Watershed Outlet | 1965–present |
Measured Channel Geometry and Simulated Channel Hydraulics | Baseline survey, Repeated survey | Study Watershed Sensitive Reach | 2006, 2015 |
Simulated Flow Records | Run-in period, evaluation period, and calibration period | Reference Watershed Outlet | 1987–1994, 1995–2004, 2005–2014 |
Simulated Flow Records | Simulated natural flow record | Study Watershed Outlet | 1995–2015 |
Appendix B
Calibration Data | Parameter | Value(s) |
---|---|---|
Average monthly SR | dday_intcp (Jan.–Dec.) | 9.964, 9.998, 9.968, −1.949, 2.165, −13.367, −32.135, −14.134, 4.305, 9.998, 9.07, 10 |
tmax_index (Jan.–Dec.) | 66.473, 40.08, 101.567, 45.131, 62.531, 97.441, 92.825, 68.718, 107.316, 101.907, 100.899, 74.125 | |
Basin average monthly ET | jh_coef (Jan.–Dec.) | 0.006, 0.019, 0.035, 0.012, 0.012, 0.01, 0.02, 0.054, 0.056, 0.021, 0.005, 0.005 |
Average annual flow, Average monthly flow, and Monthly average flow | adjust_rain (Jan.–Dec.) | 0.831, 0.761, 0.199, 0.043, 0.998, 0.378, 0.005, 0.929, 0.155, 0.021, 0.893, 0.126 |
adjust_snow (Jan.–Dec.) | 0.377, 0.997, 0.14, 0.006, 0.008, 0.009, 0.04, 0.452, 0.996, 0.004, 0.004, 0.002 | |
Daily flow | adjmix_rain (Jan.–Dec.) | 2.922, 0.569, 0.63, 0.453, 1.663, 2.737, 2.033, 1.243, 0.807, 0.131, 0.993, 2.943 |
cecn_coef (Jan.–Dec.) | 4.735, 9.653, 2.388, 0.076, 5.752, 9.531, 7.18, 8.745, 0.969, 0.884, 0.087, 8.196 | |
emis_noppt | 1.000 | |
free_h20cap | 0.110 | |
potet_sublim | 0.154 | |
slowcoef_lin | 0.003 | |
slowcoef_sq | 0.004 | |
snowinfil_max | 2.695 | |
tmax_allrain (Jan.–Dec.) | 89.431, 65.778, 65.409, 52.916, 68.81, 81.706, 60.467, 68.192, 75.843, 82.594, 63.749, 85.035 | |
tmax_allsnow | 34.403 | |
Peak flow | smidx_coef | 0.005 |
smidx_exp | 0.303 | |
Low flow | gwflow_coef | 0.001 |
soil2gw_max | 0.050 | |
ssr2gw_exp | 0.005 | |
ssr2gw_rate | 0.026 |
References
- Graf, W.L. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resour. Res. 1999, 35, 1305–1311. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Williams, G.P.; Wolman, M.G. Downstream Effects of Dams on Alluvial Rivers; U.S. Geological Survey Professional Paper 1286; United States Goverment Printing Office: Washington, DC, USA, 1984.
- Andrews, E.D. Downstream effects of Flaming Gorge reservoir on the Green River, Colorado and Utah. Geol. Soc. Am. Bull. 1986, 97, 1012–1023. [Google Scholar] [CrossRef]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Gilliam, E.A. Assessing Channel Change and Bank Stability Downstream of a Dam, Wyoming. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2011. [Google Scholar]
- Kellerhals, R.; Church, M.; Davies, L.B. Morphological effects of interbasin river diversions. Can. J. Civ. Eng. 1979, 6, 18–31. [Google Scholar] [CrossRef]
- Bradley, C.; Smith, D.G. Meandering channel response to altered flow regime: Milk River, Alberta and Montana. Water Resour. Res. 1984, 20, 1913–1920. [Google Scholar] [CrossRef]
- Petts, G.E.; Pratts, J.D. Channel changes following reservoir construction on a Lowland English River. Catena 1983, 10, 77–85. [Google Scholar] [CrossRef]
- Wohl, E.; Dust, D. Geomorphic response of a headwater channel to augmented flow. Geomorphology 2012, 138.1, 329–338. [Google Scholar] [CrossRef]
- Dominick, D.S.; O’Neill, M.P. Effects of flow augmentation on stream channel morphology and riparian vegetation: Upper Arkansas River basin, Colorado. Wetlands 1998, 18, 591–607. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Patten, D.T. Response of Salix lasiolepis to augmented stream flows in the upper Owens River. Madrono 1992, 39, 224–235. [Google Scholar]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- England, J.F.; Cohn, T.A.; Faber, B.A.; Stedinger, J.R.; Thomas, W.O., Jr.; Veilleux, A.G.; Kiang, J.E.; Mason, R.R., Jr. Guidelines for determining flood flow frequency—Bulletin 17C (ver. 1.1, May 2019). US Geol. Surv. Tech. Methods 2018, 4(B5). [Google Scholar] [CrossRef] [Green Version]
- Miller, K.A. Peak-flow characteristics of Wyoming streams. Water Resour. Investig. Rep. 2003, 4107. [Google Scholar]
- Sanborn, S.C.; Bledsoe, B.P. Predicting Streamflow Regime Metrics for Ungauged Streams in Colorado, Washington, and Oregon. J. Hydrol. 2006, 325, 241–261. [Google Scholar] [CrossRef]
- Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H. Predicting the natural flow regime: Models for assessing hydrological alteration in streams. River Res. Appl. 2009, 26, 118–136. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. Regionalisation of catchment model parameters. J. Hydrol. 2004, 287, 95–123. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Jung, I. Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. J. Hydrol. 2010, 388, 186–207. [Google Scholar] [CrossRef]
- Maheshwari, B.L.; Walker, K.F.; McMahon, T.A. Effects of regulation on the flow regime of the River Murray, Australia. Regul. Rivers: Res. Manag. 1995, 10, 15–38. [Google Scholar] [CrossRef]
- Fassnacht, S.R. A multi-channel suspended sediment transport model for the Mackenzie Delta, NWT. J. Hydrol. 1997, 197, 128–145. [Google Scholar] [CrossRef]
- Parker, G.W.; Armstrong, D.S.; Richards, T.A. Comparison of Methods for Determining Streamflow Requirements for Aquatic Habitat Protection at Selected Sites on the Assabet and Charles Rivers, Eastern Massachusetts, 2000–02: U.S. Geological Survey Scientific Investigations Report 2004-5092, 72 p. 2004. Available online: https://pubs.usgs.gov/sir/2004/5092/ (accessed on 27 April 2020).
- Atwood, W.W. Records of Pleistocene Glaciers in the Medicine Bow and Park Ranges. J. Geol. 1937, 45-2, 113–140. [Google Scholar] [CrossRef]
- Houston, R.S.; Graff, P.J. Geologic Map of Precambrian rocks of the Sierra Madre, Carbon County, Wyoming, and Jackson and Routt Counties, Colorado. U.S. Geological Survey Miscellaneous Investigations Series Map I-2452; 1995; ISBN 978-0-607-79599-8. Available online: https://pubs.usgs.gov/imap/2452/report.pdf (accessed on 27 April 2020).
- NRCS National Water and Climate Center. Available online: https://www.wcc.nrcs.usda.gov/ (accessed on 26 November 2019).
- Clark, M.L.; Eddy-Miller, C.A.; Mast, M.A. Environmental Characteristics and Water-Quality of Hydrologic Benchmark Network Stations in the West-Central United States; U.S. Geological Survey Circular 1173-C; USGS: Reston, VA, USA, 2000; Volume 115.
- Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G. Precipitation—Runoff Modeling System: User’s Manual; US Geological Survey Water Resources Investigation Report 83-4238; USGS: Reston, VA, USA, 1983; Volume 207.
- Markstrom, S.L.; Regan, R.S.; Hay, L.E.; Viger, R.J.; Webb, R.M.T.; Payn, R.A.; LaFontaine, J.H. PRMS-IV, the Precipitation-Runoff Modeling System, Version 4; U.S. Geological Survey Techniques and Methods; USGS: Reston, VA, USA, 2015; Book 6, Chap. B7; 158p. [CrossRef]
- Brunner, G.W. HEC-RAS, River Analysis System User’s Manual; US Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2001.
- Wyoming State Engineer’s Office. Available online: http://seo.wyo.gov (accessed on 26 November 2019).
- USGS Water Data for the Nation. Available online: https://nwis.waterdata.usgs.gov (accessed on 26 November 2019).
- Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.L.; Umemoto, M. Stepwise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin. J. Am. Water Resour. Assoc. 2006, 42.4, 877–890. [Google Scholar] [CrossRef]
- Leaf, C.F.; Brink, G.E. Hydrologic Simulation Model of Colorado Subalpine Forest: U.S. Department of Agriculture; Forest Service Research Paper RM–107; USDA: Washington, DC, USA, 1973; Volume 23.
- Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation: Proceedings of the American Society of Civil Engineers. J. Irrig. Drain. 1963, 89, 15–41. [Google Scholar]
- Viger, R.J.; Leavesley, G.H. The GIS Weasel User’s Manual; U.S. Geological Survey Techniques and Methods; USGS: Reston, VA, USA, 2007; Volume 6.
- NREL National Solar Radiation Database Data Viewer. Available online: https://maps.nrel.gov/nsrdb-viewer/ (accessed on 26 November 2019).
- USGS Geo Data Portal. Available online: https://cida.usgs.gov/gdp/ (accessed on 26 November 2019).
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Model. Part 1—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Limerinos, J.T. Determination of the Manning Coefficient from Measured Bed Roughness in Natural Channels. Studies of Flow in Alluvial Channels; U.S. Geological Survey Water-Supply Paper 1898-B; USGS: Reston, VA, USA, 1970.
- Arcement, G.J.; Schneider, V.R. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; United States Geol. Survey Water Supply Paper 2339; USGS: Reston, VA, USA, 1989.
- Chow, V.T. Open-Channel Hydraulics; Mcgraw-Hill: Nez York, NY, USA, 1959. [Google Scholar]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
Watershed Characteristic | Study Watershed | Reference Watershed |
---|---|---|
Drainage Area [km2] | 32 | 189 |
Aspect (E, W, N, S) [%] | 33, 15, 21, 31 | 21, 32, 24, 23 |
Elevation (Min, Max) [m] | 2550, 3200 | 2520, 3450 |
Pinus contorta [%] | 40 | 26 |
Picea engelmanii – Abies lasiocarpa [%] | 14 | 48 |
Populus tremuloides [%] | 1 | 1 |
Upland-, Wet- Shrub [%] | 0, 0 | 0, 1 |
Wet-, Upland- Graminoid [%] | 1, 15 | 3, 10 |
Forb [%] | 22 | 10 |
Rock, Water [%] | 0, 7 | 1, 0 |
Step | Calibration Data | Parameter | Parameter Description |
---|---|---|---|
1 | Average monthly SR | dday_intcp | Intercept in T degree-day relationship |
tmax_index | Index T used for P adjustments to SR | ||
2 | Basin average monthly ET | jh_coef | Coefficient used in the Jensen–Haise PET computations |
3 | Average annual flow, Average monthly flow, and Monthly average flow | adjust_rain | P adjustment factor for rain days |
adjust_snow | P adjustment factor for snow days | ||
4 | Daily flow | adjmix_rain | Factor to adjust rain in mixed P events |
cecn_coef | Convection condensation energy coefficient | ||
emis_noppt | Emissivity of air on days without P | ||
free_h20cap | Free water holding capacity of snowpack | ||
potet_sublim | % PET sublimated from the snowpack surface | ||
slowcoef_lin | Linear coefficient in the equation to route gravity-reservoir storage downslope | ||
slowcoef_sq | Exponent in the equation to route gravity-reservoir storage downslope | ||
snowinfil_max | Daily max. snowmelt infiltration for the hydrologic response units (HRU) | ||
tmax_allrain | If a HRU max. T exceeds this value, P is rain | ||
tmax_allsnow | If a HRU max. T is below this value, P is snow | ||
5 | Peak flow | smidx_coef | Coefficient in non-linear surface runoff contributing area algorithm |
smidx_exp | Exponent in non-linear surface runoff contributing area algorithm | ||
6 | Low flow | gwflow_coef | GW routing coefficient |
soil2gw_max | Max. rate of soil water excess moving to GW | ||
ssr2gw_exp | Exponent to route water from the gravity-reservoir to groundwater (GW) | ||
ssr2gw_rate | Linear coefficient to route water from the gravity-reservoir to GW |
Flow Attribute | Meas. Modified Flow (Median) | Sim. Natural Flow (Median) | Deviation Factor | Significance (0 to 1) |
---|---|---|---|---|
Monthly Flow Attributes | ||||
October (m3/s) | 0.48 | 0.17 | 1.9 | 0 |
November (m3/s) | 0.48 | 0.15 | 2.1 | 0 |
December (m3/s) | 0.47 | 0.15 | 2.2 | 0 |
January (m3/s) | 0.47 | 0.14 | 2.3 | 0 |
February (m3/s) | 0.50 | 0.14 | 2.5 | 0 |
March (m3/s) | 0.51 | 0.14 | 2.7 | 0 |
April (m3/s) | 1.13 | 0.35 | 2.2 | 0 |
May (m3/s) | 3.22 | 1.95 | 0.7 | 0 |
June (m3/s) | 3.35 | 3.10 | 0.1 | 0.7 |
July (m3/s) | 0.52 | 0.66 | 0.2 | 0.3 |
August (m3/s) | 0.49 | 0.30 | 0.6 | 0 |
September (m3/s) | 0.47 | 0.20 | 1.4 | 0 |
Annual Flow Attributes (water year from Oct. 1 to Sep. 30) | ||||
7-day Low (m3/s) | 0.44 | 0.13 | 2.3 | 0 |
Annual Peak (m3/s) | 8.0 | 4.6 | 0.7 | 0 |
Flood Attributes (the period from the start of the rising limb to the end of the falling limb) | ||||
Peak (m3/s) | 8.0 | 5.1 | 0.5 | 0 |
Duration (d) | 103 | 93 | 0.1 | 0.1 |
Date of Peak | May 26 | June 6 | 0.1 | 0 |
Rise Rate (m3/s/d) | 0.14 | 0.10 | 0.3 | 0 |
Fall Rate (m3/s/d) | −0.16 | −0.09 | 0.7 | 0 |
Recurrence Interval | Sim. Natural Flow (m3/s) | Percent Increase (%) | Meas. Modified Flow (m3/s) | Meas. Modified Flow (m3/s) | New, Stable, Modified Flow (m3/s) |
---|---|---|---|---|---|
1995–2015 | - | 1995–2015 | 1987–2015 | 2025–2045 | |
1.1 | 2.26 | - | 3.68 | 4.53 | 3.4 |
1.5 | 3.77 | 67 | 7.62 | 5.83 | 5.7 |
2 | 4.59 | 22 | 7.96 | 7.59 | 6.8 |
5 | 5.58 | 22 | 9.26 | 9.03 | 8.2 |
20 | 6.91 | 22 | 10.73 | 10.22 | 9.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carleton, T.J.; Fassnacht, S.R. Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA. Hydrology 2020, 7, 29. https://doi.org/10.3390/hydrology7020029
Carleton TJ, Fassnacht SR. Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA. Hydrology. 2020; 7(2):29. https://doi.org/10.3390/hydrology7020029
Chicago/Turabian StyleCarleton, Tyler J., and Steven R. Fassnacht. 2020. "Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA" Hydrology 7, no. 2: 29. https://doi.org/10.3390/hydrology7020029
APA StyleCarleton, T. J., & Fassnacht, S. R. (2020). Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA. Hydrology, 7(2), 29. https://doi.org/10.3390/hydrology7020029