Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Images
2.3. Calculation of Solar Radiation and ET
3. Results and Discussions
3.1. The Net Radiation (Rn), Soil Heat (G), and Sensible Heat (H) Fluxes
3.2. Evaluation of SEBAL’s Performance in Actual ET Validation Estimation
3.3. Estimation of the Water Requirement for the Ein Khosh Plain
3.4. Water Required for Irrigation of Ein Khosh Plain in Each Period
4. Conclusions
- The rainfall rate in the Ein Khosh Plain, except for the last month of cultivation with very low rainfall, meets water-use requirements, except for late May and early June. Despite the lower ET rate for wheat in the last month, there is a need for irrigation during this month;
- An evaluation of irrigation requirements using monthly rainfall data showed that the Ein Khosh Plain in March (the rainfall corresponds to the ET rate for wheat corps), which displays the maximum ET, has no deficiency of rainfall. Some parts of the plain in several months, such as April and May, expect a rainfall value of up to 50 and 70 mm, respectively;
- While the total area of the plain is equal to 363.11 km2, only 17.21% of the region is cultivated. Given that the average ET rate is 121 mm in the agricultural lands, a maximum of 20 mm of irrigation is required;
- During the wheat plant growth periods, the highest amount of water required was found in the fourth period (March 16 to April 13), with a value of 231.23 mm/hr, and the lowest was found in the third period (February 16 to March 15), with a value of 19.47 mm/hr, for agricultural land use.
Author Contributions
Funding
Conflicts of Interest
References
- Li, Y.L.; Cui, J.Y.; Zhang, T.H.; Zhao, H.L. Measurement of evapotranspiration of irrigated spring wheat and maize in a semi-arid region of north China. Agric. Water Manag. 2003, 61, 1–12. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Zhang, X.C.; Wu, J.W.; Wu, H.Y.; Li, Y. Simplified SEBAL method for estimating vast areal evapotranspiration with MODIS data. Water Sci. Eng. 2011, 4, 24–35. [Google Scholar]
- Trezza, R.; Allen, R.G.; Tasumi, M. Estimation of actual evapotranspiration along the Middle Rio Grande of New Mexico using MODIS and Landsat imagery with the METRIC model. Remote Sens. 2013, 5, 5397–5423. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M. Appendix B: Algorithm for applying SEBAL to sloping mountainous areas. In Application of the SEBAL Methodology for Estimating Consumptive Use of Water and Stream Flow Depletion in the Bear River Basin of Idaho Through Remote Sensing; Idaho Department of Water Resource: Boise, ID, USA, 2000. [Google Scholar]
- Kimura, R.; Bai, L.; Fan, J.; Takayama, N.; Hinokidani, O. Evapo-transpiration estimation over the river basin of the Loess Plateau of China based on remote sensing. J. Arid Environ. 2007, 68, 53–65. [Google Scholar] [CrossRef]
- James, K.A.; Stensrud, D.J.; Yussouf, N. Value of real-time vegetation fraction to forecasts of severe convection in high-resolution models. Weather Forecast. 2009, 24, 187–210. [Google Scholar] [CrossRef]
- Jiang, L.; Kogan, F.N.; Guo, W.; Tarpley, J.D.; Mitchell, K.E.; Ek, M.B.; Ramsay, B.H. Real-time weekly global green vegetation fraction derived from advanced very high resolution radiometer-based NOAA operational global vegetation index (GVI) system. J. Geophys. Res. Atmos. 2010. [Google Scholar] [CrossRef]
- Kosa, P. The effect of temperature on actual evapotranspiration based on Landsat 5 TM satellite imagery. Evapotranspiration 2011, 56, 209–228. [Google Scholar]
- Merlin, O.; Chirouze, J.; Olioso, A.; Jarlan, L.; Chehbouni, G.; Boulet, G. An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S). Agric. For. Meteorol. 2014, 184, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Friedrichs, M.; Singh, R.K.; Velpuri, N.M. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sens. Environ. 2016, 185, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Losgedaragh, S.Z.; Rahimzadegan, M. Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). J. Hydrol. 2018, 561, 523–531. [Google Scholar] [CrossRef]
- Elkatoury, A.; Alazba, A.A.; Mossad, A. Estimating evapotranspiration using coupled remote sensing and three SEB models in an arid region. Environ. Process. 2019, 7, 109–133. [Google Scholar] [CrossRef]
- Faridatul, M.I.; Wu, B.; Zhu, X.; Wang, S. Improving remote sensing based evapotranspiration modelling in a heterogeneous urban environment. J. Hydrol. 2020, 581, 124405. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Ahmad, F.A. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. 2020, 238, 111034. [Google Scholar] [CrossRef]
- Oguz, H. Calculating actual evapotranspiration in Adana, Turkey using Landsat 8 imagery with the METRIC model. In Proceedings of the 1st International Symposium of Forest Engineering and Technologies, Bursa, Turkey, 2–4 June 2016. [Google Scholar]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. The surface energy balance algorithm for land (SEBAL): Part 1 formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain a Remote Sensing Approach Under Clear Skies in Mediterranean Climates; SC-DLO: Wageningen, The Netherlands, 1995; p. 271. [Google Scholar]
- Allen, R.; Tasumi, M.; Trezza, R.; Waters, R.; Bastiaanssen, W. SEBAL (Surface Energy Balance Algorithms for Land). In Advance Training and User’s Manual, version 1; Idaho Implementation: Sagle, ID, USA, 2002; Volume 1, p. 97. [Google Scholar]
- Bastiaanssen, W.G. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Morse, A.; Allen, R.G.; Tasumi, M.; Kramber, W.J.; Trezza, R.; Wright, J.L. Final Report: Application of the SEBAL Methodology for Estimating Evapotranspiration and Consumptive Use of Water Through Remote Sensing; Idaho Department of Water Resources, University of Idaho, Department of Biological and Agricultural: Moscow, ID, USA, 2000; Volume 107. [Google Scholar]
- Tasumi, M.; Trezza, R.; Allen, R.G.; Wright, J.L. US Validation Tests on the SEBAL Model for Evapotranspiration via Satellite. In Proceedings of the 54th IEC Meeting of the International Commission on Irrigation and Drainage (ICID) Workshop Remote Sensing of ET for Large Regions, Montpellier, France, 14–17 September 2003. [Google Scholar]
- Allen, R.B.; Pereira, L.S.; Raes, D.; Smith, M.S. Crop evapotranspiration (guidelines for computing crop water requirements). FAO Irrig. Drain. Pap. 1998, 56, 300. [Google Scholar]
- Zoleikani, R.; Zoej, M.V.; Mokhtarzadeh, M. Comparison of pixel and object oriented based classification of hyperspectral pansharpened images. J. Indian Soc. Remote Sens. 2017, 45, 25–33. [Google Scholar] [CrossRef]
Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) | Bands | Wavelength (µm) | Spatial Resolution (m) |
Band 1 – Coastal aerosol | 0.43 – 0.45 | 30 | |
Band 2 - Blue | 0.45 – 0.51 | 30 | |
Band 3 - Green | 0.53 – 0.59 | 30 | |
Band 4 - Red | 0.64 – 0.67 | 30 | |
Band 5 – Near Infrared (NIR) | 0.85 – 0.88 | 30 | |
Band 6 –SWIR 1 | 1.57 – 1.65 | 30 | |
Band 7 – SWIR 2 | 2.11 – 2.29 | 30 | |
Band 8 - Panchromatic | 0.50 – 0.68 | 15 | |
Band 9 - Cirrus | 1.36 – 1.38 | 30 | |
Band 10 - Thermal Infrared (TIRS) 1 | 10.60 – 11.19 | 100 | |
Band 11 – Thermal Infrared (TIRS) 2 | 11.50 – 12.51 | 100 |
Satellite | Date of Pictures (AD) |
---|---|
Landsat 8 | 11-12-2014 |
Landsat 8 | 10-1-2015 |
Landsat 8 | 29-2-2015 |
Landsat 8 | 27-3-2015 |
Landsat 8 | 20-4-2015 |
Landsat 8 | 17-5-2015 |
Landsat 8 | 04-6-2015 |
Date of Pictures (AD) | FAO-Penman-Monteith | SEBAL |
---|---|---|
ET0 (mm/day) | ET0 (mm/day) | |
11-12-2014 | 3.87 | 3.51 |
10-01-2015 | 4.21 | 4.53 |
29-02-2015 | 4.89 | 5.01 |
27-03-2015 | 5.73 | 5.16 |
20-04-2015 | 8.22 | 8.44 |
17-05-2015 | 9.54 | 8.98 |
04-06-2015 | 9.51 | 8.74 |
Plain | Uses | Area (km2) | Average Actual Annual ET |
---|---|---|---|
Ein Khosh | Rangeland and wasteland | 239.99 | 75 |
Cultivated | 62.89 | 121 | |
Not cultivated | 60.23 | 113 |
Image Date | Study Period | Uses | Area (hr) | Amount of Water Required (mm/hr) |
---|---|---|---|---|
11-12-2014 | 1st—18 November to 25 December | agricultural lands | 6318.5 | 127.11 |
10-01-2015 | 2nd—26 December to 15 February | agricultural lands | 6318.5 | 177.62 |
29-02-2015 | 3rd—16 February to 15 March | agricultural lands | 6318.5 | 19.47 |
27-03-2015 | 4th—16 March to 13 April | agricultural lands | 6318.5 | 231.23 |
20-04-2015 | 5th—14 April to 9 May | agricultural lands | 6318.5 | 227.22 |
17-05-2015 | 6th—10–25 May | agricultural lands | 6318.5 | 143.57 |
04-06-2015 | 7th—26 May to 10 June | agricultural lands | 6318.5 | 24.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaderi, A.; Dasineh, M.; Shokri, M.; Abraham, J. Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran. Hydrology 2020, 7, 36. https://doi.org/10.3390/hydrology7020036
Ghaderi A, Dasineh M, Shokri M, Abraham J. Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran. Hydrology. 2020; 7(2):36. https://doi.org/10.3390/hydrology7020036
Chicago/Turabian StyleGhaderi, Amir, Mehdi Dasineh, Maryam Shokri, and John Abraham. 2020. "Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran" Hydrology 7, no. 2: 36. https://doi.org/10.3390/hydrology7020036
APA StyleGhaderi, A., Dasineh, M., Shokri, M., & Abraham, J. (2020). Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran. Hydrology, 7(2), 36. https://doi.org/10.3390/hydrology7020036