Land–Ocean–Atmosphere Influences on Groundwater Variability in the South Atlantic–Gulf Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Pre-Processing
2.2.1. GRACE Dataset
2.2.2. GLDAS Dataset
2.2.3. Anomaly Calculation to Obtain Groundwater Storage Anomaly (GWSA)
2.2.4. Precipitation Dataset
2.2.5. Sea Surface Temperature Dataset
2.2.6. Sea Level Anomaly
2.3. Methods
2.3.1. Lead–Lag Relationship
2.3.2. Singular Value Decomposition
2.3.3. Statistical Approach
3. Results
3.1. Lag–Lead Correlation Analysis
3.2. Covariability and Correlation Analysis Using the SVD Technique
3.2.1. TWSA Variability in the Atlantic and the Pacific Ocean
3.2.2. Precipitation Variability in the Atlantic and the Pacific Ocean
3.2.3. Groundwater Variability in the Atlantic and the Pacific Ocean
3.2.4. Sea Level Variability in the Atlantic and the Pacific Ocean
3.2.5. Precipitation Relationship with Terrestrial Water and Groundwater Storage
3.2.6. Relationship between Sea Level and Groundwater Storage within the Contiguous United States
4. Discussion
5. Conclusions
- The precipitation was found to have less influence on groundwater variability than SST.
- The groundwater variability was found to have a significant relationship with the Pacific and Atlantic Ocean variability.
- The GWS in the east, south, and northwest coast of the United States were found to have a positive relationship with sea level variability whereas a negative relationships between GWS and SLA were observed in the western and southwestern United States, near California, Mexico, Arizona, and New Mexico.
- (1)
- Comprehensive analysis of the lag and the lead relationship between SST, PPT with groundwater, and sea level anomaly.
- (2)
- Evaluating the effect of climatic variability on groundwater and sea level.
- (3)
- Identification of the influencing variable that drives sea level and groundwater variability.
- (4)
- Categorizing SST regions that drive the groundwater and sea level in different parts of the study region.
- (5)
- Evaluating the robustness of SVD to assess the relationship between climate variability and groundwater.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shrestha, A.; Bhattacharjee, L.; Baral, S.; Thakur, B.; Joshi, N.; Kalra, A.; Gupta, R. Understanding Suitability of MIKE 21 and HEC-RAS for 2D Floodplain Modeling. In Proceedings of the World Environmental Water Resources Congress 2020, Henderson, NV, USA, 17–21 May 2020; pp. 237–253. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Wang, G. Hydrological changes in the U.S. Northeast using the Connecticut River Basin as a case study: Part 1. Modeling and analysis of the past. Glob. Planet. Chang. 2014, 122, 208–222. [Google Scholar]
- Joshi, N.; Rahaman, M.; Thakur, B.; Shrestha, A.; Kalra, A.; Gupta, R. Assessing the effects of climate variability on groundwater in Northern India. In Proceedings of the World Environmental and Water Resources Congress 2020: Groundwater, Sustainability, Hydro-Climate/Climate Change, and Environmental Engineering, Henderson, NV, USA, 17–21 May 2020; pp. 41–52. [Google Scholar] [CrossRef]
- Perry, S.J.; McGregor, S.; Gupta, A.S.; England, M.H. Future changes to El Niño–Southern Oscillation temperature and precipitation teleconnections. Geo. Res. Lett. 2017, 44, 10608–10616. [Google Scholar] [CrossRef]
- Chandanpurkar, H.A.; Fasullo, J.T.; Reager, J.T.; Nerem, R.S.; Famiglietti, J.S. Asymmetric Response of Land Storage to ENSO Phase and Duration. Water 2019, 11, 2249. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Srivastava, P.; Singh, S.; Yates, D. Effect of ENSO-induced climate variability on groundwater levels in the lower Apalachicola-Chattahoochee-Flint river basin. Trans. ASABE 2014, 57, 1393–1403. [Google Scholar] [CrossRef]
- Thakur, B.; Kalra, A.; Lakshmi, V.; Lamb, K.W.; Miller, W.P.; Tootle, G. Linkage between ENSO phases and western US snow water equivalent. Atmos. Res. 2020, 236, 104827. [Google Scholar] [CrossRef]
- Joshi, N.; Tamaddun, K.; Parajuli, R.; Kalra, A.; Maheshwari, P.; Mastino, L.; Velotta, M. Future changes in water supply and demand for Las Vegas valley: A system dynamic approach based on CMIP3 and CMIP5 climate projections. Hydrology 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Omondi, P.; Ogallo, L.A.; Anyah, R.; Muthama, J.M.; Ininda, J. Linkages between global sea surface temperatures and decadal rainfall variability over Eastern Africa region. Int. J. Climatol. 2013, 33, 2082–2104. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, M.; Feng, W.; Zhang, Z.; Shen, Y.; Wu, D. Groundwater depletion in the West Liaohe River Basin, China and its Implications revealed by GRACE and in situ measurements. Remote Sens. 2018, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Gurdak, J.J.; Hanson, R.T.; McMahon, P.B.; Bruce, B.W.; McCray, J.E.; Thyne, G.D.; Reedy, R.C. Climate Variability Controls on Unsaturated Water and Chemical Movement, High Plains Aquifer. Vadose Zone J. 2007, 6, 533–547. [Google Scholar] [CrossRef] [Green Version]
- Tootle, G.A.; Piechota, T.C.; Gutiérrez, F. The relationships between Pacific and Atlantic Ocean sea surface temperatures and Colombian streamflow variability. J. Hydrol. 2008, 349, 268–276. [Google Scholar] [CrossRef]
- Murgulet, D.; Valeriu, M.; Hay, R.R.; Tissot, P.; Mestas-Nuñez, A.M. Relationships between sea surface temperature anomalies in the Pacific and Atlantic Oceans and South Texas precipitation and streamflow variability. J. Hydrol. 2017, 550, 726–739. [Google Scholar] [CrossRef]
- Spence, J. Examining the Effect of Concurrent SST Anomalies on Caribbean Rainfall. Ph.D. Thesis, The University of the West Indies, St. Augustine, Trinidad, 2009. [Google Scholar]
- Pan, Y.; Zeng, N.; Mariotti, A.; Wang, H.; Kumar, A.; Sánchez, R.L.; Jha, B. Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures. Clim. Dyn. 2017, 50, 4335–4346. [Google Scholar] [CrossRef]
- Uvo, C.B.; Repelli, C.A.; Zebiak, S.E.; Kushnir, Y.J. The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J. Clim. 1998, 11, 551–562. [Google Scholar] [CrossRef]
- Ferdowsian, R.; Pannell, D.J.; Mc Carron, C.; Ryder, A.; Crossing, L. 2001. Explaining groundwater hydrographs: Separating atypical rainfall events from time trends. Soil Res. 2001, 39, 861–876. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E.; Argüeso, D.; White, C.J. Relationships between climate variability, soil moisture, and Australian heatwaves. J. Geophy. Res. Atmos. 2015, 120, 8144–8164. [Google Scholar] [CrossRef]
- Tang, C.; Piechota, T.C. Spatial and temporal soil moisture and drought variability in the Upper Colorado River Basin. J. Hydrol. 2009, 379, 122–135. [Google Scholar] [CrossRef]
- Velasco, E.M.; Gurdak, J.J.; Dickinson, J.E.; Ferré, T.P.A.; Corona, C.R. Interannual to multidecadal climate forcings on groundwater resources of the US West Coast. J. Hydrol. Reg. Stud. 2017, 11, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Chinnasamy, P.; Maheshwari, B.; Prathapar, S. Understanding groundwater storage changes and recharge in Rajasthan, India through remote sensing. Water 2015, 7, 5547. [Google Scholar] [CrossRef] [Green Version]
- Opie, S.; Taylor, R.G.; Brierley, C.M.; Shamsudduha, M.; Cuthbert, M.O. Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory. Earth Sys. Dyn. 2020, 11, 775–791. [Google Scholar] [CrossRef]
- Reager, J.T.; Gardner, A.S.; Famiglietti, J.S.; Wiese, D.N.; Eicker, A.; Lo, M.H. A decade of sea level rise slowed by climate-driven hydrology. Science 2016, 351, 699–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, Y.; Lo, M.H.; Yeh, P.J.F.; Reager, J.T.; Famiglietti, J.S.; Wu, R.J.; Tseng, Y.H. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Chang. 2016, 6, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Bjerklie, D.M.; Mullaney, J.R.; Stone, J.R.; Skinner, B.J.; Ramlow, M.A. Preliminary Investigation of the Effects of Sea-Level Rise on Groundwater Levels in New Haven, Connecticut (No. 2012-1025); US Geological Survey: Reston, VA, USA, 2012.
- Li, M.; Hinnov, L.A.; Huang, C.; Ogg, J.G. Sedimentary noise and sea levels linked to land–ocean water exchange and obliquity forcing. Nat. Commun. 2018, 9, 1004. [Google Scholar] [CrossRef]
- Bhandari, S.; Kalra, A.; Tamaddun, K.; Ahmad, S. Relationship between ocean-atmospheric climate variables and regional streamflow of the conterminous United States. Hydrology 2018, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Sagarika, S.; Kalra, A.; Ahmad, S. Pacific Ocean SST and Z500 climate variability and western US seasonal streamflow. Int. J. Climatol. 2016, 36, 1515–1533. [Google Scholar] [CrossRef]
- Qi, P.; Zhang, G.; Xu, Y.J.; Wang, L.; Ding, C.; Cheng, C. Assessing the influence of precipitation on shallow groundwater table response using a combination of singular value decomposition and cross-wavelet approaches. Water 2018, 10, 598. [Google Scholar] [CrossRef] [Green Version]
- Bretherton, C.S.; Smith, C.; Wallacem, J.M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 1992, 5, 541–560. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T.E.; Dennehy, K.F.; Alley, W.M.; Cunningham, W.L. Ground-Water Availability in the United States (No. 1323); US Geological Survey: Reston, VA, USA, 2008.
- Miller, J.A. Ground Water Atlas of the United States. Alabama, Florida, Georgia, and South Carolina (HA 730-G); US Geological Survey: Reston, VA, USA, 1990. Available online: http://pubs.usgs.gov/ha/ha730/ch_g/G-text6.html (accessed on 3 October 2020).
- GRACE Tellus Gravity Recovery & Climate Experiment. Available online: https://grace.jpl.nasa.gov/data/get-data/ (accessed on 20 April 2019).
- EarthData, GES DISC. Available online: https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS (accessed on 30 April 2019).
- Physical Science Laboratory. Available online: https://www.psl.noaa.gov/data/gridded/ (accessed on 25 April 2019).
- Physical Science Laboratory. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html (accessed on 23 April 2019).
- GRACE TWS. Available online: ftp://podaacftp.jpl.nasa.gov/allData/tellus/L3/land-mass/RL05/netcdf/ (accessed on 20 April 2019).
- Wang, F.; Wang, L.; Koike, T.; Zhou, H.; Yang, K.; Wang, A.; Li, W. Evaluation and application of a fine resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Beljaars, A.; Betts, A.K.; Ciais, P.; Dirmeyer, P.; et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Res. Res. 2008, 44. [Google Scholar] [CrossRef]
- Nie, N.; Zhang, W.; Zhang, Z.; Guo, H.; Ishwaran, N. Reconstructed terrestrial water storage change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the latest GRACE and GLDAS products. Water Res. Manag. 2016, 30, 279–294. [Google Scholar] [CrossRef]
- Moghim, S. Impact of climate variation on hydrometeorology in Iran. Glob. Planet. Chang. 2018, 170, 93–105. [Google Scholar] [CrossRef]
- Skaskevych, A. A Comparison Study of Grace-Based Groundwater Modeling for Data-Rich and Data-Scarce Regions. Ph.D. Thesis, University of Missouri-Kansas City, Kansas City, MO, USA, 2014. [Google Scholar]
- Moore, S.; Fisher, J.B. Challenges and opportunities in GRACE-based groundwater storage assessment and management: An example from Yemen. Water Res. Manag. 2012, 26, 1425–1453. [Google Scholar] [CrossRef]
- Xiao, R.; He, X.; Zhang, Y.; Ferreira, V.G.; Chang, L. Monitoring groundwater variations from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the mid-atlantic region of the United States. Remote Sens. 2015, 7, 686–703. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Famiglietti, J.S. The Potential for Satellite-Based Monitoring of Groundwater Storage Changes Using GRACE: The High Plains Aquifer, Central US. J. Hydrol. 2002, 263, 245–256. [Google Scholar] [CrossRef] [Green Version]
- National Oceanic and Atmospheric Administration (NOAA) Tides and Current. Available online: https://tidesandcurrents.noaa.gov/sltrends/ (accessed on 30 May 2019).
- Wu, R.; Kirtman, B.P.; Pegion, K. Local air-sea relationship in observations and model simulations. J. Clim. 2006, 19, 4914–4932. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Kirtman, B.P.; Pegion, K. Local rainfall-SST relationship on subseasonal time scales in satellite observations and CFS. Geo. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Wallace, J.M.; Smith, C.; Bretherton, C.S. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Clim. 1992, 5, 561–576. [Google Scholar] [CrossRef]
- Chitsaz, N.; Azarnivand, A.; Araghinejad, S. Pre-processing of data-driven river flow forecasting models by singular value decomposition (SVD) technique. Hydrol. Sci. J. 2016, 61, 2164–2178. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.; Sardeshmukh, P.D. A caveat concerning singular value decomposition. J. Clim. 1995, 8, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Engström, J.; Waylen, P. Drivers of long-term precipitation and runoff variability in the southeastern USA. Theor. Appl. Climatol. 2018, 131, 1133–1146. [Google Scholar] [CrossRef]
- Hanson, R.T.; Dettinger, M.D.; Newhouse, M.W. Relations between climatic variability and hydrologic time series from four alluvial basins across the southwestern United States. Hydrogeol. J. 2006, 14, 1122–1146. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Reager, J.T.; Lo, M.H.; Karnauskas, K.B.; Leben, R.R. Separating decadal global water cycle variability from sea level rise. Sci. Rep. 2017, 7, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, S.; Tootle, G.; Elliott, E.; Lakshmi, V.; Therrell, M.; Kam, J.; Bearden, B. Atlantic Ocean sea surface temperatures and southeast United States streamflow variability: Associations with the recent multi-decadal decline. J. Hydrol. 2019, 576, 422–429. [Google Scholar] [CrossRef]
- De Linage, C.; Kim, H.; Famiglietti, J.S.; Yu, J.Y. Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America. J. Geophys. Res. Atmos. 2013, 118, 10811–10829. [Google Scholar] [CrossRef] [Green Version]
- Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geod. 2010, 33, 435–446. [Google Scholar] [CrossRef]
- Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B. Terrestrial waters and sea level variations on interannual time scale. Glob. Planet. Chang. 2011, 75, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Adler, R.F. Precipitation and temperature variations on the interannual time scale: Assessing the impact of ENSO and volcanic eruptions. J. Clim. 2011, 24, 2258–2270. [Google Scholar] [CrossRef] [Green Version]
- Boening, C.; Willis, J.K.; Landerer, F.W.; Nerem, R.S. The 2011 La Niña: So strong, the oceans fell. Geo. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Meehl, G.A.; Hu, A.; Alexander, M.; Yamagata, T.; Yuan, D.; Ishii, M.; Pegion, P.; Zheng, J.; Hamlington, B.; et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 2014, 43, 1357–1379. [Google Scholar] [CrossRef]
- Stammer, D.; Cazenave, A.; Ponte, R.M.; Tamisiea, M.E. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 2013, 5, 21–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.; Meehl, G.A.; Stammer, D.; Hu, A.; Hamlington, B.; Kenigson, J.; Thompson, P. Spatial patterns of sea level variability associated with natural internal climate modes. Surv. Geophys. 2017, 38, 217–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingston, D.G.; Massei, N.; Dieppois, B.; Hannah, D.M.; Hartmann, A.; Lavers, D.A.; Vidal, J.P. Moving beyond the catchment scale: Value and opportunities in large-scale hydrology to understand our changing world. Hydrol. Process. 2020, 34, 2292–2298. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Southam, J.R.; Hay, W.W. Global Sedimentary Mass Balance and Sea Level Changes; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Wada, Y.; Reager, J.T.; Chao, B.F.; Wang, J.; Lo, M.H.; Song, C.; Gardner, A.S. Recent changes in land water storage and its contribution to sea level variations. Surv. Geophys. 2017, 38, 131–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahagian, D.L.; Schwartz, F.W.; Jacobs, D.K. Direct anthropogenic contributions to sea level rise in the twentieth century. Nature 1994, 367, 54–57. [Google Scholar] [CrossRef]
- Almanaseer, N.; Sankarasubramanian, A. Role of climate variability in modulating the surface water and groundwater interaction over the southeast United States. J. Hydrol. Eng. 2012, 17, 1001–1010. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.F.; Famiglietti, J.S. Identifying climate-induced groundwater depletion in GRACE observations. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
Model | Layers | Depths |
---|---|---|
CLM 2.0 | 10 | 0–0.018, 0.018–0.045, 0.045–0.091, 0.091–0.166, 0.166–0.289, 0.289–0.493, 0.493–0.829, 0.829–1.383, 1.383–2.296, and 2.296–3.433 m. |
MOS | 3 | 0–0.02,0.02–1.50, and 1.5–3.50 m |
NOAH | 4 | 0–0.1, 0.1–0.4, 0.4–1.0, and 1.0–2.0 m. |
VIC | 3 | 0–0.1, 0.1–1.6, and 1.6–1.9 m. |
Climate Variability | SST–TWSA 1 | SST–PPT 2 | SST–GWSA 3 | SST–SLA 4 | 5-Lag | 2-Lag | 1-Lag | 1-Lag | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TWSA | PPT | GWSA | SLA | |||||||||
SCF (%) | NSC (%) | SCF (%) | NSC (%) | SCF (%) | NSC (%) | SCF (%) | NSC (%) | |||||
Pacific | June–Nov | June–Aug | June–July | June–July | 93 | 15 | 63 | 7 | 55 | 8 | 59 | 7 |
July–Dec | July–Sept | July–Aug | July–Aug | 92 | 14 | 62 | 6 | 56 | 9 | 40 | 9 | |
Aug–Jan | Aug–Oct | Aug–Sept | Aug–Sept | 89 | 11 | 63 | 4 | 55 | 9 | 58 | 10 | |
Sept–Feb | Sept–Nov | Sept–Oct | Sept–Oct | 85 | 11 | 76 | 5 | 55 | 11 | 76 | 12 | |
Oct–March | Oct–Dec | Oct–Nov | Oct–Nov | 87 | 11 | 93 | 11 | 65 | 11 | 67 | 9 | |
Nov–April | Nov–Jan | Nov–Dec | Nov–Dec | 83 | 11 | 45 | 5 | 59 | 11 | 72 | 11 | |
Atlantic | June–Nov | June–Aug | June–July | June–July | 92 | 12 | 70 | 6 | 40 | 8 | 50 | 7 |
July–Dec | July–Sept | July–Aug | July–Aug | 94 | 13 | 62 | 5 | 52 | 8 | 51 | 9 | |
Aug–Jan | Aug–Oct | Aug–Sept | Aug–Sept | 88 | 9 | 70 | 6 | 57 | 8 | 57 | 9 | |
Sept–Feb | Sept–Nov | Sept–Oct | Sept–Oct | 81 | 8 | 89 | 7 | 59 | 8 | 70 | 10 | |
Oct–March | Oct–Dec | Oct–Nov | Oct–Nov | 90 | 12 | 89 | 10 | 66 | 10 | 60 | 9 | |
Nov–April | Nov–Jan | Nov–Dec | Nov–Dec | 81 | 8 | 54 | 6 | 60 | 9 | 63 | 10 |
PPT–TWSA 1 | PPT–GWSA 2 | PPT–SLA 3 | 5-Lag | 1-Lead | 1-Lead | |||
---|---|---|---|---|---|---|---|---|
TWSA | GWSA | SLA | ||||||
SCF (%) | NSC (%) | SCF (%) | NSC (%) | SCF (%) | NSC (%) | |||
June–Nov | June–May | June–May | 85 | 2 | 60 | 5 | 45 | 5 |
July–Dec | July–June | July–June | 80 | 8 | 77 | 12 | 57 | 6 |
Aug–Jan | Aug–July | Aug–July | 92 | 5 | 52 | 6 | 73 | 5 |
Sept–Feb | Sept–Aug | Sept–Aug | 95 | 8 | 56 | 5 | 70 | 9 |
Oct–March | Oct–Sept | Oct–Sept | 94 | 6 | 82 | 7 | 75 | 5 |
Nov–April | Nov–Oct | Nov–Oct | 88 | 5 | 90 | 7 | 89 | 7 |
GWSA–SLA 1 | 1-Lag | |
---|---|---|
SCF (%) | NSC (%) | |
June–July | 71 | 11 |
July–Aug | 67 | 14 |
Aug–Sept | 72 | 11 |
Sept–Oct | 76 | 15 |
Oct–Nov | 60 | 12 |
Nov–Dec | 79 | 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, N.; Kalra, A.; Lamb, K.W. Land–Ocean–Atmosphere Influences on Groundwater Variability in the South Atlantic–Gulf Region. Hydrology 2020, 7, 71. https://doi.org/10.3390/hydrology7040071
Joshi N, Kalra A, Lamb KW. Land–Ocean–Atmosphere Influences on Groundwater Variability in the South Atlantic–Gulf Region. Hydrology. 2020; 7(4):71. https://doi.org/10.3390/hydrology7040071
Chicago/Turabian StyleJoshi, Neekita, Ajay Kalra, and Kenneth W. Lamb. 2020. "Land–Ocean–Atmosphere Influences on Groundwater Variability in the South Atlantic–Gulf Region" Hydrology 7, no. 4: 71. https://doi.org/10.3390/hydrology7040071
APA StyleJoshi, N., Kalra, A., & Lamb, K. W. (2020). Land–Ocean–Atmosphere Influences on Groundwater Variability in the South Atlantic–Gulf Region. Hydrology, 7(4), 71. https://doi.org/10.3390/hydrology7040071