Analytical Protocol to Estimate the Relative Importance of Environmental and Anthropogenic Factors in Influencing Runoff Quality in the Bumbu Watershed, Papua New Guinea
Abstract
:1. Introduction
- Identifying potential sources of impact;
- Identifying the means of mobilization of the sources;
- Assessing the impact of delivery of the sources to receiving waters.
2. Materials and Methods
2.1. Study Area
2.2. Overview of the Protocol
2.3. Line Vector-Based GIS Layers
2.3.1. Dataset
2.3.2. Implementation
- Obtain the SRTM 1 arc second DEM supplied by USGS with 3 0 m resolution and window the DEM to the study area. Using the DEM and the appropriate WATERSHED function of available GIS software, delineate the [WATERSHED] raster (See Figure 4a) and convert the raster to a watershed vector polygon (Figure 4b).
- Using the DEM bounded by the watershed polygon, apply the “RUNOFF” feature of applicable GIS Software, delineate the raster of stream channels in the watershed and reformat the raster into stream line vectors with the individual stream catchment area as each vector’s feature value. Retain this raster layer and shapefile as a relative measure of the [FLOW RUNOFF] traversing each pixel in the catchment area. A basic assumption of this step is that overall, and on average, precipitation, infiltration and absorption are spatially and temporally uniform across the watershed. This is a first order assumption. Extension of the protocol to incorporate spatially variable precipitation will be considered in Section 2.5 below to address some of the shortcomings in this assumption.
- Acquire a shapefile of roads and streets in the project area from Open Street Map [24], convert the road shapefile to a raster format on a blank raster of the same location and dimensions as the DEM. RECLASS all non-zero road pixels as 1 on a 0 background.
- Using the elevation [DEM] and the “WATERSHED” function of the GIS software, with the road raster overlain as the precipitation image, again collect runoff of the catchment area. This can be retained as the [ROAD RUNOFF] layer. Again, the assumption is that all roads have an equal pollution potential per pixel.
- Utilizing the shapefile of water quality sampling stations, again create a blank raster of the same dimensions and location as the DEM. Reformat the blank by projecting the sampling station points onto this raster. Save this raster as the [SAMPLING POINT] raster.
- By overlaying the [SAMPLING POINT] raster onto the [ROAD RUNOFF] raster, a road runoff value can be assigned to each water sampling point and saved in an attribute values file for later incorporation into further analyses along with other sampling station results.
2.4. Raster Based GIS Layers
2.5. Point Vector Based GIS Layers
2.6. Observed Limitations and Rectifications
3. Results
3.1. Relative Importance of Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
UA series water sampling sites | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPS Model: Garmin GPSMAP64SC Surveyor ID: WD STD ID: 18800316 | |||||||||
Sampling Site No. | Sampling Site ID | Sampling Site Name | Latitude | Latitude Direction | Longitude | Longitude Direction | Elevation (m) | DEC Latitude | DEC Longitude |
1 | UAI | Bumbu Upstream | 06° 37.192′ | S | 146° 55.704′ | E | 94 | −6.6198667 | 146.9284000 |
2 | UA2 | Bumbu Trench | 06° 37.453′ | S | 146° 55.867′ | E | 87 | −6.6242167 | 146.9311167 |
3 | UA3 | Bumbu main | 06° 39.508′ | S | 146° 58.465′ | E | 63 | −6.6584667 | 146.9744167 |
4 | UA4 | CIS Bridge | 06° 40.929′ | S | 146° 59.113′ | E | 45 | −6.6821500 | 146.9852167 |
5 | UA5 | Kamkumu Bridge | 06° 42.403′ | S | 146° 59.927′ | E | 24 | −6.7067167 | 146.9987833 |
6 | UA6 | Cassowary road | 06° 43.026′ | S | 147° 00.117′ | E | 15 | −6.7171000 | 147.0019500 |
7 | UA7 | Butibam Main | 06° 43.485′ | S | 147° 00.521′ | E | 9 | −6.7247500 | 147.0086833 |
8 | UA8 | Bumbu Downstream | 06° 44.176′ | S | 147° 01.078′ | E | 4 | −6.7362667 | 147.0179667 |
UB series water sampling sites | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPS Model: Garmin GPSMAP64SC Surveyor ID: WD STD ID: 18800316 | |||||||||
Sampling Site No. | Sampling Site ID | Sampling Site Name | Latitude | Latitude Direction | Longitude | Longitude Direction | Elevation (m) | DEC Latitude | DEC Longitude |
9 | UB1 | Irom | 06° 37.043′ | S | 146° 56.618′ | E | 96 | −6.6173833 | 146.9436333 |
10 | UB2 | Wombong | 06° 37.340′ | S | 146° 57.424′ | E | 90 | −6.6223333 | 146.9570667 |
11 | UB3 | Wongkos | 06° 37.629′ | S | 146° 58.075′ | E | 90 | −6.6271500 | 146.9679167 |
12 | UB4 | Igam Creek | 06° 38.864′ | S | 146° 59.149′ | E | 80 | −6.6477333 | 146.9858167 |
13 | UB5 | Butu stream | 06° 39.528′ | S | 146° 58.423′ | E | 70 | −6.6588000 | 146.9737167 |
14 | UB6 | Sukos | 06° 39.829′ | S | 146° 58.505′ | E | 62 | −6.6638167 | 146.9750833 |
15 | UB7 | Butibam 1 | 06° 43.468′ | S | 147° 00.567′ | E | 28 | −6.7244667 | 147.0094500 |
16 | UB8 | Butibam 2 | 06° 43.531′ | S | 147° 00.654′ | E | 19 | −6.7255167 | 147.0109000 |
UC series water sampling sites | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPS Model: Garmin GPSMAP64SC Surveyor ID: WD STD ID: 18800316 | |||||||||
Sampling Site No. | Sampling Site ID | Sampling Site Name | Latitude | Latitude Direction | Longitude | Longitude Direction | Elevation (m) | DEC Latitude | DEC Longitude |
17 | UC1 | Ambiun 1 | 06° 39.583′ | S | 146° 56.857′ | E | 95 | −6.6597167 | 146.9476167 |
18 | UC2 | Ambiun 2 | 06° 39.784′ | S | 146° 57.053′ | E | 85 | −6.6630667 | 146.9508833 |
19 | UC3 | Wara Rice | 06° 39.973′ | S | 146° 58.120′ | E | 72 | −6.6662167 | 146.9686667 |
20 | UC4 | Wara Misin | 06° 40.527′ | S | 146° 58.737′ | E | 54 | −6.6754500 | 146.9789500 |
21 | UC5 | Sopwara | 06° 43.498′ | S | 147° 00.359′ | E | 22 | −6.7249667 | 147.0059833 |
22 | UC6 | Sikambu Creek | 06° 43.896′ | S | 147° 00.849′ | E | 16 | −6.7316000 | 147.0141500 |
References
- Cosgrove, W.J.; Loucks, D.P. Water Management: Current and Future Challenges and Research Directions: Water Management Research Challenges. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, P.; Finlayson, C.M. Wetlands as Settings for Human Health: Incorporating Ecosystem Services and Health Impact Assessment into Water Resource Management. Bioscience 2011, 61, 678–688. [Google Scholar] [CrossRef]
- Granger, S.J.; Bol, R.; Anthony, S.; Owens, P.N.; White, S.M.; Haygarth, P.M. Towards a Holistic Classification of Diffuse Agricultural Water Pollution from Intensively Managed Grasslands on Heavy Soils. In Advances in Agronomy; Elsevier: San Diego, CA, USA, 2010; pp. 83–115. [Google Scholar]
- Xu, G.; Ren, X.; Yang, Z.; Long, H.; Xiao, J. Influence of Landscape Structures on Water Quality at Multiple Temporal and Spatial Scales: A Case Study of Wujiang River Watershed in Guizhou. Water 2019, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Lintern, A.; Webb, J.A.; Ryu, D.; Liu, S.; Bende-Michl, U.; Waters, D.; Leahy, P.; Wilson, P.; Western, A.W. Key Factors Influencing Differences in Stream Water Quality across Space: Key Factors Influencing Differences in Stream Water Quality across Space. WIREs Water 2018, 5, e1260. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Wang, G.; Zhang, Q.; Zhang, Z. Multi-Scale Analysis of Relationship between Landscape Pattern and Urban River Water Quality in Different Seasons. Sci. Rep. 2016, 6, 25250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putro, B.; Kjeldsen, T.R.; Hutchins, M.G.; Miller, J. An Empirical Investigation of Climate and Land-Use Effects on Water Quantity and Quality in Two Urbanising Catchments in the Southern United Kingdom. Sci. Total Environ. 2016, 548–549, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-W.; Hwang, S.-J.; Lee, S.-B.; Hwang, H.-S.; Sung, H.-C. Landscape Ecological Approach to the Relationships of Land Use Patterns in Watersheds to Water Quality Characteristics. Landsc. Urban Plan. 2009, 92, 80–89. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, W.; Pickett, S.; Li, W.; Han, L. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smart, R.P.; Soulsby, C.; Cresser, M.S.; Wade, A.J.; Townend, J.; Billett, M.F.; Langan, S. Riparian Zone Influence on Stream Water Chemistry at Different Spatial Scales: A GIS-Based Modelling Approach, an Example for the Dee, NE Scotland. Sci. Total Environ. 2001, 280, 173–193. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Hou, K.; Li, X.; Zhang, Y.; Chen, P. Review of Land Use and Land Cover Change Research Progress. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012087. [Google Scholar] [CrossRef]
- Stagl, J.; Mayr, E.; Koch, H.; Hattermann, F.F.; Huang, S. Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe. In Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2014; pp. 31–43. [Google Scholar]
- The National. Water Unsafe for Settlers along the Bumbu River. 2012. Available online: https://www.thenational.com.pg/water-unsafe-for-settlers-along-bumbu-river/ (accessed on 4 October 2020).
- Jana, S.K.; Sekac, T.; Pal, D.K. Study of Changing River Courses and Estimation of Reduction of Available Land Reserved for Development in Lae City of Papua New Guinea Using GIS and Remote Sensing Technology; International Journal of Advance Research, IJOAR: Singapore, 2014. [Google Scholar]
- Sekac, T.; Jana, S.K. Change detection of Busu river course in Papua New Guinea-impact on local settlements using remote sensing and GIS technology. Int. J. Sci. Eng. Res. 2013, 5, 891–899. [Google Scholar]
- Water, Sanitation and Hygiene (WASH) Policy 2015–2030. Available online: http://extwprlegs1.fao.org/docs/pdf/png180011.pdf (accessed on 25 August 2020).
- Ekness, P.; Randhir, T.O. Effect of Climate and Land Cover Changes on Watershed Runoff: A Multivariate Assessment for Storm Water Management. J. Geophys. Res. Biogeosci. 2015, 120, 1785–1796. [Google Scholar] [CrossRef]
- UNICEF. Water, Sanitation and Hygiene. 2018. Available online: https://www.unicef.org/png/what-we-do/water-sanitation-and-hygiene (accessed on 25 August 2020).
- Tanaka, M.O.; de Souza, A.L.T.; Moschini, L.E.; de Oliveira, A.K. Influence of Watershed Land Use and Riparian Characteristics on Biological Indicators of Stream Water Quality in Southeastern Brazil. Agric. Ecosyst. Environ. 2016, 216, 333–339. [Google Scholar] [CrossRef]
- USGS EROS Earth Explorer System, USGS, USA. 2020. Available online: https://earthexplorer.usgs.gov/ (accessed on 25 August 2020).
- Pryde, J.K.; Osorio, J.; Wolfe, M.L.; Heatwole, C.; Benham, B.; Cardenas, A. Comparison of Watershed Boundaries Derived from SRTM and ASTER Digital Elevation Datasets and from a Digitized Topographic Map. In Proceedings of the ASABE Meeting, Minneapolis, MN, USA, 17–20 June 2007. [Google Scholar]
- Eastman, R. TerrSet GIS; Idrisi Image Analysis; Clark Labs, Clark University: Worcester, MA, USA, 2017. [Google Scholar]
- OpenStreetMap Contributors; Papua New Guinea—Roads Retrieved from Humanitarian Data Exchange (HDX). 2018. Available online: https://www.openstreetmap.org (accessed on 6 September 2020).
- Doaemo, W.; Mohan, M.; Adrah, E.; Srinivasan, S.; Dalla Corte, A.P. Exploring Forest Change Spatial Patterns in Papua New Guinea: A Pilot Study in the Bumbu River Basin. Land 2020, 9, 282. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAlpine, J.R.; Keig, G.; Short, K. Climatic Tables for Papua New Guinea; Commonwealth Scientific and Industrial Research Organisation: Melbourne, Australia, 1975; 177p. [Google Scholar]
- Mishra, A. Assessment of Water Quality Using Principal Component Analysis: A Case Study of the River Ganges. J. Water Chem. Technol. 2010, 32, 227–2349. [Google Scholar] [CrossRef]
- Teixeira de Souza, A.; Carneiro, L.A.T.X.; da Silva Junior, O.P.; de Carvalho, S.L.; Américo-Pinheiro, J.H.P. Assessment of Water Quality Using Principal Component Analysis: A Case Study of the Marrecas Stream Basin in Brazil. Environ. Technol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gvozdić, V.; Brana, J.; Malatesti, N.; Roland, D. Principal Component Analysis of Surface Water Quality Data of the River Drava in Eastern Croatia (24 Year Survey). J. Hydroinform. 2012, 14, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, S.S.; Sahu, M.; Patel, R.K.; Panda, B.N. Prediction of Water Quality Using Principal Component Analysis. Water Qual. Expo. Health 2012, 4, 93–104. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment. Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index 1.0, Technical Report. In Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment, 1999, Winnipeg. 2001. Available online: http://ceqg-rcqe.ccme.ca/download/en/137 (accessed on 9 September 2020).
Sampling Site Number | Sampling Site ID | Sampling Site Name | Sampling Site Number | Sampling Site ID | Sampling Site Name |
---|---|---|---|---|---|
1 | UA1 | Bumbu Upstream | 12 | UB4 | Igam Creek |
2 | UA2 | Bumbu Trench | 13 | UB5 | Butu Stream |
3 | UA3 | Bumbu main | 14 | UB6 | Sukos |
4 | UA4 | CIS Bridge | 15 | UB7 | Butibam 1 |
5 | UA5 | Kamkumu Bridge | 16 | UB8 | Butibam 2 |
6 | UA6 | Cassowary Road | 17 | UC1 | Ambiun 1 |
7 | UA7 | Butibam Main | 18 | UC2 | Ambiun 2 |
8 | UA8 | Bumbu Downstream | 19 | UC3 | Wara Rice |
9 | UB1 | Irom | 20 | UC4 | Wara Misin |
10 | UB2 | Wombong | 21 | UC5 | Sopwara |
11 | UB3 | Wongkos | 22 | UC6 | Sikambu Creek |
Site ID | Bumbu Watershed | Normalized Rainfall | Road | Dense Forest | Regen Forest | Green Space | Semi Urban | Highly Urban | Habitation/Population |
---|---|---|---|---|---|---|---|---|---|
UA1 | 22,109 | 22,085 | 0 | 20,594 | 574 | 79 | 69 | 73 | 41 |
UA2 | 22,447 | 22,423 | 0 | 20,697 | 697 | 93 | 69 | 93 | 52 |
UA3 | 72,833 | 72,472 | 429 | 51,740 | 11,605 | 2985 | 1240 | 486 | 1269 |
UA4 | 101,605 | 99,732 | 1037 | 55,165 | 24,791 | 7930 | 3238 | 2042 | 3808 |
UA5 | 110,549 | 107,183 | 1735 | 55,183 | 25,691 | 10,324 | 5838 | 4088 | 6634 |
UA6 | 123,749 | 117,405 | 2771 | 55,233 | 27,686 | 13,356 | 10,146 | 6458 | 9749 |
UA7 | 126,752 | 119,108 | 3009 | 55,235 | 27,981 | 13,585 | 11,122 | 7557 | 10,825 |
UA8 | 128,354 | 120,073 | 3209 | 55,235 | 28,118 | 13,667 | 11,464 | 8395 | 11,550 |
UB1 | 5358 | 5314 | 3 | 4633 | 434 | 10 | 5 | 2 | 16 |
UB2 | 1856 | 1837 | 14 | 1317 | 382 | 15 | 9 | 0 | 14 |
UB3 | 2727 | 2691 | 7 | 2533 | 119 | 0 | 0 | 0 | 0 |
UB4 | 1148 | 1114 | 115 | 2 | 458 | 262 | 265 | 10 | 205 |
UB5 | 725 | 708 | 2 | 162 | 233 | 165 | 19 | 31 | 30 |
UB6 | 80,794 | 80,154 | 639 | 52,277 | 13,628 | 5937 | 2350 | 752 | 2194 |
UB7 | 13 | 8 | 0 | 0 | 3 | 2 | 5 | 2 | 1 |
UB8 | 67 | 41 | 0 | 0 | 15 | 16 | 13 | 10 | 10 |
UC1 | 1427 | 1426 | 0 | 681 | 530 | 8 | 4 | 1 | 12 |
UC2 | 359 | 357 | 13 | 27 | 296 | 8 | 3 | 0 | 15 |
UC3 | 11,479 | 11,193 | 103 | 2349 | 6601 | 1092 | 46 | 23 | 346 |
UC4 | 3501 | 3044 | 6 | 286 | 2372 | 174 | 112 | 29 | 124 |
UC5 | 123 | 67 | 27 | 0 | 0 | 1 | 35 | 76 | 62 |
UC6 | 79 | 47 | 29 | 0 | 0 | 0 | 8 | 66 | 60 |
Site ID | Road Runoff IV | Dense Forest Runoff IV | Regen Forest Runoff IV | Green Space Runoff IV | Semi Urban Runoff IV | Highly Urban Runoff IV | Habitation/Population Runoff IV |
---|---|---|---|---|---|---|---|
UA1 | 0.00 | 93.25 | 2.60 | 0.36 | 0.31 | 0.33 | 0.19 |
UA2 | 0.00 | 92.30 | 3.11 | 0.41 | 0.31 | 0.41 | 0.23 |
UA3 | 0.59 | 71.39 | 16.01 | 4.12 | 1.71 | 0.67 | 1.75 |
UA4 | 1.04 | 55.31 | 24.86 | 7.95 | 3.25 | 2.05 | 3.82 |
UA5 | 1.62 | 51.48 | 23.97 | 9.63 | 5.45 | 3.81 | 6.19 |
UA6 | 2.36 | 47.04 | 23.58 | 11.38 | 8.64 | 5.50 | 8.30 |
UA7 | 2.53 | 46.37 | 23.49 | 11.41 | 9.34 | 6.34 | 9.09 |
UA8 | 2.67 | 46.00 | 23.42 | 11.38 | 9.55 | 6.99 | 9.62 |
UB1 | 0.06 | 87.18 | 8.17 | 0.19 | 0.09 | 0.04 | 0.30 |
UB2 | 0.76 | 71.69 | 20.79 | 0.82 | 0.49 | 0.00 | 0.76 |
UB3 | 0.26 | 94.11 | 4.42 | 0.00 | 0.00 | 0.00 | 0.00 |
UB4 | 10.32 | 0.18 | 41.12 | 23.52 | 23.79 | 0.90 | 18.40 |
UB5 | 0.28 | 22.87 | 32.89 | 23.29 | 2.68 | 4.38 | 4.23 |
UB6 | 0.80 | 65.22 | 17.00 | 7.41 | 2.93 | 0.94 | 2.74 |
UB7 | 0.00 | 0.00 | 37.22 | 24.82 | 62.04 | 24.82 | 12.41 |
UB8 | 0.00 | 0.00 | 36.35 | 38.78 | 31.51 | 24.24 | 24.24 |
UC1 | 0.00 | 47.74 | 37.16 | 0.56 | 0.28 | 0.07 | 0.84 |
UC2 | 3.64 | 7.56 | 82.91 | 2.24 | 0.84 | 0.00 | 4.20 |
UC3 | 0.92 | 20.99 | 58.97 | 9.76 | 0.41 | 0.21 | 3.09 |
UC4 | 0.20 | 9.39 | 77.91 | 5.72 | 3.68 | 0.95 | 4.07 |
UC5 | 40.36 | 0.00 | 0.00 | 1.49 | 52.32 | 113.62 | 92.69 |
UC6 | 61.18 | 0.00 | 0.00 | 0.00 | 16.88 | 139.24 | 126.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doaemo, W.; Wuest, L.; Bajaj, S.; Wan Mohd Jaafar, W.S.; Mohan, M. Analytical Protocol to Estimate the Relative Importance of Environmental and Anthropogenic Factors in Influencing Runoff Quality in the Bumbu Watershed, Papua New Guinea. Hydrology 2020, 7, 77. https://doi.org/10.3390/hydrology7040077
Doaemo W, Wuest L, Bajaj S, Wan Mohd Jaafar WS, Mohan M. Analytical Protocol to Estimate the Relative Importance of Environmental and Anthropogenic Factors in Influencing Runoff Quality in the Bumbu Watershed, Papua New Guinea. Hydrology. 2020; 7(4):77. https://doi.org/10.3390/hydrology7040077
Chicago/Turabian StyleDoaemo, Willie, Lawrence Wuest, Shaurya Bajaj, Wan Shafrina Wan Mohd Jaafar, and Midhun Mohan. 2020. "Analytical Protocol to Estimate the Relative Importance of Environmental and Anthropogenic Factors in Influencing Runoff Quality in the Bumbu Watershed, Papua New Guinea" Hydrology 7, no. 4: 77. https://doi.org/10.3390/hydrology7040077
APA StyleDoaemo, W., Wuest, L., Bajaj, S., Wan Mohd Jaafar, W. S., & Mohan, M. (2020). Analytical Protocol to Estimate the Relative Importance of Environmental and Anthropogenic Factors in Influencing Runoff Quality in the Bumbu Watershed, Papua New Guinea. Hydrology, 7(4), 77. https://doi.org/10.3390/hydrology7040077