Estimation of Reference Evapotranspiration Using Spatial and Temporal Machine Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Climate and Reference Evapotranspiration (ETo)
2.2. Models Structure and Application
- (i)
- Tmin, Tmax: temperature based (GEP1, SVM1, LR1, RF1)
- (ii)
- Tmin, Tmax, Rs: radiation-based (GEP2, SVM2, LR2, RF2)
- (iii)
- Tmin, Tmax, W: mass transfer based (GEP3, SVM3, LR3, RF3).
2.3. K-Fold Cross-Validation
2.4. Evaluation Criteria
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Niaghi, A.R.; Majnooni-Heris, A.; Haghi, D.Z.; Mahtabi, G. Evaluate several potential evapotranspiration methods for regional use in Tabriz, Iran. J. Appl. Environ. Biol. Sci. 2013, 3, 31–41. [Google Scholar]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012. [Google Scholar] [CrossRef]
- Kabenge, I.; Irmak, S.; Meyer, G.E.; Gilley, J.E.; Knezevic, S.; Arkebauer, T.J.; Woodward, D.; Moravek, M. Evapotranspiration and surface energy balance of a common reed-dominated riparian system in the platte river Basin, Central Nebraska. Trans. ASABE 2013, 56, 135–153. [Google Scholar] [CrossRef]
- O’Brien, P.L.; Acharya, U.; Alghamdi, R.; Niaghi, A.R.; Sanyal, D.; Wirtz, J.; Daigh, A.L.M.; DeSutter, T.M. Hydromulch Application to Bare Soil: Soil Temperature Dynamics and Evaporative Fluxes. Agric. Environ. Lett. 2018, 3, 180014. [Google Scholar] [CrossRef] [Green Version]
- Niaghi, A.R.; Jia, X.; Scherer, T.F.; Steele, D.D. Measurement of Non-Irrigated Turfgrass Evapotranspiration Rate in the Red River Valley. Vadose Zone J. 2019, 18, 180202. [Google Scholar] [CrossRef] [Green Version]
- Chávez, J.L.; Howell, T.A.; Copeland, K.S. Evaluating eddy covariance cotton ET measurements in an advective environment with large weighing lysimeters. Irrig. Sci. 2009, 28, 35–50. [Google Scholar] [CrossRef]
- Valayamkunnath, P.; Sridhar, V.; Zhao, W.; Allen, R.G. Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agric. For. Meteorol. 2018, 248, 22–47. [Google Scholar] [CrossRef]
- Niaghi, A.R.; Haji Vand, R.; Asadi, E.; Majnooni-Heris, A. Evaluation of Single and Dual Crop Coefficient Methods for Estimation of Wheat. Adv. Environ. Biol. 2015, 9, 963–971. [Google Scholar]
- Elnmer, A.; Khadr, M.; Kanae, S.; Tawfik, A. Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta. Agric. Water Manag. 2019, 213, 682–692. [Google Scholar] [CrossRef]
- Nagler, P.L.; Scott, R.L.; Westenburg, C.; Cleverly, J.R.; Glenn, E.P.; Huete, A.R. Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens. Environ. 2005, 97, 337–351. [Google Scholar] [CrossRef]
- Wagle, P.; Bhattarai, N.; Gowda, P.H.; Kakani, V.G. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS J. Photogramm. Remote Sens. 2017, 128, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Partal, T.; Cigizoglu, H.K. Prediction of daily precipitation using wavelet-neural networks. Hydrol. Sci. J. 2009, 54, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.F.; Walker, W.R.; McKee, M. Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agric. Water Manag. 2011, 98, 553–562. [Google Scholar] [CrossRef]
- Adnan, R.M.; Chen, Z.; Yuan, X.; Kisi, O.; El-Shafie, A.; Kuriqi, A.; Ikram, M. Reference evapotranspiration modeling using new heuristic methods. Entropy 2020, 22, 547. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Shiri, J.; Kişi, Ö.; Landeras, G.; López, J.J.; Nazemi, A.H.; Stuyt, L.C.P.M. Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J. Hydrol. 2012, 414–415, 302–316. [Google Scholar] [CrossRef]
- Kisi, O.; Guven, A. Evapotranspiration Modeling Using Linear Genetic Programming Technique. J. Irrig. Drain. Eng. 2010, 136, 715–723. [Google Scholar]
- Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kisi, O.; Fakheri Fard, A.; Marti, P. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 2014, 108, 230–241. [Google Scholar] [CrossRef]
- Wen, X.; Si, J.; He, Z.; Wu, J.; Shao, H.; Yu, H. Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions. Water Resour. Manag. 2015, 29, 3195–3209. [Google Scholar] [CrossRef]
- Kisi, O. Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol. Process. 2007, 21, 1925–1934. [Google Scholar] [CrossRef]
- Odhiambo, L.O.; Yoder, R.E.; Yoder, D.C.; Hines, J.W. Optimization of Fuzzy Evapotranspiration Model Through Neural Training with Input–Output Examples. Trans. ASAE 2013, 44, 1625–1633. [Google Scholar] [CrossRef]
- Trajkovic, S.; Todorovic, B.; Stankovic, M. Closure to “Forecasting of Reference Evapotranspiration by Artificial Neural Networks” by Slavisa Trajkovic, Branimir Todorovic, and Miomir Stankovic. J. Irrig. Drain. Eng. 2005, 131, 391–392. [Google Scholar] [CrossRef]
- Falamarzi, Y.; Palizdan, N.; Huang, Y.F.; Lee, T.S. Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agric. Water Manag. 2014, 140, 26–36. [Google Scholar] [CrossRef]
- Hassan, M.A.; Khalil, A.; Kaseb, S.; Kassem, M.A. Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl. Energy 2017, 203, 897–916. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Gong, D.; Zhang, Q.; Zhao, L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric. Water Manag. 2017, 193, 163–173. [Google Scholar] [CrossRef]
- Tabari, H.; Kisi, O.; Ezani, A.; Hosseinzadeh Talaee, P. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J. Hydrol. 2012, 444–445, 78–89. [Google Scholar]
- Shirsath, P.B.; Singh, A.K. A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models. Water Resour. Manag. 2010, 24, 1571–1581. [Google Scholar] [CrossRef]
- Pour-Ali Baba, A.; Shiri, J.; Kisi, O.; Fard, A.F.; Kim, S.; Amini, R. Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrol. Res. 2013, 44, 131. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Peng, Y.; Cui, N.; Gong, D.; Zhang, K. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Comput. Electron. Agric. 2017, 136, 71–78. [Google Scholar] [CrossRef]
- Vogt, M. Support Vector Machines for Identification and Classification Problems in Control Engineering. Autom 2008, 56, 391. [Google Scholar] [CrossRef]
- Singh, R.; Helmers, M.J. Improving crop growth simulation in the hydrologic model drain mod to simulate corn yields in subsurface drained landscapes. Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. 2008 2008, 2, 856–873. [Google Scholar]
- Wu, W.; Wang, X.; Xie, D.; Liu, H. Soil water content forecasting by support vector machine in purple hilly region. In IFIP International Federation for Information Processing; Springer: Boston, MA, USA, 2008; Volume 258, pp. 223–230. ISBN 9780387772509. [Google Scholar]
- Kisi, O.; Cimen, M. Reply to the Discussion of “Evapotranspiration modelling using support vector machines” by R. J. Abrahart et al. Hydrol. Sci. J. 2010, 55, 1451–1452. [Google Scholar] [CrossRef]
- Shiri, J.; Kişi, Ö. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Comput. Geosci. 2011, 37, 1692–1701. [Google Scholar] [CrossRef]
- Sanford, W.E.; Selnick, D.L. Estimation of Evapotranspiration across the Conterminous United States Using a Regression with Climate and Land-Cover Data. J. Am. Water Resour. Assoc. 2013, 49, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Perugu, M.; Singam, A.J.; Kamasani, C.S.R. Multiple Linear Correlation Analysis of Daily Reference Evapotranspiration. Water Resour. Manag. 2013, 27, 1489–1500. [Google Scholar] [CrossRef]
- Khoshravesh, M.; Sefidkouhi, M.A.G.; Valipour, M. Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Appl. Water Sci. 2015, 7, 1911–1922. [Google Scholar] [CrossRef] [Green Version]
- Alipour, A.; Yarahmadi, J.; Mahdavi, M. Comparative Study of M5 Model Tree and Artificial Neural Network in Estimating Reference Evapotranspiration Using MODIS Products. J. Climatol. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.Á.M.; García-Galiano, S.G.; Martin-Gorriz, B.; Baille, A. Satellite-based method for estimating the spatial distribution of crop evapotranspiration: Sensitivity to the priestley-taylor coefficient. Remote Sens. 2017, 9, 611. [Google Scholar] [CrossRef] [Green Version]
- Shiri, J. Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. J. Hydrol. 2018, 561, 737–750. [Google Scholar] [CrossRef]
- NDAWN North Dakota Agricultural Weather Network. Available online: https://ndawn.ndsu.nodak.edu/ (accessed on 21 December 2020).
- ASCE-EWRI. The ASCE standardized reference evapotranspiration equation: ASCE-EWRI Standardization of Reference Evapotranspiration Task Committe Report. Am. Soc. Civ. Eng. 2005. [Google Scholar] [CrossRef]
- Angeline, P.J. Genetic programming: On the programming of computers by means of natural selection. Biosystems 2003, 33, 69–73. [Google Scholar] [CrossRef]
- Ferreira, C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. arXiv 2001, arXiv:cs/0102027. [Google Scholar]
- Sharifi, S.S.; Rezaverdinejad, V.; Nourani, V. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches. J. Atmos. Solar-Terrestrial Phys. 2016, 149, 131–145. [Google Scholar] [CrossRef]
- Shiri, J.; Sadraddini, A.A.; Nazemi, A.H.; Kisi, O.; Landeras, G.; Fakheri Fard, A.; Marti, P. Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. J. Hydrol. 2014, 508, 1–11. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V. The Support Vector Method of Function Estimation. In Nonlinear Modeling; Springer US: Boston, MA, USA, 2011; pp. 55–85. [Google Scholar]
- Azimi, V.; Salmasi, F.; Entekhabi, N.; Tabari, H.; Niaghi, A. Optimization of Deficit Irrigation Using Non-Linear Programming (Case Study: Mianeh Region, Iran). Ijagcs.com 2013, 252–260. [Google Scholar]
- Géron, A. Hands-On Machine Learning with Scikit-Learn & TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; ISBN 9781491962299. [Google Scholar]
Station | Parameter | Unit | Xmax | Xmin | Xmean | SX | CV | CSX |
---|---|---|---|---|---|---|---|---|
Prosper, ND | Tmax | °C | 37.9 | 24.3 | 11.3 | 14.3 | 1.27 | −0.37 |
Tmin | °C | −29.8 | −38.1 | −0.8 | 13.0 | −16.73 | −0.28 | |
WS | m s−1 | 14.2 | 0.9 | 4.2 | 1.8 | 0.43 | 0.55 | |
Rh | % | 100 | 13.8 | 68.6 | 15.6 | 0.23 | −0.14 | |
RS | MJ m−2 | 31.1 | 0.3 | 13.2 | 7.9 | 0.60 | 0.51 | |
ETo | mm | 11.4 | 0 | 2.4 | 2.03 | 0.84 | 0.92 | |
Galesburg, ND | Tmax | °C | 36.8 | 23.6 | 10.9 | 14.2 | 1.30 | −0.33 |
Tmin | °C | −28.9 | −37.3 | −1.0 | 12.7 | −12.41 | −0.28 | |
WS | m s−1 | 12.8 | 0.7 | 3.9 | 1.6 | 0.41 | 0.45 | |
Rh | % | 100 | 18.8 | 68.1 | 15.2 | 0.22 | −0.09 | |
RS | MJ m−2 | 30.7 | 0.2 | 12.8 | 7.9 | 0.61 | 0.51 | |
ETo | mm | 10.6 | 0 | 2.3 | 1.97 | 0.85 | 1.03 | |
Leonard, ND | Tmax | °C | 38.3 | 23.6 | 11.5 | 14.2 | 1.23 | −0.39 |
Tmin | °C | −28.6 | −37.7 | −0.6 | 12.9 | −21.05 | −0.28 | |
WS | m s−1 | 13.2 | 0.9 | 4.2 | 1.7 | 0.42 | 0.50 | |
Rh | % | 100 | 17.85 | 67.40 | 15.3 | 0.23 | −0.02 | |
RS | MJ m−2 | 31.6 | 8.1 | 13.6 | 8.1 | 0.60 | 0.51 | |
ETo | mm | 10.6 | 0 | 2.5 | 2.09 | 0.85 | 0.77 | |
Sabin, MN | Tmax | °C | 37.8 | 24.3 | 11.2 | 14.1 | 1.26 | −0.33 |
Tmin | °C | −30.2 | −38.5 | −0.2 | 13.0 | −73.34 | −0.24 | |
WS | m s−1 | 12.7 | 0.5 | 4.0 | 1.7 | 0.42 | 0.46 | |
Rh | % | 100 | 18.70 | 68.80 | 14.9 | 0.22 | −0.08 | |
RS | MJ m−2 | 31.6 | 0.4 | 13.0 | 7.9 | 0.61 | 0.51 | |
ETo | mm | 10.1 | 0 | 2.4 | 2.02 | 0.86 | 0.85 | |
Perley, MN | Tmax | °C | 37.3 | 24.1 | 10.9 | 14.3 | 1.31 | −0.36 |
Tmin | °C | −30.5 | −40.7 | −0.7 | 13.1 | −18.07 | −0.30 | |
WS | m s−1 | 11.8 | 0.8 | 4.1 | 1.7 | 0.41 | 0.48 | |
Rh | % | 100 | 17.22 | 69.10 | 14.9 | 0.22 | −0.08 | |
RS | MJ m−2 | 31.3 | 0.4 | 12.8 | 7.9 | 0.61 | 0.51 | |
ETo | mm | 10.9 | 0 | 2.3 | 2.02 | 0.84 | 1.12 | |
Fargo, ND | Tmax | °C | 39.6 | 25.6 | 11.4 | 14.2 | 1.24 | −0.36 |
Tmin | °C | −29.5 | −36.8 | 0.6 | 13.0 | 21.89 | −0.23 | |
WS | m s−1 | 11.3 | 0.8 | 3.8 | 1.5 | 0.39 | 0.40 | |
Rh | % | 100 | 15.55 | 66.19 | 14.9 | 0.23 | −0.05 | |
RS | MJ m−2 | 31.0 | 0.1 | 12.8 | 7.9 | 0.61 | 0.52 | |
ETo | mm | 10.5 | 0 | 2.5 | 2.07 | 0.84 | 0.92 |
Number of Chromosomes | 30 | One-Point Recombination Rate | 0.3 |
---|---|---|---|
Head of the size | 8 | Two-point recombination rate | 0.3 |
Number of genes | 3 | Gene recombination rate | 0.1 |
Linking function | Addition | Gene transposition rate | 0.1 |
Fitness function error type | RMSE | Insertion sequence transposition rate | 0.1 |
Mutation rate | 0.044 | Root insertion sequence transposition | 0.1 |
Inversion rate | 0.1 | Penalizing tool | parsimony pressure |
Evaluation Criteria | Input Combination | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 (Temperature-Based) | 2 (Radiation-Based) | 3 (Mass-transfer-based) | |||||||||||
Approach | GEP | SVM | LR | RF | GEP | SVM | LR | RF | GEP | SVM | LR | RF | |
R2 | T S | 0.75 0.78 | 0.80 0.75 | 0.77 0.77 | 0.85 0.84 | 0.85 0.87 | 0.91 0.85 | 0.88 0.88 | 0.92 0.93 | 0.77 0.77 | 0.86 0.77 | 0.78 0.78 | 0.86 0.88 |
RMSE (mm/day) | T S | 0.90 1.07 | 0.97 1.13 | 0.97 0.98 | 0.82 0.80 | 0.71 0.76 | 0.72 0.77 | 0.68 0.69 | 0.57 0.55 | 0.72 0.91 | 0.73 0.93 | 0.94 0.95 | 0.73 0.69 |
MAE (mm/day) | T S | 0.64 0.84 | 0.71 0.82 | 0.76 0.77 | 0.58 0.57 | 0.50 0.57 | 0.54 0.61 | 0.51 0.52 | 0.38 0.36 | 0.64 0.69 | 0.62 0.67 | 0.75 0.76 | 0.53 0.49 |
SI | T S | 0.38 0.44 | 0.41 0.46 | 0.40 0.40 | 0.34 0.33 | 0.29 0.32 | 0.30 0.33 | 0.28 0.29 | 0.24 0.23 | 0.35 0.38 | 0.33 0.36 | 0.39 0.39 | 0.30 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid Niaghi, A.; Hassanijalilian, O.; Shiri, J. Estimation of Reference Evapotranspiration Using Spatial and Temporal Machine Learning Approaches. Hydrology 2021, 8, 25. https://doi.org/10.3390/hydrology8010025
Rashid Niaghi A, Hassanijalilian O, Shiri J. Estimation of Reference Evapotranspiration Using Spatial and Temporal Machine Learning Approaches. Hydrology. 2021; 8(1):25. https://doi.org/10.3390/hydrology8010025
Chicago/Turabian StyleRashid Niaghi, Ali, Oveis Hassanijalilian, and Jalal Shiri. 2021. "Estimation of Reference Evapotranspiration Using Spatial and Temporal Machine Learning Approaches" Hydrology 8, no. 1: 25. https://doi.org/10.3390/hydrology8010025
APA StyleRashid Niaghi, A., Hassanijalilian, O., & Shiri, J. (2021). Estimation of Reference Evapotranspiration Using Spatial and Temporal Machine Learning Approaches. Hydrology, 8(1), 25. https://doi.org/10.3390/hydrology8010025