Impacts of Land Use and Land Cover Changes on PeakDischarge and Flow Volume in Kakia and Esamburmbur Sub-Catchments of Narok Town, Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Overview of the Study Area
2.2. LULC and Soil Type
2.3. Determination of Curve Number and Concentration Time
2.4. The Inputs of the EBA4SUB Model, Data Processing, and the Performed Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Long, D.; Bai, P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. J. Hydrol. 2019, 570, 201–219. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Angelidis, P.; Kotsikas, M.; Kotsovinos, N. Management of Upstream Dams and Flood Protection of the Transboundary River Evros/Maritza. Water Resour. Manag. 2010, 24, 2467–2484. [Google Scholar] [CrossRef]
- Barasa, B.N.; Perera, E.D.P. Analysis of land use change impacts on flash flood occurrences in the Sosiani River basin Kenya. Int. J. River Basin Manag. 2018, 16, 179–188. [Google Scholar] [CrossRef]
- Nzitonda, M.M.; Mwangi, H.M.; John, M.K. Analysis of Land Use Change and Its Impact on the Hydrology of Kakia and Esamburmbur of the Narok county, Kenya. Hydrology 2019, 6, 86. [Google Scholar]
- Berni, N.; Viterbo, A.; Pandolfo, M.; Stelluti, S.; Barbetta; Brocca, L. Effects of Rainfall and Soil/Land Use Spatial Distribution on Hydrological Response at Different Scales. In Proceedings of the iEMSs 4th Biennial Meeting—International Congress on Environmental Modelling and Software: Integrating Sciences and Information Technology for Environmental Assessment and Decision Making, iEMSs 2008, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain, 7–10 July 2008; Volume 1, pp. 470–477. [Google Scholar]
- Gajbhiye, S.; Mishra, S.K.; Pandey, A. Relationship between SCS-CN and Sediment Yield. J. Appl. Water Sci. 2014, 4, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Ara, Z.; Zakwan, M. Estimating Runoff Using SCS Curve Number Method. Int. J. Emerg. Technol. Adv. Eng. 2018, 8, 195–200. [Google Scholar]
- Dionizio, E.A.; Costa, M.H. Influence of land use and land cover on hydraulic and physical soil properties at the cerrado agricultural frontier. Agriculture 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Recanatesi, F.; Petroselli, A.; Ripa, M.N.; Leone, A. Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban watershed of the metropolitan area of Rome (Italy). J. Environ. Manag. 2017, 201, 6–18. [Google Scholar] [CrossRef]
- Olokeogun, O.S.; Iyiola, O.F.; Iyiola, K. Application of remote sensing and GIS in land use/land cover mapping and change detection in Shasha Forest Reserve, Nigeria. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2014, 40, 613–616. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, Z.; Lyon, S.W.; Folkson, L.; French, H.K.; Stolte, J.; Sassner, M. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Sci. Total Environ. 2014, 466–467, 741–754. [Google Scholar]
- Petroselli, A.; Piscopia, R.; Grimaldi, S. Design discharge estimation in small and ungauged basins: EBA4SUB framework sensitivity analysis. J. Agric. Eng. 2020, 51, 107–118. [Google Scholar] [CrossRef]
- Petroselli, A.; Grimaldi, S. Design hydrograph estimation in small and fully ungauged basins: A preliminary assessment of the EBA4SUB framework. J. Flood Risk Manag. 2018, 11, S197–S210. [Google Scholar] [CrossRef]
- Piscopia, R.; Petroselli, A.; Grimaldi, S. A software package for predicting design-flood hydrographs in small and ungauged basins. J. Agric. Eng. 2015, 46, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Mwangi, M.W. Understanding urban environment problems in the newly urbanizing areas of kenya, a case of narok town. Int. J. Sci. Technol. Res. 2019, 8, 236–241. [Google Scholar]
- Sertel, E.; Topaloğlu, R.H.; Şallı, B.; Algan, I.Y.; AksU, G.A. Comparison of landscape metrics for three different level land cover/land use maps. ISPRS Int. J. Geo-Inf. 2018, 7, 408. [Google Scholar] [CrossRef] [Green Version]
- Garen, D.C.; Moore, D.S. Curve Number Hydrology in Water Quality Modeling: Uses, Abuses, and future directions. J. Am. Water Resour. Assoc. 2005, 41, 377–388. [Google Scholar] [CrossRef]
- Recanatesi, F.; Petroselli, A. Land Cover Change and Flood Risk in a Peri-Urban Environment of the Metropolitan Area of Rome (Italy). Water Resour. Manag. 2020, 34, 4399–4413. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service (NRCS). Part 630 Hydrology, National Engineering Handbook; U.S. Department of Agriculture: Washington, DC, USA, 2008.
- Mishra, S.K.; Singh, V.P. A relook at NEH-4 curve number data and antecedent moisture condition criteria. Hydrol. Process. 2006, 20, 2755–2768. [Google Scholar] [CrossRef]
- Ros, F.C.; Sidek, L.M.; Nik Ibrahim, N.N.; Abdul Razad, A.Z. Probable Maximum Flood (PMF) for the Kenyir Catchment, Malaysia. In Proceedings of the International Conference on Construction and Building Technology (ICCBT2008), Beijing, China, 16–18 October 2008. [Google Scholar]
- USDA-NRCS. National Engineering Handbook Chapter 15, Time of Concentration 2010; 2010. Available online: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=27002.wba (accessed on 15 January 2021).
- Grimaldi, S.; Petroselli, A.; Tauro, F.; Porfiri, M. Time of concentration: A paradox in modern hydrology. Hydrol. Sci. J. 2012, 57, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, S.; Petroselli, A. Do we still need the Rational Formula? An alternative empirical procedure for peak discharge estimation in small and ungauged basins. Hydrol. Sci. J. 2014, 60, 67–77. [Google Scholar] [CrossRef]
- McCuen, R.H.; Wong, S.L.; Rawls, W.J. Estimating urban time of concentration. J. Hydraul. Eng. 1984, 110, 887–904. [Google Scholar] [CrossRef]
- Soille, P. Optimal removal of spurious pits in grid digital elevation models. Water Resour. Res. 2004, 40, 1–9. [Google Scholar] [CrossRef] [Green Version]
- De Paola, F.; Giugni, M.; Topa, M.E.; Bucchignani, E. Intensity-Duration-Frequency (IDF) rainfall curves, for data series and climate projection in African cities. SpringerPlus 2014, 3, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apollonio, C.; Balacco, G.; Novelli, A.; Tarantino, E.; Piccinni, A.F. Land use change impact on flooding areas: The case study of Cervaro Basin (Italy). Sustainability 2016, 8, 996. [Google Scholar] [CrossRef] [Green Version]
- Petroselli, A.; Vojtek, M.; Vojteková, J. Flood mapping in small ungauged basins: A comparison of different approaches for two case studies in Slovakia. Hydrol. Res. 2019, 50, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Młyński, D.; Petroselli, A.; Wałęga, A. Flood frequency analysis by an event-based rainfall-runoff model in selected catchments of southern Poland. Soil Water Res. 2018, 13, 170–176. [Google Scholar]
- Nagarajan, M.; Basil, G. Remote sensing- and GIS-based runoff modeling with the effect of land-use changes (a case study of Cochin corporation). Nat. Hazards 2014, 73, 2023–2039. [Google Scholar] [CrossRef]
- Moghadasi, N.; Karimirad, I.; Sheikh, V. Assessing the impact of land use changes and rangeland and forest degradation on flooding using watershed modeling system. J. Rangel Sci. 2017, 7, 93–106. [Google Scholar]
- Dang, A.T.N.; Kumar, L. Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: A case study of District 8, Ho Chi Minh city, Vietnam. Geomat. Nat. Haz. Risk 2017, 8, 1792–1811. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Fan, Y.; Zhang, T. Assessing the effect of land use change on surface runoff in a rapidly urbanized city: A case study of the central area of Beijing. Land 2020, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Kandissounon, G.A.; Kalra, A.; Ahmad, S. Integrating system dynamics and remote sensing to estimate future water usage and average surface runoff in Lagos, Nigeria. Civ. Eng. J. 2018, 4, 378–393. [Google Scholar] [CrossRef] [Green Version]
- Costache, R.; Pham, Q.B.; Corodescu-Roşca, E.; Diaconu, D.C.; Pham, B.T. Using GIS, remote sensing, and machine learning to highlight the correlation between the land-use/land-cover changes and flash-flood potential. Remote Sens. 2020, 12, 1422. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojteková, J. Land use change and its impact on surface runoff from small basins: A case of Radiša basin. Folia Geogr. 2019, 61, 104–125. [Google Scholar]
- Aryal, K.; Singh, T.P.; Lamichhane, D. Revisiting agroforestry for building climate resilient communities: A case of package-based integrated agroforestry practices in Nepal. Emerg. Sci. J. 2019, 3, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, B.N.; Siyal, A.A.; Qureshi, A.L.; Bhatti, I.A. Land covers change assessment after small Dam’sconstruction based on the satellite data. Civ. Eng. J. 2019, 5, 810–818. [Google Scholar] [CrossRef] [Green Version]
LULC | CN | 1985 | 2019 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
---|---|---|---|---|---|---|---|
(-) | (%) | (%) | (%) | (%) | (%) | (%) | |
Forest | 70 | 46.0 | 6.3 | 0 | 15 | 0 | 5 |
Pastureland | 74 | 51.6 | 25.9 | 5 | 30 | 10 | 20 |
Agricultural area | 82 | 0.0 | 55.4 | 75 | 40 | 40 | 40 |
Open space | 79 | 0.5 | 0.0 | 0 | 0 | 0 | 5 |
Built-up area | 90 | 1.9 | 12.5 | 20 | 15 | 50 | 30 |
Return Period (Years) | |||||
---|---|---|---|---|---|
DDF parameter | 5 | 10 | 25 | 50 | 100 |
a (mm/h) | 40.31 | 47.02 | 57.23 | 62.14 | 70.27 |
n (-) | 0.206 | 0.21 | 0.188 | 0.196 | 0.195 |
Characteristics | Kakia | Esamburmbur |
---|---|---|
Catchment area (km2) | 30.5 | 15.7 |
Catchment average slope | 2.8% | 3.1% |
Altitude range (m) | 1828–2123 | 1827–2082 |
Average altitude (m) | 1975.5 | 1954.5 |
Length of the watercourse (km) | 10.7 | 8.2 |
1985 | 2019 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
---|---|---|---|---|---|---|
CN (-) | 72.5 | 80.2 | 83.2 | 79.0 | 85.2 | 82.1 |
Difference Respect to 2019 (%) | −9.6 | - | +3.8 | −1.5 | +6.3 | +2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umukiza, E.; Raude, J.M.; Wandera, S.M.; Petroselli, A.; Gathenya, J.M. Impacts of Land Use and Land Cover Changes on PeakDischarge and Flow Volume in Kakia and Esamburmbur Sub-Catchments of Narok Town, Kenya. Hydrology 2021, 8, 82. https://doi.org/10.3390/hydrology8020082
Umukiza E, Raude JM, Wandera SM, Petroselli A, Gathenya JM. Impacts of Land Use and Land Cover Changes on PeakDischarge and Flow Volume in Kakia and Esamburmbur Sub-Catchments of Narok Town, Kenya. Hydrology. 2021; 8(2):82. https://doi.org/10.3390/hydrology8020082
Chicago/Turabian StyleUmukiza, Etienne, James M. Raude, Simon M. Wandera, Andrea Petroselli, and John M. Gathenya. 2021. "Impacts of Land Use and Land Cover Changes on PeakDischarge and Flow Volume in Kakia and Esamburmbur Sub-Catchments of Narok Town, Kenya" Hydrology 8, no. 2: 82. https://doi.org/10.3390/hydrology8020082
APA StyleUmukiza, E., Raude, J. M., Wandera, S. M., Petroselli, A., & Gathenya, J. M. (2021). Impacts of Land Use and Land Cover Changes on PeakDischarge and Flow Volume in Kakia and Esamburmbur Sub-Catchments of Narok Town, Kenya. Hydrology, 8(2), 82. https://doi.org/10.3390/hydrology8020082