Simulation of Dam Breaks on Dry Bed Using Finite Volume Roe-TVD Method
Abstract
:1. Introduction
2. Shallow Water Equations
3. Numerical Solution for Equations by Finite Volume Method
4. Modeling of Dry Bed
4.1. Numerical Model Verification
Conservation of Mass Verification
5. Modeling of the Dam Break
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Shen, H.T. Lagrangian Simulation of One-Dimensional Dam-Break Flow. J. Hydraul. Eng. 1999, 125, 1217–1220. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the Effect of Edge Shape on Characteristics of Flow Under Vertical Gates. J. Am. Water Work. Assoc. 2016, 108, E425–E432. [Google Scholar] [CrossRef]
- Zoppou, C.; Roberts, S. Numerical solution of the two-dimensional unsteady dam break. Appl. Math. Model. 2000, 24, 457–475. [Google Scholar] [CrossRef]
- Bradford, S.F.; Sanders, B.F. Finite-volume model for shallow-water flooding of arbitrary topography. Appl. Math. Model. 2002, 128, 289–298. [Google Scholar]
- Valiani, A.; Caleffi, V.; Zanni, A. Case Study: Malpasset Dam-Break Simulation using a Two-Dimensional Finite Volume Method. J. Hydraul. Eng. 2002, 128, 460–472. [Google Scholar] [CrossRef]
- Ying, X.; Wang, S.S.Y.; Khan, A.A. Numerical Simulation of Flood Inundation due to Dam and Levee Breach. World Water Environ. Resour. Congr. 2003, 2003, 1–9. [Google Scholar] [CrossRef]
- Sanders, B.F.; Schubert, J.E.; Gallegos, H.A. Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling. J. Hydrol. 2008, 362, 19–38. [Google Scholar] [CrossRef]
- Ni, Y.; Cao, Z.; Borthwick, A.; Liu, Q. Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes. Water Resour. Res. 2018, 54, 2731–2748. [Google Scholar] [CrossRef]
- Fent, I.; Zech, Y.; Soares-Frazão, S. Dam-break flow experiments over mobile bed: Velocity profile. J. Hydraul. Res. 2018, 57, 131–138. [Google Scholar] [CrossRef]
- Park, K.M.; Yoon, H.S.; Kim, M.I. CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 105–121. [Google Scholar] [CrossRef]
- Issakhov, A.; Zhandaulet, Y.; Nogaeva, A. Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int. J. Multiph. Flow 2018, 109, 191–206. [Google Scholar] [CrossRef]
- Yang, S.; Yang, W.; Qin, S.; Li, Q. Comparative study on calculation methods of dam-break wave. J. Hydraul. Res. 2018, 57, 702–714. [Google Scholar] [CrossRef]
- Shadloo, M.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34. [Google Scholar] [CrossRef]
- Haltas, I.; Tayfur, G.; Elci, S. Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Nat. Hazards 2016, 81, 2103–2119. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, S.C.; Hagen, S.C. Review of wetting and drying algorithms for numerical tidal flow models. Int. J. Numer. Methods Fluids 2012, 71, 473–487. [Google Scholar] [CrossRef]
- Casulli, V.; Walters, R.A. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 2000, 32, 331–348. [Google Scholar] [CrossRef]
- Hou, J.; Simons, F.; Mahgoub, M.; Hinkelmann, R. A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography. Comput. Methods Appl. Mech. Eng. 2013, 257, 126–149. [Google Scholar] [CrossRef]
- Ji, Z.-G.; Morton, M.; Hamrick, J. Wetting and Drying Simulation of Estuarine Processes. Estuar. Coast. Shelf Sci. 2001, 53, 683–700. [Google Scholar] [CrossRef]
- Hamrick, J.M.; Mills, W.B. Analysis of water temperatures in Conowingo Pond as influenced by the Peach Bottom atomic power plant thermal discharge. Environ. Sci. Policy 2000, 3, 197–209. [Google Scholar] [CrossRef]
- Brufau, P.; Vázquez-Cendón, M.E.; García-Navarro, P. A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 2002, 39, 247–275. [Google Scholar] [CrossRef]
- Brufau, P.; Garcia-Navarro, P. Two-dimensional dam break flow simulation. Int. J. Numer. Methods Fluids 2000, 33, 35–57. [Google Scholar] [CrossRef]
- Cea, L.; Puertas, J.; Vázquez-Cendón, M.-E. Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts. Arch. Comput. Methods Eng. 2007, 14, 303–341. [Google Scholar] [CrossRef]
- Song, L.; Zhou, J.; Li, Q.; Yang, X.; Zhang, Y. An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography. Int. J. Numer. Methods Fluids 2010, 67, 960–980. [Google Scholar] [CrossRef]
- Vichiantong, S.; Pongsanguansin, T.; Maleewong, M. Flood Simulation by a Well-Balanced Finite Volume Method in Tapi River Basin, Thailand, 2017. Model. Simul. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- do Carmo, J.S.A.; Ferreira, J.A.; Pinto, L. On the accurate simulation of nearshore and dam break problems involving dispersive breaking waves. Wave Motion 2019, 85, 125–143. [Google Scholar] [CrossRef]
- Do Carmo, J.A.; Ferreira, J.A.; Pinto, L.; Romanazzi, G. An improved Serre model: Efficient simulation and comparative evaluation. Appl. Math. Model. 2018, 56, 404–423. [Google Scholar] [CrossRef]
- Gallegos, H.A.; Schubert, J.E.; Sanders, B.F. Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Adv. Water Resour. 2009, 32, 1323–1335. [Google Scholar] [CrossRef]
- Spinewine, B.; Zech, Y. Small-scale laboratory dam-break waves on movable beds. J. Hydraul. Res. 2007, 45, 73–86. [Google Scholar] [CrossRef]
- Di Cristo, C.; Evangelista, S.; Greco, M.; Iervolino, M.; Leopardi, A.; Vacca, A. Dam-break waves over an erodible embankment: Experiments and simulations. J. Hydraul. Res. 2018, 56, 196–210. [Google Scholar] [CrossRef]
- Amicarelli, A.; Manenti, S.; Paggi, M. SPH Modelling of Dam-break Floods, with Damage Assessment to Electrical Substations. Int. J. Comput. Fluid Dyn. 2020, 1–19. [Google Scholar] [CrossRef]
- Dazzi, S.; Vacondio, R.; Mignosa, P. Internal boundary conditions for a GPU-accelerated 2D shallow water model: Implementation and applications. Adv. Water Resour. 2020, 137, 103525. [Google Scholar] [CrossRef]
- Ratia, H.; Murillo, J.; García-Navarro, P. Numerical modelling of bridges in 2D shallow water flow simulations. Int. J. Numer. Methods Fluids 2014, 75, 250–272. [Google Scholar] [CrossRef]
- USBR. Prediction of Embankment Dam Breach Parameters; Dam Safety Office: Denver, CO, USA, 1998.
- Costa, J. Floods from Dam Failures; US Geological Survey: Reston, VA, USA, 1985.
- Aliparast, M. Two-dimensional finite volume method for dam-break flow simulation. Int. J. Sediment Res. 2009, 24, 99–107. [Google Scholar] [CrossRef]
- Torabi, M.A.; Shafieefar, M. An experimental investigation on the stability of foundation of composite vertical breakwaters. J. Mar. Sci. Appl. 2015, 14, 175–182. [Google Scholar] [CrossRef]
- Shadloo, M.S. Numerical simulation of long wave runup for breaking and nonbreaking waves. Int. J. Offshore Polar Eng. 2015, 25, 1–7. [Google Scholar]
- Bermúdez, A.; Dervieux, A.; Desideri, J.-A.; Vázquez, M. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng. 1998, 155, 49–72. [Google Scholar] [CrossRef] [Green Version]
- Alamatian, E.; Jaefarzadeh, M.R. Evaluation of turbulence models in simulation of oblique standing shock waves in supercritical channel flows. Sharif 2012, 28, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Frazao, S.S. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res. 2007, 45, 19–26. [Google Scholar] [CrossRef]
- Ghani, A.A.; Zakaria, N.A.; Kiat, C.C.; Ariffin, J.; Hasan, Z.A.; Ghaffar, A.B. Revised equations for Manning’s coefficient for Sand-Bed Rivers. Int. J. River Basin Manag. 2007, 5, 329–346. [Google Scholar] [CrossRef] [Green Version]
Properties | Water Volume (m3) | Barrier Volume (m3) | Total Volume of Barrier and Water (m3) | Domain Area (m2) | Water Level after Stability (m) |
---|---|---|---|---|---|
Values | 2 × 1 × 0.5 = 1 | [(0.5 × 1.5)/2] × 0.5 = 0.188 | 1 + 0.188 = 1.188 | 4.5 × 0.5 | 1.188/(4.5 × 0.5) = 0.53 |
Bridge Details | B1 Bridge | B2 Bridge |
---|---|---|
Pier radius | 0.6 m | 0.6 m |
Number of piers | 48 | 16 |
Bridge height | 6 m | 7 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamatian, E.; Dadar, S.; Đurin, B. Simulation of Dam Breaks on Dry Bed Using Finite Volume Roe-TVD Method. Hydrology 2021, 8, 88. https://doi.org/10.3390/hydrology8020088
Alamatian E, Dadar S, Đurin B. Simulation of Dam Breaks on Dry Bed Using Finite Volume Roe-TVD Method. Hydrology. 2021; 8(2):88. https://doi.org/10.3390/hydrology8020088
Chicago/Turabian StyleAlamatian, Ebrahim, Sara Dadar, and Bojan Đurin. 2021. "Simulation of Dam Breaks on Dry Bed Using Finite Volume Roe-TVD Method" Hydrology 8, no. 2: 88. https://doi.org/10.3390/hydrology8020088
APA StyleAlamatian, E., Dadar, S., & Đurin, B. (2021). Simulation of Dam Breaks on Dry Bed Using Finite Volume Roe-TVD Method. Hydrology, 8(2), 88. https://doi.org/10.3390/hydrology8020088