Rainfall-Induced Landslides and Erosion Processes in the Road Network of the Jaén Province (Southern Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- The External Zones of the Betic Cordillera, which are made up of mesozoic and cenozoic carbonate or loamy-clayey rocks, structured as a fold and thrust belt from the lower Miocene to the present [66], in which several paleogeographic domains appear (Prebetic and Subbetic). The Betic External Zone form several mountain ranges (Sierra Cazorla and Segura, Sierra Mágina and Sierra Sur of Jaén), partially isolated by main rivers and tributaries of the Guadalquivir River.
- The sedimentary infill of the Guadalquivir basin, differentiated into two parts. In the north, the Guadalquivir basin is filled with Miocene loamy and clayey sediments, which are slightly deformed and which overlie the tabular cover of the Iberian Massif, made up of Triassic clays and sandstones and Jurassic limestones. In the south, the infill of the basin is highly deformed by the Betic Miocene displacements, which incorporate tectonically Betic soft materials as Triassic evaporites (salt and gypsum) or Cretaceous clayey marls [66].
- The Variscan Domain, which constitutes the outcropping basement of the Iberian Massif, in which metapelites (slates, grauwackes, and so on) and intruding igneous rocks (granites and granodiorites) are the predominant lithologies.
2.2. Incidence Database
2.3. Rainfall Data Processing
- Spain02 Database, high-resolution daily precipitation data, developed by the Institute of Physics of Cantabria (Spain) and the Spanish Meteorological Agency (AEMET) from a dense network of more than 2500 quality-controlled stations for precipitation and near 250 for temperatures. The Spain02.v5 provides daily data from 1951 to 2015, gridded in increments of 0.1°, corresponding approximately to a resolution of 10 km [71,72].
- RIA database, a network of agroclimate information by the Department of Agriculture, Fisheries, and Rural Development of the Andalusian Government [73]. It contains updated data on the networks of automatic meteorological stations (~120 stations), which are equipped with electronic sensors and distributed throughout the Andalusian territory.
- Database of the network of the Automatic Hydrological Information System (SAIH) from the Authority of the Guadalquivir River Hydrographical Basin [74].
- Data obtained by the Atmosphere and Solar Radiation Modeling (MATRAS) research group from the Weather Research and Forecasting (WRF) model using the Integrated Forecasting System (IFS) reanalysis data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) and local data of the meteorological station of the University of Jaén [75].
2.4. Rainfall Event Identification
- The spatial proximity between the approximate location in the media and the incidence coordinates were estimated in the GIS. First, sections of roads and affected towns or municipalities mentioned in the news were selected. Then, a spatial query allowed for the identification of those incidences close to them. Five classes were established, depending on the distance: Class 1, 0–1 km; Class 2, 1–2 km; Class 3, 2–5 km; Class 4, 5–10 km; and Class 5, more than 10 km.
- The temporal proximity was addressed by analysing the time interval between the date of the news appearing in the local media and the month associated with the previously selected incidences. Five classes were also considered: Class 1, 0–3 months; Class 2, 3–6 months, Class 3, 6–12 months, Class 4, 12–24 months; and Class 5, more than 24 months. Summing the classes for the spatial and temporal proximities, only those incidences with a maximum of 6 points (e.g., Class 3 in both, or Classes 2 and 4 in each one) were selected. Thus, each incidence point could be associated with several rainfall events and their rainfall–duration (E–-D) pairs. In addition to the events identified from the news, the complete rainfall series for the two years previous to the month of each incidence were examined, searching for the major events in each interval of duration. If events different from the above were found, they were also added to the database.
- Finally, the magnitudes of the rainfall events were considered. First, following some previous studies [36,40,51], the E–D pair with the longest return period was selected, for each of the events associated with an incidence, as the one most likely to trigger it. Moreover, according to [40], of all the possible events (E–D pairs) associated with each incidence, those which presented a return period of fewer than five years were discarded, as they were considered non-relevant for incidence triggering. This procedure allowed for enrichment of the incidence database, thus including several E–D pairs for each incidence (see some examples in the results Section 3.2).
2.5. Rainfall Threshold Calculation
3. Results
3.1. Incidence Database
- Very shallow processes, with magnitude between extremely and very small (<5000 m3). These correspond to ruptures in the road cut, either of the slide or collapse-rockfall typologies, but also undercuts of the road embankment. Meanwhile, erosive processes (gullies) were identified, which also produce incidences on the roads.
- Shallow processes in which there is mobilization of the slope where the road is located, with a magnitude generally between small and medium (5000–500,000 m3). Within these, slope movements of a slide or flow type were considered, according to [77,78]. Soil creeping processes were also distinguished from those flows which were well-defined in the landscape.
3.2. Rainfall Events
3.3. Rainfall Thresholds
4. Discussion
5. Conclusions
- Several events were identified, the most important being related to the hydrological years 2009–2010 and 2012–2013. Some of them were located in specific areas and other ones affected practically the entire road network. The return periods of these significant events were always greater than 5 years and, in some cases, exceeded 10–20 years.
- The lower magnitude incidences usually presented a shorter duration (mode of 1–15 days), compared to those of higher magnitude (7–30 days). Consequently, the amount of rain was lower in the former (around 150 mm) than in the latter (around 225 mm).
- The thresholds obtained for both the rainfall–duration (E–D) and intensity–duration (I–D) pairs were on the same order of magnitude as those calculated by other authors, some of them in a similar environment (i.e., Mediterranean countries). The different types of thresholds tested (E–D or I–D, linear or power-law) showed a good fit, without significant differences, likely due to duration data being in units of days, not in hours, and the shallow nature of all the incidences.
- In this case, there were no differences in the thresholds between the lower and higher magnitude incidences, unlike the variables (E, I, D) themselves.
- Finally, from the thresholds, rainfall amounts and intensities for different durations of the events were calculated (e.g., about 80 mm for 1 day and more than 250 mm for 1 month), considering not only the threshold adjusted to the mean values but the threshold adjusted to the lower values.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice, Natural Hazards; UNESCO: Paris, France, 1984. [Google Scholar]
- Schuster, R.L. Socioeconomic significance of landslides. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board Special Report 247; National Academy of Sciences: Washington, DC, USA, 1996; pp. 12–35. [Google Scholar]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- GAR. 2009. Available online: https://www.preventionweb.net/english/hyogo/gar/2009/ (accessed on 15 May 2021).
- GAR. 2019. Available online: https://gar.undrr.org/report-2019 (accessed on 15 May 2021).
- Spizzichino, D.; Margottini, C.; Trigila, A.; Iadanza, C. Landslide impacts in Europe: Weaknesses and strengths of databases available at European and national scale. In Landslide Science and Practice, Proceedings of the Second World Landslide Forum, Rome, Italy, 3–9 October 2011; Springer: Berlin/Heidelberg, Germany, 2013; pp. 73–80. [Google Scholar]
- Cardinali, M.; Reichenbach, P.; Guzzetti, F.; Ardizzone, F.; Antonini, G.; Galli, M.; Cacciano, M.; Castellani, M.; Salvati, P. A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 2002, 2, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Cipolla, F.; Sebastiani, C.; Galli, M.; Salvati, P. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng. Geol. 2004, 73, 229–245. [Google Scholar] [CrossRef]
- Ayala, F.J.; Elizaga, E.; de González Vallejo, L.I. Impacto Económico y Social de los Riesgos Geológicos en España; ITGE: Madrid, Spain, 1987; p. 134. [Google Scholar]
- Chacón, J.; Irigaray, C.; Fernández, T.; El Hamdouni, R. Engineering geology maps: Landslides and Geographical Information Systems (GIS). Bull. Eng. Geol. Environ. 2006, 65, 341–411. [Google Scholar] [CrossRef]
- Irigaray, C.; Fernández, T.; El Hamdouni, R.; Chacón, J. Evaluation and validation of landslide susceptibility maps obtained by a GIS matrix method: Examples from the Betic Cordillera (southern Spain). Nat. Hazards 2007, 41, 61–79. [Google Scholar] [CrossRef]
- Van Westen, C.J. The modelling of landslide hazards using GIS. Surv. Geophys. 2000, 21, 241–255. [Google Scholar] [CrossRef]
- Terlien, M.T.J. The determination of statistical and deterministic hydrological landslide-triggering thresholds. Env. Geol. 1998, 35, 124–130. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P. Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci. 2003, 3, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Bogaard, T.A.; Greco, R. Landslide hydrology: From hydrology to pore pressure. Wiley Interdiscip. Rev. Water 2016, 3, 439–459. [Google Scholar] [CrossRef]
- Lazzari, M.; Piccarreta, M. Landslide disasters triggered by extreme rainfall events: The Case of Montescaglioso (Basilicata, Southern Italy). Geosciences 2018, 8, 377. [Google Scholar] [CrossRef] [Green Version]
- Sidle, R.C.; Greco, R.; Bogaard, T. Overview of landslide hydrology. Water 2019, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 2004, 73, 247–265. [Google Scholar] [CrossRef]
- Chung, C.J.F.; Fabbri, A.G. Probabilistic prediction models for landslide hazard mapping. Photogramm. Eng. Remote Sens. 1999, 65, 1389–1399. [Google Scholar]
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihri, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Carrara, A. Multivariate models for landslide hazard evaluation. A “Black Box” approach. In Proceedings of the Workshop on Natural Disasters in European Mediterranean Countries, Perugia, Italy, 27 June–1 July 1998; pp. 205–224. [Google Scholar]
- Brenning, A. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Nat. Hazards Earth Syst. Sci. 2005, 5, 853–862. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; Thaipham, B.; Tien, D.; Avtar, R.; Abderrahmane, B. Earth-science reviews machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cesare, A.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K. Earth-science reviews landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Ibsen, M.-L.; Brunsden, D. The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 1996, 15, 241–258. [Google Scholar] [CrossRef]
- Palenzuela, J.A.; Jiménez-Perálvarez, J.D.; Chacón, J.; Irigaray, C. Assessing critical rainfall thresholds for landslide triggering by generating additional information from a reduced database: An approach with examples from the Betic Cordillera (Spain). Nat. Hazards 2016, 84, 185–212. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef] [Green Version]
- Fernández, T.; Pérez-García, J.L.; Gómez-López, J.M.; Cardenal, J.; Moya, F.; Delgado, J. Multitemporal landslide inventory and activity analysis by means of aerial photogrammetry and LiDAR techniques in an area of Southern Spain. Remote Sens. 2021, 13, 2110. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J. A review of assessing landslide frequency for hazard zoning purposes. Eng. Geol. 2008, 102, 193–213. [Google Scholar] [CrossRef]
- Crozier, M.J. Techniques for the morphometric analysis of landslips. Z. Geomorphol. 1973, 17, 78–101. [Google Scholar]
- Finlay, P.J.; Fell, R.; Maguire, P.K. The relationship between the probability of landslide occurrence and rainfall. Can. Geotech. J. 1997, 34, 811–824. [Google Scholar] [CrossRef]
- Irigaray, C.; Lamas, F.; El Hamdouni, R.; Fernández, T.; Chacón, J. The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat. Hazards 2000, 21, 65–81. [Google Scholar] [CrossRef]
- Wieczorek, G.; Glade, T. Climatic factors influencing occurrence of debris flows. In Debris-Flow Hazards and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2005; pp. 325–362. [Google Scholar]
- Zezere, J.L.; Trigo, R.M.; Fragoso, M.; Oliveira, S.C.; Garcia, R.A.C. Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with the North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci. 2008, 8, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Luque-Espinar, J.A.; Mateos, R.M.; García-Moreno, I.; Pardo-Igúzquiza, E.; Herrera, G. Spectral analysis of climate cycles to predict rainfall induced landslides in the western Mediterranean. Nat. Hazards 2017, 89, 985–1007. [Google Scholar] [CrossRef]
- Moreiras, S.M.; Vergara, I.; Pont, D.; Araneo, D. Were merely storm-landslides driven by the 2015–2016 Niño in the Mendoza River valley? Landslides 2018, 15, 997–1014. [Google Scholar] [CrossRef]
- Caine, N. The rainfall intensity: Duration control of shallow landslides and debris flows. Geogr. Ann. Ser. A Phys. Geogr. 1980, 62, 23–27. [Google Scholar]
- Zezere, J.L.; Trigo, R.; Trigo, I. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci. 2005, 5, 331–344. [Google Scholar] [CrossRef]
- Cardinali, M.; Galli, M.; Guzzetti, F.; Ardizzone, F.; Reichenbach, P.; Bartoccini, P. Rainfall induced landslides in December 2004 in south-western Umbria, central Italy: Types, extent, damage and risk assessment. Nat. Hazards Earth Syst. Sci. 2006, 6, 237–260. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C. The rainfall intensity—Duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 447–458. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control of rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139-140, 79–90. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Gariano, S.L.; Melillo, M.; Rossi, M.; Guzzetti, F. Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 2017, 290, 39–57. [Google Scholar] [CrossRef]
- Vennari, C.; Gariano, S.L.; Antronico, L.; Brunetti, M.T.; Iovine, G.; Peruccacci, S.; Terranova, O.; Guzzetti, F. Rainfall thresholds for shallow landslide occurrence in Calabria, Southern Italy. Nat. Hazards Earth Syst. Sci. 2014, 14, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 2016, 13, 165–172. [Google Scholar] [CrossRef]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Roccati, A.; Guzzetti, F. A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ. Model. Softw. 2018, 105, 230–243. [Google Scholar] [CrossRef]
- Palladino, M.R.; Viero, A.; Turconi, L.; Brunetti, M.T.; Peruccacci, S.; Melillo, M.; Luino, F.; Deganutti, A.M.; Guzzetti, F. Rainfall thresholds for the activation of shallow landslides in the Italian Alps: The role of environmental conditioning factors. Geomorphology 2018, 303, 53–67. [Google Scholar] [CrossRef]
- Valenzuela, P.; Zêzere, J.L.; Domínguez-Cuesta, M.J.; Antonio, M.; García, M. Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain). Landslides 2019, 16, 1285–1300. [Google Scholar] [CrossRef]
- Palenzuela, J.A.; Soto, J.; Irigaray, C. Characteristics of rainfall events triggering landslides in two climatologically different areas: Southern Ecuador and southern Spain. Hydrology 2020, 7, 45. [Google Scholar] [CrossRef]
- Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T. How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering? Nat. Hazards 2020, 100, 655–670. [Google Scholar] [CrossRef] [Green Version]
- IRPI. Available online: http://rainfallthresholds.irpi.cnr.it/threshold_info.htm (accessed on 15 May 2021).
- Daggupati, P.; Douglas-Mankin, K.; Sheshukov, A.; Barnes, P. Monitoring and estimating ephemeral gully erosion using field measurements and GIS. In Proceedings of the ASABE Annual International Meeting, Pittsburgh, PA, USA, 20–23 June 2010; p. 1009663. [Google Scholar]
- Swiechowicz, J. Rainfall threshold for ephemeral gully erosion in foothill cultivated lands (Wisnicz Foothills, Poland). In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016; Volume 18. [Google Scholar]
- Glade, T.; Crozier, M.; Smith, P. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure Appl. Geophys. 2000, 157, 1059–1079. [Google Scholar] [CrossRef]
- Bonnard, C.H.; Noverraz, F. Influence of climate change on large landslides: Assessment of long term movements and trends. In Proceedings of the International Conference on Landslides—Causes, Impacts and Countermeasures, Davos, Switzerland, 17–21 June 2001; Kuhne, M., Einstein, H.H., Krauter, E., Klapperich, H., Pottler, R., Eds.; VGE: Essen, Germany, 2001; pp. 121–138. [Google Scholar]
- Bogaard, T.A.; Greco, R. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-meteorological thresholds. Nat. Hazards Earth Syst. Sci. 2018, 18, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Marino, P.; Peres, D.J.; Cancelliere, A.; Greco, R.; Bogaard, T.A. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach. Landslides 2020, 17, 2041–2054. [Google Scholar] [CrossRef]
- Mirus, B.B.; Morphew, M.D.; Smith, J.B. Developing hydro-meteorological thresholds for shallow landslide initiation and early warning. Water 2018, 10, 1274. [Google Scholar] [CrossRef] [Green Version]
- Ciavolella, M.; Bogaard, T.A.; Gargano, A.; Greco, R. Is there predictive power in hydrological catchment information for regional landslide hazard assessment? Procedia Earth Planet. Sci. 2016, 16, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Martelloni, G.; Segoni, S.; Fanti, R.; Catani, F. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 2012, 9, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Segoni, S.; Lagomarsino, D.; Fanti, R.; Moretti, S.; Casagli, N. Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides 2015, 12, 773–785. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Chang, M.; Huang, Y.; Ho, J. Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression. Eng. Geol. 2017, 224, 62–74. [Google Scholar] [CrossRef]
- Pérez-Valera, F.; Sánchez-Gómez, M.; Pérez-López, A.; Pérez-Valera, L.A. An evaporite-bearing accretionary complex in the northern front of the Betic-Rif orogeny. Tectonics 2017, 36, 1006–1036. [Google Scholar] [CrossRef] [Green Version]
- AEMET. Agencia Estatal de Meteorología, 2018. Mapas Climáticos de España (1981–2010). Ministerio para la Transición Ecológica, España. Available online: http://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/MapasclimaticosdeEspana19812010/MapasclimaticosdeEspana19812010.pdf (accessed on 15 May 2021).
- Martín-Vide, J.; Olcina, J. Climas y Tiempos de España; Alianza Editorial: Madrid, Spain, 2001; p. 258. [Google Scholar]
- ESYRCE. Encuesta Sobre Superficies y Rendimientos de Cultivos. Ministerio de Agricultura, Pesca y Alimentación. España. 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ (accessed on 15 May 2021).
- INE. Instituto Nacional de Estadística. Available online: https://www.ine.es/jaxiT3/Tabla.htm?t=2876&L=0 (accessed on 15 May 2021).
- Herrera, S.; Gutiérrez, J.M.; Ancell, R.; Pons, M.R.; Frías, M.D.; Fernández, J. Development and analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol. 2012, 32, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Herrera, S.; Fernández, J.; Gutiérrez, J.M. Update of the Spain02 gridded observational dataset for Euro-CORDEX evaluation: Assessing the effect of the interpolation methodology. Int. J. Climatol. 2016, 36, 900–908. [Google Scholar] [CrossRef] [Green Version]
- RIA Database. Available online: https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/inicio_estaciones (accessed on 15 May 2021).
- SAIH. Available online: https://www.chguadalquivir.es/saih/ (accessed on 15 May 2021).
- MATRAS. Available online: https://matras.ujaen.es/ (accessed on 15 May 2021).
- IDEAL. Available online: https://www.ideal.es/hemeroteca/historico.html (accessed on 15 May 2021).
- Varnes, D.J. Slope movement, types and processes. In Landslides: Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; Transportation Research Board Special Report; National Academy of Sciences: Washington, DC, USA, 1978; Volume 176, pp. 12–33. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Fell, R. Landslide risk assessment and acceptable risk. Can. Geotech. J. 1994, 31, 261–272. [Google Scholar] [CrossRef]
- Sánchez-Gómez, M.; Peláez, J.A.; García-Tortosa, F.J.; Pérez-Valera, F.; Sanz de Galdeano, C. La serie sísmica de Torreperogil (Jaén, Cuenca del Guadalquivir oriental): Evidencias de deformación tectónica en el área epicentral. Rev. Soc. Geol. Esp. 2014, 27, 301–318. [Google Scholar]
- Corominas, J.; Moya, J. Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 1999, 30, 79–93. [Google Scholar] [CrossRef]
- Floris, M.; Mari, M.; Romeo, R.W.; Gori, U. Modelling of landslide-triggering factors—A case study in the Northern Apennines, Italy. In Lecture Notes in Earth Sciences: Engineering Geology for Infrastructure Planning in Europe; Hack, R., Azzam, R., Charlier, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 104, pp. 745–753. [Google Scholar]
- Zezere, J.L.; Rodrigues, M.L. Rainfall thresholds for landsliding in Lisbon Area (Portugal). In Landslides; Rybar, J., Stemberk, J., Wagner, P., Eds.; A.A. Balkema: Lisse, The Netherlands, 2002; pp. 333–338. [Google Scholar]
- Trigo, R.M.; Pozo, D.; Timothy, C.; Osborn, J.; Castro, Y.; Gámiz, S.; Esteban, M.J. NAO influence on precipitation, river flow and water resources in the Iberian Peninsula. Int. J. Climatol. 2004, 24, 925–944. [Google Scholar] [CrossRef]
- Pozo-Vázquez, D.; Gámiz-Fortis, S.R.; Tovar-Pescador, J.; Esteban-Parra, M.J.; Castro-Díez, Y. El Niño—Southern Oscillation events and associated European winter precipitation anomalies. Int. J. Climatol. 2005, 25, 17–31. [Google Scholar] [CrossRef]
- Santos, M.; Fragoso, M.; Santos, J.A. Damaging flood severity assessment in Northern Portugal over more than 150 years (1865–2016). Nat. Hazards 2018, 91, 983–1002. [Google Scholar] [CrossRef]
- Lemus Cánovas, M.; López-Bustins, J.A. Variabilidad espacio-temporal de la precipitación en el sur de Cataluña y su relación con la oscilación del Mediterráneo Occidental (WeMO). In Proceedings of the X International Congress AEC: Clima, Sociedad, Riesgos y Ordenación del Territorio, Alicante, Spain, 5–8 October 2016; Volume 21, pp. 225–236. [Google Scholar]
- Alvioli, M.; Melillo, M.; Guzzetti, F.; Rossi, M.; Palazzi, E.; von Hardenberg, J.; Brunetti, M.T.; Peruccacci, S. Implications of climate change on landslide hazard in Central Italy. Sci. Total Environ. 2018, 630, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Coe, J.A.; Godt, J.W. Review of approaches for assessing the impact of climate change on landslide hazards. In Proceedings of the Landslides and Engineered Slopes, Protecting Society through Improved Understanding 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, Banff, AB, Canada, 3–8 June 2012; pp. 371–377. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Lin-Ye, J.; García-León, M.; Gracia, V.; Ortego, M.I.; Conte, D.; Perez-Gomez, B.; Sánchez-Arcilla, A. Modelling of future extreme storm surges at the NW Mediterranean coast (Spain). Water 2020, 12, 472. [Google Scholar] [CrossRef] [Green Version]
- Mathbout, S.; Lopez-Bustins, J.A.; Royé, D.; Martin-Vide, J.; Benhamrouche, A. Spatiotemporal variability of daily precipitation concentratio and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int. J. Climatol. 2019, 40, 1435–1455. [Google Scholar] [CrossRef]
- Viceto, C.; Marta-Almeida, M.; Rocha, A. Future climate change of stability indices for the Iberian Peninsula. Int. J. Climatol. 2017, 37, 4390–4408. [Google Scholar] [CrossRef]
- Fernández, T.; Gómez-López, J.M.; Pérez-García, J.L.; Cardenal, J.; Delgado, J.; Tovar-Pescador, J.; Sánchez-Gómez, M.; Calero, J. Analysis of the evolution of gully erosion in olive groves using photogrammetry techniques. Relationships with rainfall regime. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, VI-3/W1-2020, 19–26. [Google Scholar] [CrossRef]
Date | Description | Zone |
---|---|---|
12/09/2006 | R, M, W, F | SS, W |
06/04/2007 | R, M | SG |
10/09/2008 | M, W, T | CH, N |
08/08/2009 | R | N |
11/08/2009 | M, T | SS |
25/12/2009 | M, T | Gen. |
28/12/2009 | R, M, F, T | SS, SC, J, CH |
07/01/2010 | W, T | SS, SM, SC, SG, W |
11/01/2010 | R, U, F, T | SS, SC, W |
15/01/2010 | S, R | SS, W |
19/01/2010 | S, R, U, T | SS, SC, J, CH |
19/02/2010 | S, R, U | Gen. |
21/02/2010 | S, R, U | SS, SC, SG, J, CH |
23/02/2010 | R, F, T | Gen. |
07/03/2010 | S, T | SS, J, W |
10/03/2010 | S, U, F | SS, SM, CH |
30/10/2010 | R, W, T | SM, CH |
08/12/2010 | R | SS, J, N |
20/12/2010 | R, M, W | Gen. |
02/05/2011 | M, T | CH, N |
04/11/2012 | R, W, T | Gen. |
06/11/2012 | T | J, W, N |
08/11/2012 | T | SC, CH, W, N |
11/03/2013 | S, M, U, T | SG, CH, W, N |
13/03/2013 | S, M, U, T | Gen. |
19/03/2013 | R | SS |
01/04/2013 | R, F, T | SC, SG, CH, W, N |
Magnitude | Typology | Number |
---|---|---|
Lower magnitude Very shallow | Gullies | 46 |
Undercut in road embankments | 30 | |
Slides in road cuts | 38 | |
Collapses in road cuts | 9 | |
Higher magnitude Shallow | Slides | 21 |
Flows | 26 | |
Creep | 16 |
Year | Number | Year | Number |
---|---|---|---|
1998 | 2 | 2006 | 2 |
1999 | 5 | 2007 | 1 |
2000 | 3 | 2008 | 2 |
2001 | 3 | 2009 | 3 |
2002 | 2 | 2010 | 61 |
2003 | 1 | 2011 | 18 |
2004 | 3 | 2012 | 3 |
2005 | 4 | 2013 | 70 |
Date | Number of Points | Mean E (mm) | Modal D (Days) | Mean I (mm/d) | Modal T (Years) | Sector |
---|---|---|---|---|---|---|
03/11/1997 | 5 | 94.20 | 2 | 47.10 | 15.00 | SS, SM, W |
31/12/1997 | 5 | 411.25 | 60 | 6.74 | 9.00 | SS, SC, SG |
20/10/1999 | 6 | 50.38 | 1 | 50.38 | 22.50 | SC, SG, W |
28/03/2004 | 6 | 75.67 | 3 | 27.92 | 11.25 | SS, W, N |
08/04/2008 | 5 | 50.50 | 1 | 50.50 | 15.00 | SS, CH, W |
25/12/2009 | 18 | 143.29 | 5 | 28.66 | 45.00 | Gen. |
30/12/2009 | 26 | 210.34 | 15 | 14.02 | 22.50 | Gen. |
06/01/2010 | 10 | 268.50 | 30 | 8.95 | 7.50 | SS, SM, SC, SG |
11/01/2010 | 7 | 344.27 | 30 | 11.48 | 22.50 | SS, SC, W |
13/01/2010 | 13 | 324.08 | 30 | 10.80 | 15.00 | Gen. |
15/02/2010 | 6 | 435.90 | 60 | 7.15 | 22.50 | SS, SM, CH |
22/02/2010 | 41 | 568.15 | 75 | 7.58 | 15.00 | Gen. |
02/03/2010 | 11 | 662.56 | 90 | 7.36 | 15.00 | Gen. |
30/10/2010 | 6 | 36.75 | 1 | 36.75 | 5.00 | SM, SG, CH |
06/12/2010 | 13 | 79.40 | 2 | 39.70 | 6.43 | SS, SM, SG, N |
31/12/2010 | 5 | 362.00 | 45 | 8.04 | 11.25 | CH |
14/02/2011 | 6 | 45 | 1. | 37.50 | 6.43 | SS, SG, CH |
27/09/2012 | 15 | 59.20 | 1 | 59.20 | 11.25 | SS, CH, W |
03/11/2012 | 59 | 72.27 | 2 | 36.14 | 15.00 | Gen. |
08/11/2012 | 51 | 151.38 | 7 | 21.63 | 9.00 | Gen. |
11/03/2013 | 43 | 119.42 | 7 | 17.06 | 5.00 | Gen. |
18/03/2013 | 6 | 166.30 | 15. | 11.09 | 6.43 | SS |
Typology | Mean E (mm) | Mean D (days) | Modal D (days) | Mean I (mm/day) |
---|---|---|---|---|
Gullies | 147.33 | 11.78 | 1 | 28.11 |
Road embankment | 126.81 | 8.84 | 1 | 32.55 |
Slides in road cuts | 171.84 | 15.42 | 7 | 26.66 |
Collapses | 209.05 | 26.45 | 1 | 20.49 |
Lower magnitude (very shallow) | 155.29 | 13.40 | 1 | 28.09 |
Slides | 234.79 | 23.65 | 1 | 21.77 |
Flows | 211.68 | 19.75 | 7 | 21.97 |
Creep | 227.87 | 21.95 | 7 | 22.79 |
Higher magnitude (shallow) | 223.40 | 21.60 | 7 | 22.11 |
Total | 178.96 | 16.25 | 7 | 26.01 |
Typology | E–D (Linear) | E–D (Power-Law) | I–D (Power-Law) | |||
---|---|---|---|---|---|---|
Equation | R2 | Equation | R2 | Equation | R2 | |
Gullies | E = 6.294 D + 73.187 | 0.90 | E = 47.283 D0.543 | 0.90 | I = 47.283 D−0.457 | 0.87 |
Road embankment | E = 5.985 D + 73.909 | 0.90 | E = 51.155 D0.516 | 0.87 | I = 51.155 D−0.484 | 0.85 |
Slides in road cuts | E = 6.586 D + 70.301 | 0.92 | E = 46.313 D0.554 | 0.89 | I = 46.313 D−0.446 | 0.84 |
Collapses | E = 5.595 D + 61.023 | 0.85 | E = 39.080 D0.564 | 0.94 | I = 39.080 D−0.436 | 0.90 |
Very shallow | E = 6.222 D + 71.908 | 0.90 | E = 47.481 D0.540 | 0.89 | I = 47.481 D−0.460 | 0.86 |
Slides | E = 6.793 D + 74.106 | 0.95 | E = 47.089 D0.543 | 0.94 | I = 47.089 D−0.451 | 0.91 |
Flows | E = 6.293 D + 87.366 | 0.94 | E = 51.721 D0.523 | 0.93 | I = 51.722 D−0.477 | 0.91 |
Creeping | E = 6.488 D + 85.464 | 0.93 | E = 50.537 D0.546 | 0.94 | I = 50.537 D−0.454 | 0.91 |
Shallow | E = 6.527 D + 82.424 | 0.94 | E = 49.752 D0.538 | 0.93 | I = 49.752 D−0.462 | 0.91 |
Total | E = 6.408 D + 74.829 | 0.92 | E = 47.961 D0.542 | 0.91 | I = 47.961 D−0.458 | 0.88 |
Threshold Type | This Study | Other Studies 1 |
---|---|---|
E–D linear | E = 6.228 D + 69.716 (low) | E = 6.21 D + 90.8 (low) [51] |
(mm–days) | E = 6.408 D + 74.829 (mean) | E = 6.98 D + 181.3 (mean) [51] |
E = 4.57 D + 133 [81] | ||
E–D power-law | E = 47.961 D0.542 | E = 73.33 D0,76 (Ecuador) [52] |
(mm–days) | E = 52.34 D0,42 (Spain) [52] | |
E–D linear (mm–hours) | E = 0.267 D + 74.829 | E = 70.00 + 0.2625 D [83] |
E–D power-law | E = 8.557 D0.542 | E = 7.7 D0.39 [46] |
(mm–hours) | E = 8.6 D0.41 [47] | |
E = 5.6 D0.40 [49] | ||
E = 6.0 D0.47 [50] | ||
E = 6.1 D0.52 [53] | ||
I–D | I = 47.961 D−0.458 | I = 88.005 D−0.69 [28] |
power-law (mm/days–days) | I = 68.645 D−0.593 [82] | |
I = 84.3 D−0.57 [40] | ||
I–D | I = 8.557 D−0.458 | I = 0.48 + 7.2 D−1 [15] |
power-law (mm/hours–hours) | I = 9.40 D−0.56 [42] | |
I = 2.20 D−0.44 [43] | ||
I = 7.17 D−0.55 [44] | ||
IMAP–D | IMAP = 0.0187 D−0.484 | I MAP = 0.76 D−0.33 [19] |
(%–hours) | I MAP = 0.007 D−0.54 [42] | |
I MAP = 0.0016 D−0.40 [43] |
1 d | 2 d | 3 d | 5 d | 7 d | 10 d | 15 d | 30 d | 45 d | 60 d | 75 d | 90 d | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
E med | 81 | 88 | 94 | 107 | 120 | 139 | 171 | 267 | 363 | 459 | 555 | 652 |
E min | 76 | 82 | 88 | 101 | 113 | 132 | 163 | 257 | 350 | 443 | 537 | 630 |
I med | 81 | 44 | 31 | 21 | 17 | 14 | 11 | 9 | 8 | 8 | 7 | 7 |
I min | 76 | 41 | 29 | 20 | 16 | 13 | 11 | 9 | 8 | 7 | 7 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpena, R.; Tovar-Pescador, J.; Sánchez-Gómez, M.; Calero, J.; Mellado, I.; Moya, F.; Fernández, T. Rainfall-Induced Landslides and Erosion Processes in the Road Network of the Jaén Province (Southern Spain). Hydrology 2021, 8, 100. https://doi.org/10.3390/hydrology8030100
Carpena R, Tovar-Pescador J, Sánchez-Gómez M, Calero J, Mellado I, Moya F, Fernández T. Rainfall-Induced Landslides and Erosion Processes in the Road Network of the Jaén Province (Southern Spain). Hydrology. 2021; 8(3):100. https://doi.org/10.3390/hydrology8030100
Chicago/Turabian StyleCarpena, Ramón, Joaquín Tovar-Pescador, Mario Sánchez-Gómez, Julio Calero, Israel Mellado, Francisco Moya, and Tomás Fernández. 2021. "Rainfall-Induced Landslides and Erosion Processes in the Road Network of the Jaén Province (Southern Spain)" Hydrology 8, no. 3: 100. https://doi.org/10.3390/hydrology8030100
APA StyleCarpena, R., Tovar-Pescador, J., Sánchez-Gómez, M., Calero, J., Mellado, I., Moya, F., & Fernández, T. (2021). Rainfall-Induced Landslides and Erosion Processes in the Road Network of the Jaén Province (Southern Spain). Hydrology, 8(3), 100. https://doi.org/10.3390/hydrology8030100