Systems Analysis of Coupled Natural and Human Processes in the Mekong River Basin
Abstract
:1. Introduction
2. Background
3. Methodology
3.1. Study Area and Data
3.2. The Variable Infiltration Capacity (VIC) Model
3.3. Irrigation Scheme
3.4. Climate Model
3.5. Mekong System Dynamics (MekSyD) Model
- : turbined flow;
- : irrigation flow;
- : municipal flow;
- : industrial flow;
- : volume stored in the reservoir;
- : maximal operational volume of the reservoir (95% of the storage capacity of the reservoir);
- : minimal operational volume of the reservoir (10% of the storage capacity of the reservoir);
- : height of the reservoir elevation, as a function of the stored volume;
- : irrigation demand;
- : municipal demand;
- : industrial demand;
- : water inflow into the reservoir;
- I: inflow contribution from the catchment area;
- η: efficiency of the turbine;
- : minimum downstream flow for sustaining the ecosystem (10% of the inflow);
- : re-turbined water use factor.
- Water balance constraint:
- Storage of the reservoir constraint:
- Irrigation supply constraint:
- Municipal supply constraint:
- Industrial supply constraint:
- Ecological demand constraint:
- Nonnegative constraints.
3.6. Scenarios
3.7. Stress Index
4. Results and Discussion
4.1. Future Projections
4.2. Stress Index
4.3. The Tradeoff between Energy and Irrigation Sectors
5. Conclusions
- The projected increase in precipitation from 4.16 mm/day to 4.26 mm/day and 2.1° temperature rise will modify the inflow by +13% to −50% in the future, while a 0.25% (15.24 billion m3) reduction is projected for the Net Irrigation Water Requirement (NIWR). During the dry season, the shift in inflow and drop in NIWR is critical since the available water for supply is limited.
- The climate impact analysis reveals that the MRB is prone to extreme low flow events until 2060, while frequent flood events are expected towards the end of the century.
- The flood events will cause excessive stress on reservoir operations to handle up to six times more flow volumes; however, the low-flow events will marginally affect the system.
- In order to reinforce the farmers’ drought concerns, the diversion of water for meeting 1% additional irrigation water supply will be reduced by 0.15% of the energy generation in Thailand.
- Climate change has a beneficial impact on dam performance, with an increase of 33% in energy generation, 6.8% in irrigation water supply, 6.6% in municipal water supply, and 7.4% in industrial supply between 2021 and 2099.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schelle, P.; Collier, U.; Pittock, J. Rivers at risk: Dams and the future of freshwater ecosystems. In Proceedings of the 7th International River Symposium; World Wide Fund for Nature (WWF): Gland, Switzerland, September 2004; Volume 4. [Google Scholar]
- Kang, H.; Sridhar, V. A near-term drought assessment using hydrological and climate forecasting in the Mekong River Basin. Int. J. Climatol. 2020, 41, joc.6860. [Google Scholar] [CrossRef]
- Kang, H.; Sridhar, V.; Mainuddin, M.; Trung, L. Future rice farming threatened by drought in the Lower Mekong Basin. Sci. Rep. 2021, 11, 9383. [Google Scholar] [CrossRef]
- Li, Y.; Lu, H.; Yang, K.; Wang, W.; Tang, Q.; Khem, S.; Yang, F.; Huang, Y. Meteorological and hydrological droughts in Mekong River Basin and surrounding areas under climate change. J. Hydrol. Reg. Stud. 2021, 36, 100873. [Google Scholar] [CrossRef]
- Ali, S.A.; Sridhar, V. Deriving the Reservoir Conditions for Better Water Resource Management Using Satellite-Based Earth Observations in the Lower Mekong River Basin. Remote Sens. 2019, 11, 2872. [Google Scholar] [CrossRef] [Green Version]
- Yun, X.; Tang, Q.; Wang, J.; Liu, X.; Zhang, Y.; Lu, H.; Wang, Y.; Zhang, L.; Chen, D. Impacts of climate change and reservoir operation on streamflow and flood characteristics in the Lancang-Mekong River Basin. J. Hydrol. 2020, 590, 125472. [Google Scholar] [CrossRef]
- Ali, S.A.; Sridhar, V. Tradeoffs between irrigation and hydropower in the Lower Mekong River Basin. Clim. Chang. 2021. under review. [Google Scholar]
- Zhong, R.; Zhao, T.; Chen, X. Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin? Energy 2021, 237, 121518. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Sridhar, V.; Ali, S.A.; Kansal, M.L. A Holistic Approach for Designing Environmental Flows in the Lower Mekong Basin. In Proceedings of the World Environmental and Water Resources Congress 2021: Planning a Resilient Future along America’s Freshwaters, Virtual, 7–11 June 2021; pp. 829–839. [Google Scholar]
- Thompson, J.R.; Laizé, C.L.R.; Green, A.J.; Acreman, M.C.; Kingston, D.G. Climate change uncertainty in environmental flows for the Mekong River. Hydrol. Sci. J. 2014, 59, 935–954. [Google Scholar] [CrossRef] [Green Version]
- Kansal, M.L.; Sridhar, V.; Mwanga, E.E. Transboundary Issues of Water Governance in Mekong River Basin. In Proceedings of the World Environmental and Water Resources Congress, Virtual, 7–11 June 2021; American Society of Civil Engineers: Pittsburgh, PA, USA, 2019; pp. 130–143. [Google Scholar]
- Li, D.; Zhao, J.; Govindaraju, R.S. Water benefits sharing under transboundary cooperation in the Lancang-Mekong River Basin. J. Hydrol. 2019, 577, 123989. [Google Scholar] [CrossRef]
- Sridhar, V.; Jin, X.; Jaksa, W.T.A. Explaining the hydroclimatic variability and change in the Salmon River basin. Clim. Dyn. 2013, 40, 1921–1937. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, V.; Billah, M.M.; Hildreth, J.W. Coupled Surface and Groundwater Hydrological Modeling in a Changing Climate. Groundwater 2018, 56, 618–635. [Google Scholar] [CrossRef]
- Sridhar, V.; Kang, H.; Ali, S.A. Human-Induced Alterations to Land Use and Climate and Their Responses for Hydrology and Water Management in the Mekong River Basin. Water 2019, 11, 1307. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, V.; Anderson, K.A. Human-induced modifications to land surface fluxes and their implications on water management under past and future climate change conditions. Agric. For. Meteorol. 2017, 234–235, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Seong, C.; Sridhar, V.; Billah, M.M. Implications of potential evapotranspiration methods for streamflow estimations under changing climatic conditions. Int. J. Climatol. 2018, 38, 896–914. [Google Scholar] [CrossRef]
- Kang, H.; Sridhar, V. Improved Drought Prediction Using Near Real-Time Climate Forecasts and Simulated Hydrologic Conditions. Sustainability 2018, 10, 1799. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, V.; Sridhar, V.; Tyagi, A. Stratified drought analysis using a stochastic ensemble of simulated and in-situ soil moisture observations. J. Hydrol. 2017, 545, 226–250. [Google Scholar] [CrossRef] [Green Version]
- Conway, D.; Van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C.; et al. Climate and southern Africa’s water-energy-food nexus. Nat. Clim. Chang. 2015, 5, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Leck, H.; Conway, D.; Bradshaw, M.; Rees, J. Tracing the Water-Energy-Food Nexus: Description, Theory and Practice. Geogr. Compass 2015, 9, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.; Darby, S. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta’s an Giang Province, Vietnam. Sci. Total Environ. 2016, 559, 326–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, T.D.; Vu, D.T.; Chowdhury, A.F.M.K.; Galelli, S. A software package for the representation and optimization of water reservoir operations in the VIC hydrologic model. Environ. Model. Softw. 2020, 126, 104673. [Google Scholar] [CrossRef]
- Feng, M.; Liu, P.; Li, Z.; Zhang, J.; Liu, D.; Xiong, L. Modeling the nexus across water supply, power generation and environment systems using the system dynamics approach: Hehuang Region, China. J. Hydrol. 2016, 543, 344–359. [Google Scholar] [CrossRef]
- Pittock, J.; Dumaresq, D.; Bassi, A. Modeling the Hydropower–Food Nexus in Large River Basins: A Mekong Case Study. Water 2016, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Stone, R. Mayhem on the Mekong. Science 2011, 333, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Sridhar, V. Evapotranspiration assessment in the context of food, energy, and water nexus in the lower Mekong River basin. In Proceedings of the World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management—Selected Papers from the World Environmental and Water Resources Congress 2019, Pittsburgh, PA, USA, 19–23 May 2019; American Society of Civil Engineers (ASCE): Pittsburgh, PA, USA, 2019; pp. 48–62. [Google Scholar]
- Browder, G.; Ortolano, L. The Evolution of an International Water Resources Management Regime in the Mekong. Nat. Resour. J. 2000, 40, 499–531. [Google Scholar]
- Plengsaeng, B.; Wehn, U.; van der Zaag, P. Data-sharing bottlenecks in transboundary integrated water resources management: A case study of the Mekong River Commission’s procedures for data sharing in the Thai context. Water Int. 2014, 39, 933–951. [Google Scholar] [CrossRef] [Green Version]
- Gerlak, A.K.; Lautze, J.; Giordano, M. Water resources data and information exchange in transboundary water treaties. Int. Environ. Agreem. Polit. Law Econ. 2011, 11, 179–199. [Google Scholar] [CrossRef]
- Aliagha, C. Environmental Clearinghouse as an Institutional Incentive for Data and Information Sharing and Conflict Reuction in the Mekong River Basin; OpenSIUC; Southern Illinois University: Carbondale, IL, USA, 2004; pp. 7–20. [Google Scholar]
- Affeltranger, B. Mekong Studies at Crossed Glances. In Proceedings of the 4th French-MFU Seminar, Chiang Rai, Thailand, February 2009. [Google Scholar]
- Affeltranger, B. Sustainability of Environmental Regimes: The Mekong River Commission; Springer: Berlin/Heidelberg, Germany, 2009; pp. 593–601. [Google Scholar]
- Thu, H.N.; Wehn, U. Data sharing in international transboundary contexts: The Vietnamese perspective on data sharing in the Lower Mekong Basin. J. Hydrol. 2016, 536, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Khandelwal, A.; Karpatne, A.; Wei, Z.; Kuang, H.; Ghosh, R.; Dugan, H.; Hanson, P.; Kumar, V. GLADD-R: A New Global Lake Dynamics Database for Reservoirs Created Using Machine Learning and Satellite Data GLADD-R: A New Global Lake Dynamics Database for Reservoirs; University of Minnesota: Minneapolis, MN, USA, 2019. [Google Scholar]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415. [Google Scholar] [CrossRef]
- Lohmann, D.; Raschke, E.; Nijssen, B.; Lettenmaier, D.P. Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany. Hydrol. Sci. J. 1998, 43, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, D.; Nolte-Holube, R.; Raschke, E. A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus Ser. A Dyn. Meteorol. Oceanogr. 1996, 48, 708–721. [Google Scholar] [CrossRef]
- Haddeland, I.; Lettenmaier, D.P.; Skaugen, T. Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J. Hydrol. 2006, 324, 210–223. [Google Scholar] [CrossRef]
- Hook, J.; Novak, S.; Johnston, R. Social Atlas of the Lower Mekong Basin; Mekong River Commission: Phnom Penh, Cambodia, 2003; pp. 1727–1800. [Google Scholar]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 2005, 25, 693–712. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.; Adler, R.; Stocker, E.; Bolvin, D.; Nelkin, E. Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time. In Proceedings of the 12th Conference on Satellite Meteorology and Oceanography, Long Beach, CA, USA, 8–13 February 2003; American Meteorological Society: Boston, MA, USA, 2003; pp. 4–11. [Google Scholar]
- Stackhouse, P.W.; Gupta, S.K.; Cox, S.J.; Mikowitz, J.C.; Zhang, T.; Chiacchio, M. 12-year surface radiation budget data set. GEWEX News 2004, 14, 10–12. [Google Scholar]
- Franchini, M.; Pacciani, M. Comparative analysis of several conceptual rainfall-runoff models. J. Hydrol. 1991, 122, 161–219. [Google Scholar] [CrossRef]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Wood, E.F.; Lettenmaier, D.P.; Zartarian, V.G. A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res. 1992, 97, 2717. [Google Scholar] [CrossRef]
- Bonnema, M.; Hossain, F. Inferring reservoir operating patterns across the Mekong Basin using only space observations. Water Resour. Res. 2017, 53, 3791–3810. [Google Scholar] [CrossRef]
- Costa-Cabral, M.C.; Richey, J.E.; Goteti, G.; Lettenmaier, D.P.; Feldkötter, C.; Snidvongs, A. Landscape structure and use, climate, and water movement in the Mekong River basin. Hydrol. Process. 2008, 22, 1731–1746. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.; Xiong, J.; Gumma, M.; Giri, C.; Milesi, C.; Ozdogan, M.; Congalton, R.; Tilton, J.; Sankey, T.; et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001. Available online: https://lpdaac.usgs.gov/products/gfsad1kcmv001/ (accessed on 9 September 2021).
- Zhou, T.; Nijssen, B.; Gao, H.; Lettenmaier, D.P.; Zhou, T.; Nijssen, B.; Gao, H.; Lettenmaier, D.P. The Contribution of Reservoirs to Global Land Surface Water Storage Variations. J. Hydrometeorol. 2016, 17, 309–325. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Paper, W. GoldSim: Engineering and Environmental Simulation Software for Water Resource Applications; GoldSim: Seattle, WA, USA, 2009. [Google Scholar]
- Liu, X.; Tang, Q.; Voisin, N.; Cui, H. Projected impacts of climate change on hydropower potential in China. Hydrol. Earth Syst. Sci. 2016, 20, 3343–3359. [Google Scholar] [CrossRef] [Green Version]
- Box, M.J. A new method of constrained optimization and a comparison with other methods. Comput. J. 1965, 8, 42–52. [Google Scholar] [CrossRef]
- Ming, B.; Liu, P.; Chang, J.; Wang, Y.; Huang, Q. Deriving Operating Rules of Pumped Water Storage Using Multiobjective Optimization: Case Study of the Han to Wei Interbasin Water Transfer Project, China. J. Water Resour. Plan. Manag. 2017, 143, 05017012. [Google Scholar] [CrossRef]
S. No. | Name of Dam | Country | Completed/Operational Since | Dam Height (m) | Reservoir Capacity (Million m3) | Reservoir Area (km2) | Function | |||
---|---|---|---|---|---|---|---|---|---|---|
Irrigation | Hydropower | Municipal Supply | Industrial Supply | |||||||
1 | Sirindhorn | Thailand | 1971 | 42 | 1966 | 288 | x | x | x | x |
2 | Ubol Ratana | Thailand | 1966 | 32 | 2.559 | 41 | x | x | x | x |
3 | Nam Pung | Thailand | 1965 | 40 | 165 | 2.165 | x | x | x | x |
4 | Lam Takhong | Thailand | 1969 | 40.3 | 310 | 3.7 | x | x | x | x |
5 | Lam Phra Phloeng | Thailand | 1970 | 50 | 110 | 1.31 | x | x | x | x |
6 | Chulabhorn | Thailand | 1972 | 70 | 188 | 31 | x | x | x | x |
7 | Lam Chang Han | Thailand | 1992 | 18 | 26 | 4.8 | x | x | x | x |
8 | Huai Kum | Thailand | 1982 | 36 | 22.8 | 1.8 | x | x | x | |
9 | Pakmun | Thailand | 1994 | 17 | 114.3 | 1.7 | x | x | x | |
10 | Lam Pao | Thailand | 1969 | 33 | 1430 | 240 | x | x | x | |
11 | Nam Un | Thailand | 1973 | 29.5 | 520 | 8.5 | x | x | x | |
12 | Upper Mun | Thailand | 1980 | 32.7 | 141 | 1.275 | x | x | x | |
13 | Lam Nang Rong | Thailand | 1982 | 23 | 150 | 11.6 | x | x | x | |
14 | Huai Luang | Thailand | 1984 | 12.5 | 113 | 3.2 | x | x | x | |
15 | Lam Plai Mas | Thailand | 1988 | 32 | 98 | 1.04 | x | x | x | |
16 | Lam Sae | Thailand | 1998 | 29.5 | 275 | 2.95 | x | x | x | |
17 | Nam Ngum | Laos | 1985 | 75 | 4700 | 370 | x | x | ||
18 | Houay-Ho | Laos | 1998 | 80 | 3530 | 37 | x | x | ||
19 | Nam Leuk | Laos | 2000 | 51.5 | 185 | x | x | |||
20 | Xeset 1 | Laos | 1991 | 18 | 30 | 0.1 | x | |||
21 | Selabam | Laos | 1993 | 3.7 | 30 | x | ||||
22 | Theun-Hinboun | Laos | 1998 | 27 | 20 | x | ||||
23 | Nam Mang 3 | Laos | 2004 | 22 | 49.43 | 10.2 | x | |||
24 | Xiaowan | China | 2010 | 292 | 15,043 | 190 | x | |||
25 | Manwan | China | 1995 | 132 | 662 | x | ||||
26 | Dachaoshan | China | 2004 | 111 | 933 | x | ||||
27 | Jinghong | China | 2008 | 108 | 1233 | 510 | x | |||
28 | Cibihe (Zibihe) | China | 93.22 | 7.9 | x | |||||
29 | Haixihai | China | 61.854 | 4 | x | |||||
30 | Ochum | Cambodia | 1993 | 10 | 1 | x | ||||
31 | Yaly | Vietnam | 2002 | 69 | 1037 | 64.5 | x | x | x | x |
S. No. | Scenario | Percentage Increase in the Irrigation Area | Number of Crop Cycles per Year |
---|---|---|---|
Scenario 1 | 0% increase with 2 cycles (Reference) | 0% | 2 cycles |
Scenario 2 | 5% increase with 2 cycles | 5% | 2 cycles |
Scenario 3 | 10% increase with 2 cycles | 10% | 2 cycles |
Scenario 4 | 0% increase with 3 cycles | 0% | 3 cycles |
Scenario 5 | 5% increase with 3 cycles | 5% | 3 cycles |
Scenario 6 | 10% increase with 3 cycles | 10% | 3 cycles |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridhar, V.; Ali, S.A.; Sample, D.J. Systems Analysis of Coupled Natural and Human Processes in the Mekong River Basin. Hydrology 2021, 8, 140. https://doi.org/10.3390/hydrology8030140
Sridhar V, Ali SA, Sample DJ. Systems Analysis of Coupled Natural and Human Processes in the Mekong River Basin. Hydrology. 2021; 8(3):140. https://doi.org/10.3390/hydrology8030140
Chicago/Turabian StyleSridhar, Venkataramana, Syed Azhar Ali, and David J. Sample. 2021. "Systems Analysis of Coupled Natural and Human Processes in the Mekong River Basin" Hydrology 8, no. 3: 140. https://doi.org/10.3390/hydrology8030140
APA StyleSridhar, V., Ali, S. A., & Sample, D. J. (2021). Systems Analysis of Coupled Natural and Human Processes in the Mekong River Basin. Hydrology, 8(3), 140. https://doi.org/10.3390/hydrology8030140