Statistical Modeling of Fine Sediments Dredged Using a Variable Area Dredging Suction Head to Improve Water Quality
Abstract
:1. Introduction
2. Background
3. Methods
3.1. Log-Normal Model of Grain Size
3.2. Beta Distribution for Proportion of Grain Size
3.3. Bootstrap Analysis
4. Results and Discussion
4.1. Log-Normal Statistics
4.2. Beta Distribution for the Analysis of Sediment Weight
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Environmental Protection Agency. Climate Adaptation and Water Quality. 2020. Available online: https://www.epa.gov/arc-x/climate-adaptation-and-water-quality (accessed on 28 June 2021).
- World Meteorological Organization (WMO). Climate Change and Desertification. WMO Publication. 2007. Available online: https://library.wmo.int/doc_num.php?explnum_id=5047 (accessed on 28 June 2021).
- NOAA. National Climate Report—Annual. NOAA National Centers for Environmental Information. 2017. Available online: https://www.ncdc.noaa.gov/sotc/national/201613 (accessed on 28 June 2021).
- Yasarer, L.M.; Bingner, R.L.; Garbrecht, J.D.; Locke, M.A.; Lizotte, R.E., Jr.; Momm, H.G.; Busteed, P.R. Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin. Appl. Eng. Agric. 2017, 33, 379–392. [Google Scholar] [CrossRef]
- Hovenga, P.; Wang, D.; Medeiros, S.; Hagen, S.; Alizad, K. The Response of Runoff and Sediment Loading in the Apalachicola River, Florida to Climate and Land Use Land Cover Change. AGU Publ. 2016. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Kronvang, B.; Meerhoff, M.; Søndergaard, M.; Hansen, K.; Andersen, H.; Lauridsen, T.; Liboriussen, L.; Beklioglu, M.; Özen, A.; et al. Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. J. Environ. Qual. 2009, 38, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.R.; Dibike, Y.B.; Prowse, T.D. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment. J. Am. Water Resour. Assoc. (JAWRA) 2011, 48, 74–89. [Google Scholar] [CrossRef]
- Arheimer, B.; Andréasson, J.; Fogelberg, S.; Johnsson, H.; Pers, C.B.; Persson, K. Climate Change Impact on Water Quality: Model Results from Southern Sweden. AMBIO J. Hum. Environ. 2005, 34, 559–566. [Google Scholar] [CrossRef]
- Florida Sea Grant. Muck Removal in the Save Our Indian River Lagoon Project Plan; Fact Sheet: Gainesville, FL, USA, 2017. [Google Scholar]
- Trefry, J.H.; Fox, A.L.; Trocine, R.P.; Fox, S.L.; Voelker, J.E. Determining the Effectiveness of Muck Removal on Sediment and Water Quality in the Indian River Lagoon, Impacts of Environmental Muck Dredging 2016‒2017 Determining the Effectiveness of Muck Removal on Sediment and Water Quality in the Indian River Lag. December 2017. Available online: https://www.fit.edu/indian-river-lagoon/ (accessed on 28 June 2021).
- Trefry, J.H.; Johnson, K.B.; Shenker, J.; Zarillo, G.A. Impacts of Environmental Muck Dredging; Florida Institute of Technology: Viera, FL, USA, 2016. [Google Scholar]
- Trefry, J.H.; Metz, S.; Trocine, R.P.; Iricanin, N.; Burnside, D.; Chen, N.; Webb, B. Design and Operation of a Muck Sediment Survey; Dept of Oceanography and Ocean Engineering, Florida Institute of Technology: Melbourne, FL, USA, 1990. [Google Scholar]
- Fox, A.; Trefry, J. Environmental Dredging to Remove Fine-Grained, Organic-Rich Sediments and Reduce Inputs of Nitrogen and Phosphorus to a Subtropical Estuary. Mar. Technol. Soc. 2018, 52, 42–57. [Google Scholar] [CrossRef]
- Tetra Tech Inc.; CloseWaters LLC. Revised Save Our Indian River Lagoon Project Plan 2019 Update for Brevard County, Florida. 2019. Available online: https://www.dropbox.com/s/j9pxd59mt1baf7q/Revised2019SaveOurIndianRiverLagoonProjectPlanUpdate032519.pdf?dl=0 (accessed on 28 June 2021).
- Barile, P.J. Widespread sewage pollution of the Indian River Lagoon system, Florida (USA) resolved by spatial analyses of macroalgal biogeochemistry. Mar. Pollut. Bull. 2018, 128, 557–574. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Schroeder, P.; Estes, T.; Francingues, N. Technical Guidelines for Environmental Dredging of Contaminated Sediments; Army Corps of Engineers Engineering Research and Development Center: Vicksburg, MS, USA, 2008. [Google Scholar]
- Maglio, C.; Weaver, R.; Trefry, J.; Bostater, C.; Shenker, J.; Johnson, K.; Trulock, S.; Ousley, J.; Cotter, P.; DeMarco, P.M.; et al. Environmental benefits realized during navigation maintenance dredging: A Case Study in the Indian River Lagoon, Florida. WEDA J. Dredg. 2021, 19, 1–13. [Google Scholar]
- Newell, R.C.; Seiderer, L.J.; Hitchcock, D.R. The Impact of Dredging Works in Coastal Waters: A Review of the Sensitivity to Disturbance and Subsequent Recovery of Biological Resources on the Sea Bed, Oceanography and Marine Biology: An Annual Review; UCL Press, University College London (UCL): London, UK, 1998; Volume 36, pp. 127–178. [Google Scholar]
- Weaver, R.; Waite, T.; Grisanti, H.; Provost, L. Feasibility of Muck Removal in the IRL Watershed and Subsequent Ferrate Treatment to Remove Excess Nutrients; Florida Institute of Technology, Brevard County Natural Resources Management Department: Melbourne, FL, USA, 2018.
- Provost, L.A.; Waite, T.D.; Weaver, R.J.; Grisanti, H.C. Fabrication and Testing of a Variable Area Dredge Coupled with an Inline Slurry Treatment System. Mar. Technol. Soc. J. 2018, 52, 75–80. [Google Scholar] [CrossRef]
- Dean, R.; Dalrymple, R. Coastal Processes; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- United States. Coastal Engineering Manual; EM 1110-2-1100 (Part III); U.S. Army Corps of Engineers: Washington, DC, USA, 2002. [Google Scholar]
- Inman, D.L. Measures for Describing the Size Distributions of Sediments. J. Sediment. Petrol. 1952, 22, 125–145. [Google Scholar]
- Gupta, A.; Nadarajah, S. Handbook of Beta Distribution and Its Applications; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Devore, J. Probability and Statistics for Engineering and the Sciences, 9th ed.; International Metric Edition; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Hogg, R.; Tanis, E.; Zimmerman, D. Probability and Statistical Inference, 9th ed.; Pearson: London, UK, 2015; p. 303. [Google Scholar]
Control | Closed | Halfway | Open | |
---|---|---|---|---|
Intake Area (cm2) | 45.60 | 228.02 | 912.07 | 1824.15 |
Intake Velocity (cm/s) | 166.01 | 33.20 | 8.30 | 4.15 |
Control | Closed | Halfway | Open | |
---|---|---|---|---|
d (mm) | 1299.54 | 51.98 | 3.25 | 0.81 |
−10.34 | −5.70 | −1.70 | 0.30 |
Control | Closed | Halfway | Open | |
---|---|---|---|---|
d (mm) | 22.44 | 2.67 | 0.57 | 0.30 |
−4.49 | −1.42 | 0.82 | 1.73 |
Control 1 | 1.39 | 0.798 | −0.189 | −0.015 | 0.607 |
Control 2 | 1.682 | 0.897 | −0.05 | 0.177 | 0.891 |
Control 3 | 2.398 | 1.742 | 0.32 | −0.106 | 0.178 |
Closed 1 | 2.149 | 1.55 | 0.043 | NA | NA |
Closed 2 | 2.421 | 1.535 | 0.378 | −0.142 | 0.314 |
Closed 3 | 1.656 | 1.021 | −0.046 | 0.419 | 0.994 |
Halfway 1 | 1.958 | 0.636 | −0.07 | −0.401 | 1.184 |
Halfway 2 | 2.706 | 1.248 | 0.284 | −0.252 | 0.464 |
Halfway 3 | 2.023 | 0.998 | 0.004 | 0.132 | 1.012 |
Open 1 | 2.757 | 1.258 | 0.313 | −0.21 | 0.378 |
Open 2 | 2.005 | 0.67 | −0.099 | −0.279 | 1.107 |
Open 3 | 2.738 | 1.289 | 0.304 | NA | NA |
Control | 2.354 | 1.712 | 0.3719 | −0.0944 | 0.372 |
Closed | 2.048 | 1.377 | 0.1691 | 0.0395 | 0.1690 |
Halfway | 2.1310 | 0.861 | 0.05 | 0.0671 | 0.050 |
Open | 2.2680 | 0.861 | 0.0361 | 0.0618 | 0.036 |
Sediment Size | |
---|---|
Very Large | |
Relatively Large | |
Large | |
Medium | |
Small | |
Relatively Small | |
Very Small |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Provost, L.A.; Weaver, R.; Kachouie, N.N. Statistical Modeling of Fine Sediments Dredged Using a Variable Area Dredging Suction Head to Improve Water Quality. Hydrology 2021, 8, 98. https://doi.org/10.3390/hydrology8030098
Provost LA, Weaver R, Kachouie NN. Statistical Modeling of Fine Sediments Dredged Using a Variable Area Dredging Suction Head to Improve Water Quality. Hydrology. 2021; 8(3):98. https://doi.org/10.3390/hydrology8030098
Chicago/Turabian StyleProvost, Leigh A., Robert Weaver, and Nezamoddin N. Kachouie. 2021. "Statistical Modeling of Fine Sediments Dredged Using a Variable Area Dredging Suction Head to Improve Water Quality" Hydrology 8, no. 3: 98. https://doi.org/10.3390/hydrology8030098
APA StyleProvost, L. A., Weaver, R., & Kachouie, N. N. (2021). Statistical Modeling of Fine Sediments Dredged Using a Variable Area Dredging Suction Head to Improve Water Quality. Hydrology, 8(3), 98. https://doi.org/10.3390/hydrology8030098