Long Term Trend Analysis of River Flow and Climate in Northern Canada
Abstract
:1. Introduction
- (1)
- Long-term and short-term trend analyses of hydrometric datasets from 18 gauging stations in ARB and PRB at monthly, seasonal, and annual scales. These analyses show the direction of historical and recent water flow trends as well as the detection of months and seasons when the flow was decreasing or increasing.
- (2)
- Estimated monthly hydrographs for the water flow datasets for 30-year-long moving windows since 1956 to find whether there is any regime shifts in the mean of water flow for each station.
- (3)
- Estimated trends for temperature and precipitation at both pixel and subregion levels to investigate their possible relations with waterflow dynamics.
- (4)
- Discussed the recent trends in land cover types across the subregions and their potential interactions with water flow dynamics.
2. Data and Methods
2.1. Study Region
2.2. Datasets and Pre-Processing
2.2.1. Climate Data
2.2.2. Water Flow Data
2.2.3. Land Use and Land Cover (LULC) Data
2.3. Climate Trend Analysis Methods
2.4. Water Flow Trend Analysis Methods
3. Results
3.1. Climate Trends
3.2. Water Flow Trends
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.-Y.; Singh, V.P. Review on regional water resources assessment models under stationary and changing climate. Water Resour. Manag. 2004, 18, 591–612. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, B.B.; Karst-Riddoch, T.L.; Vardy, S.R.; Falcone, M.D.; Hall, R.I.; Edwards, T.W.D. Impacts of climate and river flooding on the hydro-ecology of a floodplain basin, Peace-Athabasca Delta, Canada since AD 1700. Quat. Res. 2005, 64, 147–162. [Google Scholar] [CrossRef]
- Sauchyn, D.J.; St-Jacques, J.-M.; Luckman, B.H. Long-term reliability of the Athabasca River (Alberta, Canada) as the water source for oil sands mining. Proc. Natl. Acad. Sci. USA 2015, 112, 12621–12626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Zhang, X.; Harvey, K.D.; Hogg, W.D.; Yuzyk, T.R. Trends in Canadian streamflow. Water Resour. Res. 2001, 37, 987–998. [Google Scholar] [CrossRef]
- Burn, D.H.; Abdul Aziz, O.I.; Pietroniro, A. A comparison of trends in hydrological variables for two watersheds in the Mackenzie River Basin. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 2004, 29, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Burn, D.H.; Cunderlik, J.M.; Pietroniro, A. Hydrological trends and variability in the Liard River basin/Tendances hydrologiques et variabilité dans le basin de la rivière Liard. Hydrol. Sci. J. 2004, 49, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Rood, S.B.; Pan, J.; Gill, K.M.; Franks, C.G.; Samuelson, G.M.; Shepherd, A. Declining summer flows of Rocky Mountain rivers: Changing seasonal hydrology and probable impacts on floodplain forests. J. Hydrol. 2008, 349, 397–410. [Google Scholar] [CrossRef]
- Schindler, D.W.; Donahue, W.F. An impending water crisis in Canada’s western prairie provinces. Proc. Natl. Acad. Sci. USA 2006, 103, 7210–7216. [Google Scholar] [CrossRef] [Green Version]
- Peters, D.L.; Atkinson, D.; Monk, W.A.; Tenenbaum, D.E.; Baird, D.J. A multi-scale hydroclimatic analysis of runoff generation in the Athabasca River, western Canada. Hydrol. Process. 2013, 27, 1915–1934. [Google Scholar] [CrossRef]
- Belvederesi, C.; Zaghloul, M.S.; Achari, G.; Gupta, A.; Hassan, Q.K. Modelling river flow in cold and ungauged regions: A review of the purposes, methods, and challenges. Environ. Rev. 2022, 30, 159–173. [Google Scholar] [CrossRef]
- Hwang, H.T.; Park, Y.J.; Sudicky, E.A.; Berg, S.J.; McLaughlin, R.; Jones, J.P. Understanding the water balance paradox in the Athabasca River Basin, Canada. Hydrol. Process. 2018, 32, 729–746. [Google Scholar] [CrossRef]
- Shah, M.I.; Khan, A.; Akbar, T.A.; Hassan, Q.K.; Khan, A.J.; Dewan, A. Predicting hydrologic responses to climate changes in highly glacierized and mountainous region Upper Indus Basin. R. Soc. Open Sci. 2020, 7, 191957. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.K.; Ejiagha, I.R.; Ahmed, M.R.; Gupta, A.; Rangelova, E.; Dewan, A. Remote sensing of local warming trend in Alberta, Canada during 2001–2020, and its relationship with large-scale atmospheric circulations. Remote Sens. 2021, 13, 3441. [Google Scholar] [CrossRef]
- Afrin, S.; Gupta, A.; Farjad, B.; Razu Ahmed, M.; Achari, G.; Hassan, Q. Development of land-use/land-cover maps using landsat-8 and MODIS data, and their integration for hydro-ecological applications. Sensors 2019, 19, 4891. [Google Scholar] [CrossRef] [Green Version]
- Bawden, A.J.; Linton, H.C.; Burn, D.H.; Prowse, T.D. A spatiotemporal analysis of hydrological trends and variability in the Athabasca River region, Canada. J. Hydrol. 2014, 509, 333–342. [Google Scholar] [CrossRef]
- McKenney, D.W.; Hutchinson, M.F.; Papadopol, P.; Lawrence, K.; Pedlar, J.; Campbell, K.; Milewska, E.; Hopkinson, R.F.; Price, D.; Owen, T. Customized spatial climate models for North America. Bull. Am. Meteorol. Soc. 2011, 92, 1611–1622. [Google Scholar] [CrossRef] [Green Version]
- Eum, H.-I.; Gupta, A. Hybrid climate datasets from a climate data evaluation system and their impacts on hydrologic simulations for the Athabasca River basin in Canada. Hydrol. Earth Syst. Sci. 2019, 23, 5151–5173. [Google Scholar] [CrossRef] [Green Version]
- Belvederesi, C.; Dominic, J.A.; Hassan, Q.K.; Gupta, A.; Achari, G. Short-Term River Flow Forecasting Framework and Its Application in Cold Climatic Regions. Water 2020, 12, 3049. [Google Scholar] [CrossRef]
- Dibike, Y.; Eum, H.-I.; Prowse, T. Modelling the Athabasca watershed snow response to a changing climate. J. Hydrol. Reg. Stud. 2018, 15, 134–148. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D.; Olthof, I. Circa 2010 land cover of Canada: Local optimization methodology and product development. Remote Sens. 2017, 9, 1098. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods; American Psychological Association: Washington, DC, USA, 1948. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Rasouli, K.; Hernández-Henríquez, M.A.; Déry, S.J. Streamflow input to Lake Athabasca, Canada. Hydrol. Earth Syst. Sci. 2013, 17, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the Least-Squares Wavelet software in hydrology: Athabasca River Basin. J. Hydrol. Reg. Stud. 2021, 36, 100847. [Google Scholar] [CrossRef]
- Rood, S.B.; Stupple, G.W.; Gill, K.M. Century-long records reveal slight, ecoregion-localized changes in Athabasca River flows. Hydrol. Process. 2015, 29, 805–816. [Google Scholar] [CrossRef]
- Pradhananga, D.; Pomeroy, J.W. Diagnosing changes in glacier hydrology from physical principles, using a hydrological model with snow redistribution, sublimation, firnification and energy balance ablation algorithms. J. Hydrol. 2022, 608, 127545. [Google Scholar] [CrossRef]
- Wheater, H.S.; Pomeroy, J.W.; Pietroniro, A.; Davison, B.; Elshamy, M.; Yassin, F.; Rokaya, P.; Fayad, A.; Tesemma, Z.; Princz, D.; et al. Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire—Surface and Hydrology (MESH), the Canadian hydrological land surface scheme. Hydrol. Process. 2022, 36, e14557. [Google Scholar] [CrossRef]
- Wu, Y.; Gan, T.Y.; She, Y.; Xu, C.; Yan, H. Five centuries of reconstructed streamflow in Athabasca River Basin, Canada: Non-stationarity and teleconnection to climate patterns. Sci. Total Environ. 2020, 746, 141330. [Google Scholar] [CrossRef]
- Dastour, H.; Ghaderpour, E.; Zaghloul, M.S.; Farjad, B.; Gupta, A.; Eum, H.; Achari, G.; Hassan, Q.K. Wavelet-based spatiotemporal analyses of climate and vegetation for the Athabasca River basin in Canada. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103044. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Bayazit, M.; Önöz, B. To prewhiten or not to prewhiten in trend analysis? Hydrol. Sci. J. 2007, 52, 611–624. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes toward earlier streamflow timing across western North America. J. Clim. 2005, 18, 1136–1155. [Google Scholar] [CrossRef]
- Rodionov, S. A sequential method of detecting abrupt changes in the correlation coefficient and its application to Bering Sea climate. Climate 2015, 3, 474–491. [Google Scholar] [CrossRef]
Label | Station ID | Station Name | Latitude | Longitude | Drainage Area (km2) | Elevation (m) | Period of Record |
---|---|---|---|---|---|---|---|
u1 | 07AA001 | Miette River near Jasper | 52.8641 | −118.107 | 629 | 1062 | 1976–2020 |
u2 | 07AA002 | Athabasca River near Jasper | 52.9102 | −118.059 | 3870 | 1059 | 1971–2020 |
u3 | 07AD002 | Athabasca River at Hinton | 53.4243 | −117.569 | 9760 | 954 | 1961–2020 |
m1 | 07AF002 | Mcleod River above Embarras River | 53.4702 | −116.631 | 2560 | 920 | 1956–2020 |
m2 | 07AG003 | Wolf Creek at Highway No. 16A | 53.5984 | −116.272 | 826 | 862 | 1956–2020 |
m3 | 07AG007 | Mcleod River near Rosevear | 53.697 | −116.162 | 7140 | 822 | 1986–2020 |
m4 | 07BB002 | Pembina River near Entwistle | 53.6042 | −115.005 | 4400 | 718 | 1956–2020 |
m5 | 07BC002 | Pembina River at Jarvie | 54.4503 | −113.993 | 13,100 | 609 | 1961–2020 |
m6 | 07BE001 | Athabasca River at Athabasca | 54.722 | −113.288 | 74,600 | 516 | 1956–2020 |
m7 | 07BF002 | West Prairie River near High Prairie | 55.4482 | −116.493 | 1150 | 588 | 1971–2020 |
m8 | 07BJ001 | Swan River near Kinuso | 55.3155 | −115.417 | 1900 | 588 | 1971–2020 |
m9 | 07BK007 | Driftwood River near the Mouth | 55.2555 | −114.231 | 2100 | 550 | 1971–2020 |
l1 | 07CD001 | Clearwater River at Draper | 56.6853 | −111.255 | 30,800 | 261 | 1956–2020 |
l2 | 07DA001 | Athabasca River below Fort McMurray | 56.7803 | −111.402 | 133,000 | 237 | 1956–2020 |
l3 | 07DD001 | Athabasca River at Embarras Airport | 58.3126 | −111.515 | 155,000 | 225 | 1971–2019 |
p1 | 07GE001 | Wapiti River near Grande Prairie | 55.0713 | −118.803 | 11,300 | 514 | 1961–2020 |
p2 | 07GJ001 | Smoky River at Watino | 55.7146 | −117.623 | 50,300 | 378 | 1956–2020 |
p3 | 07KC001 | Peace River at Peace Point (Alberta) | 59.1181 | −112.437 | 293,000 | 228 | 1961–2020 |
Slope (Per Decade) and Significance (* = 90%) (*** = 99%) | ||||
---|---|---|---|---|
Precipitation (mm/10 Year) | Max Temp. (°C/10 Year) | Min Temp. (°C/10 Year) | Average Temp. (°C/10 Year) | |
Upper ARB | −11.28 * | 0.23 *** | 0.17 *** | 0.2 *** |
Middle ARB | −3.7 | 0.27 *** | 0.33 *** | 0.3 *** |
Lower ARB | −0.5 | 0.28 *** | 0.45 *** | 0.37 *** |
Slope (m3/Year) and Significance (* = 90%) (** = 95%) (*** = 99%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | Station ID | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Cold Season | Annual Average | Open Warm Season |
30 Years (1991–2020) | 07AD002 | 0.12 | 0.23 ** | 0.35 *** | 0.33 | 1.78 | 3.14 | 0.44 | −0.41 | 1.08 | 0.78 | 0.66 ** | 0.16 | 0.3 ** | 0.91 | 1.48 |
07BE001 | 0.73 | 1.02 * | 0.73 | 3.17 | 10.33 * | 8.06 | −0.91 | −2.24 | 2.83 | 2.64 | 1.33 | 1.26 * | 1.35 ** | 2.85 | 4.74 | |
07DA001 | 1.31 | 1.25 | 1 | −1.28 | 10.06 | 15 | 0.42 | −2.26 | 1.81 | 5.07 * | 2.11 | 1.8 | 1.74 ** | 4.29 | 5.59 | |
35 Years (1986–2020) | 07AD002 | 0.11 | 0.26 *** | 0.36 *** | 0.31 | 0.54 | 1 | 1.11 | −1.04 | 0.71 | 0.63 | 0.42 * | 0.14 | 0.27 *** | 0.55 | 0.79 |
07BE001 | 0.33 | 0.66 | 0.25 | 2.56 | 9.67 ** | 4.79 | −4.23 | −4.57 | 0.57 | 1.57 | 0.6 | 0.74 | 0.71 | 1.12 | 1.96 | |
07DA001 | 0.75 | 0.7 | 0.47 | −1.78 | 7.6 | 7.78 | −3.93 | −6 | −0.5 | 2.89 | 1 | 0.67 | 0.82 | 0.26 | 1.45 | |
40 Years (1981–2020) | 07AD002 | 0.02 | 0.29 *** | 0.30 *** | 0.33 ** | 1.17 | 2.23 | 1.09 | −0.88 | 0.2 | 0.58 | 0.34 * | 0.15 | 0.26 *** | 0.61 * | 0.91 |
07BE001 | −0.05 | 0.4 | 0 | 2.09 | 8.44 ** | 4.9 | −2.28 | −3.29 | −0.64 | 0.58 | −0.2 | 0.27 | 0.05 | 0.75 | 1.14 | |
07DA001 | 0.21 | 0.17 | 0.18 | −0.89 | 5.04 | 8.27 | −3.42 | −3.05 | −1.46 | 0.69 | −0.38 | 0.17 | −0.02 | 0.03 | 1 | |
45 Years (1976–2020) | 07AD002 | 0.11 | 0.24 *** | 0.25 *** | 0.25 ** | 1 | 2 | 0.86 | −0.63 | −0.05 | 0.4 | 0.44 *** | 0.14 | 0.26 *** | 0.47 | 0.74 |
07BE001 | −0.29 | −0.01 | −0.35 | 0.22 | 4.18 | 1.54 | −3.59 | −4 ** | −2.92 * | −0.79 | −0.67 | −0.04 | −0.26 | −0.79 | −1.28 | |
07DA001 | −0.87 | −0.53 | −0.56 | −3.24 | 1.9 | 3.2 | −4.42 | −5.88 | −5.73 ** | −2.16 | −1.51 | −0.51 | −0.81 | −1.82 | −2.42 | |
50 Years (1971–2020) | 07AD002 | 0.14 ** | 0.2 *** | 0.21 *** | 0.24 *** | 0.80 | 1.07 | 0.43 | −0.63 | 0.14 | 0.33 | 0.39 *** | 0.1 | 0.22 *** | 0.31 | 0.44 |
07BE001 | −0.26 | −0.09 | −0.21 | −0.75 | 0.73 | −0.5 | −5 | −3.37 ** | −2.21 * | −1.18 | −0.9 | −0.19 | −0.29 | −1.87 | −2.73 | |
07DA001 | −1 * | −0.69 | −0.56 | −3.59 | −3.04 | −2.29 | −8.61 * | −6.32 ** | −5.09 ** | −3.25 * | −2 * | −0.8 | −1.02 ** | −3.09 *** | −4.61 ** | |
55 Years (1966–2020) | 07AD002 | 0.1 * | 0.12 *** | 0.19 *** | 0.21 *** | 0.75 | 0.35 | 0.10 | −1.08 ** | −0.01 | 0.28 | 0.32 *** | 0.1 | 0.17 *** | 0.14 | 0.15 |
07BE001 | −0.14 | 0.02 | 0.06 | 0.11 | 1.09 | 0.24 | −1.33 | −3.13 ** | −1.78 * | −0.58 | −0.45 | −0.08 | −0.11 | −0.75 | −1.28 | |
07DA001 | −0.64 | −0.45 | −0.34 | −1.84 | −2.84 | −0.79 | −5 | −5.26 ** | −4.46 ** | −2.75 * | −1.4 * | −0.47 | −0.62 | −2.34 ** | −3.27 * | |
60 Years (1961–2020) | 07AD002 | 0.12 ** | 0.13 *** | 0.23 *** | 0.14 ** | 1 * | −0.08 | −0.25 | −0.9 ** | −0.18 | 0.12 | 0.2 * | 0.06 | 0.14 *** | 0.06 | −0.01 |
07BE001 | −0.11 | 0.06 | 0.19 | −0.21 | −0.03 | −0.26 | −0.91 | −2.9 ** | −1.78 * | −0.88 | −0.57 | −0.16 | −0.08 | −0.75 | −1.27 | |
07DA001 | −0.64 * | −0.43 | −0.22 | −1.2 | −4.5 | −1.73 | −3.77 | −4.14 * | −3.88 ** | −2.64 ** | −1.4 ** | −0.49 | −0.64 * | −2.26 ** | −2.99 ** | |
65 Years (1956–2020) | 07BE001 | 0 | 0.14 | 0.23 | −0.29 | 0.1 | 0.03 | 0.12 | −1.64 | −1.28 | −0.48 | −0.16 | −0.05 | 0.02 | −0.29 | −0.43 |
07DA001 | −0.57 | −0.32 | −0.1 | −1.67 | −3.78 | −1.29 | −2.93 | −2.5 | −3.75 ** | −2.2 ** | −1.2 ** | −0.47 | −0.54 | −1.93 ** | −2.61 * |
30 Years (1991–2020) n = 14 | 35 Years (1986–2020) n = 14 | 40 Years (1981–2020) n = 13 | 45 Years (1976–2020) n = 13 | 50 Years (1971–2020) n = 12 | 55 Years (1966–2020) n = 8 | 60 Years (1961–2020) n = 8 | 65 Years (1956–2020) n = 6 | |
---|---|---|---|---|---|---|---|---|
Jan | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 |
Feb | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 |
Mar | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 |
Apr | 1↑-0 | 1↑-1↓ | 1↑-0 | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 | 0-1↓ |
May | 4↑-0 | 2↑-0 | 2↑-0 | 2↑-0 | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ |
Jun | 5↑-0 | 4↑-0 | 3↑-0 | 2↑-0 | 0-1↓ | 0-0 | 0-1↓ | 0-0 |
Jul | 1↑-0 | 1↑-2↓ | 1↑-2↓ | 0-2↓ | 0-2↓ | 0-1↓ | 0-1↓ | 0-1↓ |
Aug | 1↑-2↓ | 1↑-2↓ | 0-2↓ | 0-2↓ | 0-2↓ | 0-2↓ | 0-2↓ | 0-1↓ |
Sep | 3↑-0 | 1↑-0 | 1↑-0 | 0-2↓ | 0-2↓ | 0-2↓ | 0-2↓ | 0-1↓ |
Oct | 3↑-0 | 2↑-0 | 0-0 | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ |
Nov | 1↑-0 | 0-0 | 0-0 | 0-0 | 0-1↓ | 0-0 | 0-0 | 0-0 |
Dec | 1↑-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 |
Cold Season Average | 1↑-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 | 0-0 |
Annual Avg | 2↑-0 | 0-0 | 0-0 | 0-1↓ | 0-2↓ | 0-1↓ | 0-1↓ | 0-1↓ |
Open Warm Season Avg | 3↑-0 | 1↑-0 | 0-0 | 0-1↓ | 0-2↓ | 0-1↓ | 0-1↓ | 0-1↓ |
30 Years (1991–2020) n = 3 | 35 Years (1986–2020) n = 3 | 40 Years (1981–2020) n = 3 | 45 Years (1976–2020) n = 3 | 50 Years (1971–2020) n = 3 | 55 Years (1966–2020) n = 3 | 60 Years (1961–2020) n = 3 | 65 Years (1956–2020) n = 1 | |
---|---|---|---|---|---|---|---|---|
Jan | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 | 1↑-0 | 1↑-0 | 0-0 |
Feb | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 | 1↑-0 | 1↑-0 | 0-0 |
Mar | 0-1↓ | 0-1↓ | 1↑-0 | 1↑-0 | 1↑-0 | 1↑-0 | 1↑-0 | 0-0 |
Apr | 1↑-1↓ | 1↑-1↓ | 1↑-1↓ | 1↑-0 | 1↑-0 | 1↑-0 | 1↑-0 | 0-0 |
May | 2↑-1↓ | 2↑-1↓ | 1↑-1↓ | 1↑-1↓ | 0-1↓ | 0-1↓ | 0-2↓ | 0-1↓ |
Jun | 2↑-0 | 1↑-1↓ | 1↑-1↓ | 0-2↓ | 0-2↓ | 0-2↓ | 0-2↓ | 0-1↓ |
Jul | 1↑-1↓ | 1↑-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 |
Aug | 1↑-0 | 1↑-0 | 0-2↓ | 0-2↓ | 0-1↓ | 0-1↓ | 0-2↓ | 0-0 |
Sep | 1↑-0 | 1↑-0 | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 | 0-0 | 0-0 |
Oct | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 |
Nov | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 1↑-0 | 1↑-0 | 0-0 |
Dec | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 | 1↑-0 | 1↑-0 | 0-0 |
Cold Season Average | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 | 1↑-0 | 1↑-0 | 0-0 |
Annual Avg | 1↑-0 | 1↑-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-0 |
Open Warm Season Avg | 1↑-1↓ | 1↑-1↓ | 1↑-1↓ | 0-1↓ | 0-1↓ | 0-1↓ | 0-2↓ | 0-0 |
07AD002 | 07BE001 | 07DA001 | 07DD001 | |
---|---|---|---|---|
Jan | 17.38 | 58.95 | 103.32 | 100 |
Feb | 17.92 | 61.55 | 102.93 | 100 |
Mar | 18.02 | 53.44 | 93.63 | 100 |
Apr | 7.952 | 68.25 | 95.31 | 100 |
May | 11.87 | 55.76 | 85.98 | 100 |
Jun | 31.61 | 67.86 | 93.90 | 100 |
Jul | 26.18 | 58.49 | 87.83 | 100 |
Aug | 28.47 | 57.63 | 92.82 | 100 |
Sep | 22.32 | 54.68 | 95.95 | 100 |
Oct | 15.14 | 51.38 | 97.79 | 100 |
Nov | 13.86 | 46.26 | 94.02 | 100 |
Dec | 15.97 | 50.65 | 92.42 | 100 |
Cold Season Average | 15.18 | 54.17 | 97.26 | 100 |
Annual Avg | 18.89 | 57.08 | 94.66 | 100 |
Open Warm Season Avg | 22.60 | 59.15 | 92.80 | 100 |
07AD002 | 07BE001 | 07DA001 | 07DD001 | |
---|---|---|---|---|
Jan | 18.94 | 49.98 | 83.17 | 100 |
Feb | 19.82 | 56.16 | 87.79 | 100 |
Mar | 20.97 | 68.52 | 89.88 | 100 |
Apr | 10.75 | 78.20 | 98.07 | 100 |
May | 30.24 | 68.51 | 92.45 | 100 |
Jun | 46.80 | 82.01 | 97.95 | 100 |
Jul | 35.70 | 72.88 | 91.34 | 100 |
Aug | 35.63 | 63.43 | 89.14 | 100 |
Sep | 35.84 | 66.08 | 90.48 | 100 |
Oct | 24.75 | 61.52 | 87.54 | 100 |
Nov | 20.98 | 52.79 | 78.08 | 100 |
Dec | 17.86 | 48.35 | 82.52 | 100 |
Cold Season Average | 18.22 | 55.16 | 84.29 | 100 |
Annual Avg | 26.52 | 64.03 | 89.03 | 100 |
Open Warm Season Avg | 34.83 | 70.38 | 92.42 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaghloul, M.S.; Ghaderpour, E.; Dastour, H.; Farjad, B.; Gupta, A.; Eum, H.; Achari, G.; Hassan, Q.K. Long Term Trend Analysis of River Flow and Climate in Northern Canada. Hydrology 2022, 9, 197. https://doi.org/10.3390/hydrology9110197
Zaghloul MS, Ghaderpour E, Dastour H, Farjad B, Gupta A, Eum H, Achari G, Hassan QK. Long Term Trend Analysis of River Flow and Climate in Northern Canada. Hydrology. 2022; 9(11):197. https://doi.org/10.3390/hydrology9110197
Chicago/Turabian StyleZaghloul, Mohamed Sherif, Ebrahim Ghaderpour, Hatef Dastour, Babak Farjad, Anil Gupta, Hyung Eum, Gopal Achari, and Quazi K. Hassan. 2022. "Long Term Trend Analysis of River Flow and Climate in Northern Canada" Hydrology 9, no. 11: 197. https://doi.org/10.3390/hydrology9110197
APA StyleZaghloul, M. S., Ghaderpour, E., Dastour, H., Farjad, B., Gupta, A., Eum, H., Achari, G., & Hassan, Q. K. (2022). Long Term Trend Analysis of River Flow and Climate in Northern Canada. Hydrology, 9(11), 197. https://doi.org/10.3390/hydrology9110197