Hillslope Hydrology in a Deeply Weathered Saprolite and Associated Nitrate Transport to a Valley Bottom Wetland in Central Uganda
Abstract
:1. Introduction
- (i)
- to contribute to the understanding of the hillslope hydrology in a deeply weathered saprolite;
- (ii)
- to investigate the effect of rainfall characteristics and different land-use types on the hillslope hydrology and associated nitrate transport; and
- (iii)
- to analyze the relevance of water and nitrate inputs from the surrounding slopes for water and nitrate availability at the fringe of the valley bottom wetland.
2. Materials and Methods
2.1. Study Site
2.2. Study Design
2.3. Data Collection and Analysis
3. Results
3.1. Interflow Processes along the Slope
3.1.1. The “Fill-and-Drain” Mechanism
3.1.2. Interflow in the Saprolite
3.2. Effect of Land Use Type and Rainfall Properties on Hillslope Hydrology and Associated Nitrate Transport
3.2.1. Effect of Rainfall Properties
3.2.2. Effect of the Land-Use Type
3.3. Water and Nutrient Availability at the Wetland Fringe
3.3.1. Hydrological Connectivity to the Wetland
3.3.2. Water and Nutrient Delivery to the Wetland Fringe
4. Discussion
4.1. Hillslope Hydrology and Connectivity to the Wetland
4.2. Influence of the Land-Use Type on Hillslope Hydrology and Nitrate Availability
4.3. Management Recommendations
4.4. Transferability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Tully, K.; Sullivan, C.; Weil, R.; Sanchez, P. The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions. Sustainability 2015, 7, 6523–6552. [Google Scholar] [CrossRef] [Green Version]
- von der Heyden, C.J.; New, M.G. The Role of a Dambo in the Hydrology of a Catchment and the River Network Downstream. Hydrol. Earth Syst. Sci. 2003, 7, 339–357. [Google Scholar] [CrossRef] [Green Version]
- World Ressources Institute. Ecosystems and Human Well-Being: Wetlands and Water, Synthesis; Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005; ISBN 978-1-56973-597-8. [Google Scholar]
- NEMA. State of Environment Report for Uganda 2018/2019; National Environmental Management Authority: Kampala, Uganda, 2019.
- Ramsar Convention Secreteriat. An Introduction to the Ramsar Convention on Wetlands, 7th ed.; Ramsar Convention Secreteriat: Gland, Switzerland, 2016. [Google Scholar]
- Beuel, S.; Alvarez, M.; Amler, E.; Behn, K.; Kotze, D.; Kreye, C.; Leemhuis, C.; Wagner, K.; Willy, D.K.; Ziegler, S.; et al. A Rapid Assessment of Anthropogenic Disturbances in East African Wetlands. Ecol. Indic. 2016, 67, 684–692. [Google Scholar] [CrossRef]
- Kotze, D.C.; Ellery, W.N.; Macfarlane, D.M.; Jewitt, G.P.W. A Rapid Assessment Method for Coupling Anthropogenic Stressors and Wetland Ecological Condition. Ecol. Indic. 2012, 13, 284–293. [Google Scholar] [CrossRef]
- Ollis, D.; Snaddon, K.; Job, N.; Mbona, N. Classification System for Wetlands and Other Aquatic Ecosystems in South Africa. User Manual: Inland Systems; SANBI Biodiversity Series; South African National Biodiversity Institute: Pretoria, South Africa, 2013; Volume 22, ISBN 978-1-919976-75-4. [Google Scholar]
- Erwin, K.L. Wetlands and Global Climate Change: The Role of Wetland Restoration in a Changing World. Wetl. Ecol Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- McFarlane, M.J. Groundwater Movement and Water Chemistry Associated with Weathering Profiles of the African Surface in Parts of Malawi. In Hydrogeology of Crystalline Basement Aquifers in Africa; Wright, E.P., Burgess, W.G., Eds.; Geological Society Special Publication: London, UK, 1992; Volume 66, pp. 101–129. [Google Scholar]
- Bullock, A. Dambo Hydrology in Southern Africa—Review and Reassessment. J. Hydrol. 1992, 134, 373–396. [Google Scholar] [CrossRef]
- Braun, J.-J.; Dupré, B.; Viers, J.; Ngoupayou, J.R.N.; Bedimo, J.-P.B.; Sigha-Nkamdjou, L.; Freydier, R.; Robain, H.; Nyeck, B.; Bodin, J.; et al. Biogeohydrodynamic in the Forested Humid Tropical Environment: The Case Study of the Nsimi Small Experimental Watershed (South Cameroon). Bull. de la Société Géologique de Fr. 2002, 173, 347–357. [Google Scholar] [CrossRef]
- Asante, M.; Becker, M.; Angulo, C.; Fosu, M.; Dogbe, W. Seasonal Nitrogen Dynamics in Lowland Rice Cropping Systems in Inland Valleys of Northern Ghana. J. Plant Nutr. Soil Sci. 2017, 180, 87–95. [Google Scholar] [CrossRef]
- Giertz, S.; Diekkrüger, B.; Steup, G. Physically-Based Modelling of Hydrological Processes in a Tropical Headwater Catchment (West Africa)-Process Representation and Multi-Criteria Validation. Hydrol. Earth Syst. Sci. Discuss. 2006, 10, 829–847. [Google Scholar] [CrossRef] [Green Version]
- Idrissou, M. Modeling Water Availability for Smallholder Farming in Inland Valleys under Climate and Land Use/Land Cover Change in Dano, Burkina Faso; Rheinische Friedrich Wilhelms Universität Bonn, Institute of Geography: Bonn, Germany, 2020. [Google Scholar]
- Yameogo, P.L.; Becker, M.; Segda, Z. Seasonal Soil Nitrogen Dynamics Affect Yields of Lowland Rice in the Savanna Zone of West Africa. J. Plant Nutr. Soil Sci. 2021, 184, 98–111. [Google Scholar] [CrossRef]
- McCartney, M.P. The Water Budget of a Headwater Catchment Containing a Dambo. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 611–616. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and Water Flow in Soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, N.; Koestel, J.; Larsbo, M. Understanding Preferential Flow in the Vadose Zone: Recent Advances and Future Prospects. Vadose Zone J. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Nieber, J.L.; Sidle, R.C. How Do Disconnected Macropores in Sloping Soils Facilitate Preferential Flow? Hydrol. Process. 2010, 24, 1582–1594. [Google Scholar] [CrossRef]
- Noguchi, S.; Tsuboyama, Y.; Sidle, R.C.; Hosoda, I. Morphological Characteristics of Macropores and the Distribution of Preferential Flow Pathways in a Forested Slope Segment. Soil Sci. Soc. Am. J. 1999, 63, 1413–1423. [Google Scholar] [CrossRef]
- Sidle, R.C.; Noguchi, S.; Tsuboyama, Y.; Laursen, K. A Conceptual Model of Preferential Flow Systems in Forested Hillslopes: Evidence of Self-Organization. Hydrol. Process. 2001, 15, 1675–1692. [Google Scholar] [CrossRef]
- Meerveld, H.J.T.; McDonnell, J.J. Threshold Relations in Subsurface Stormflow: 1. A 147-Storm Analysis of the Panola Hillslope. Water Resour. Res. 2006, 42, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow Generation in Steep Forested Headwaters: A Linked Hydrogeomorphic Paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Zehe, E.; Flühler, H. Slope Scale Variation of Flow Patterns in Soil Profiles. J. Hydrol. 2001, 247, 116–132. [Google Scholar] [CrossRef]
- Kirchner, J.W. A Double Paradox in Catchment Hydrology and Geochemistry. Hydrol. Process. 2003, 17, 871–874. [Google Scholar] [CrossRef]
- Van Stempvoort, D.R.; MacKay, D.R.; Koehler, G.; Collins, P.; Brown, S.J. Subsurface Hydrology of Tile-Drained Headwater Catchments: Compatibility of Concepts and Hydrochemistry. Hydrol. Process. 2021, 35, e14342. [Google Scholar] [CrossRef]
- Jackson, C.R.; Du, E.; Klaus, J.; Griffiths, N.A.; Bitew, M.; McDonnell, J.J. Interactions among Hydraulic Conductivity Distributions, Subsurface Topography, and Transport Thresholds Revealed by a Multitracer Hillslope Irrigation Experiment. Water Resour. Res. 2016, 52, 6186–6206. [Google Scholar] [CrossRef]
- Klaus, J.; Jackson, C.R. Interflow Is Not Binary: A Continuous Shallow Perched Layer Does Not Imply Continuous Connectivity. Water Resour. Res. 2018, 54, 5921–5932. [Google Scholar] [CrossRef] [Green Version]
- Kahl, G.; Ingwersen, J.; Nutniyom, P.; Totrakool, S.; Pansombat, K.; Thavornyutikarn, P.; Streck, T. Micro-Trench Experiments on Interflow and Lateral Pesticide Transport in a Sloped Soil in Northern Thailand. J. Environ. Qual. 2007, 36, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Wenninger, J.; Uhlenbrook, S.; Lorentz, S.; Leibundgut, C. Identification of Runoff Generation Processes Using Combined Hydrometric, Tracer and Geophysical Methods in a Headwater Catchment in South Africa/Identification Des Processus de Formation Du Débit En Combinat La Méthodes Hydrométrique, Traceur et Géophysiques Dans Un Bassin Versant Sud-Africain. Hydrol. Sci. J. 2008, 53, 65–80. [Google Scholar] [CrossRef]
- Chilton, P.J.; Foster, S.S.D. Hydrogeological Characterisation and Water-Supply Potential of Basement Aquifers in Tropical Africa. HYJO 1995, 3, 36–49. [Google Scholar] [CrossRef]
- Burghof, S. Hydrogeology and Water Quality of Wetlands in East Africa-Case Studies of a Floodplain and a Valley Bottom Wetland; Rheinische Friedrich Wilhelms Universität Bonn, Steinmann Institute for Geology, Mineralogy und Paleontology: Bonn, Germany, 2017. [Google Scholar]
- Gabiri, G.; Leemhuis, C.; Diekkrüger, B.; Näschen, K.; Steinbach, S.; Thonfeld, F. Modelling the Impact of Land Use Management on Water Resources in a Tropical Inland Valley Catchment of Central Uganda, East Africa. Sci. Total Environ. 2019, 653, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- UBOS (Uganda Bureau of Statistics). Annual Agricultural Survey (AAS) 2021; Uganda Bureau of Statistics: Kampala, Uganda, 2021. [Google Scholar]
- Wairegi, L.W.I.; van Asten, P.J.A.; Tenywa, M.M.; Bekunda, M.A. Abiotic Constraints Override Biotic Constraints in East African Highland Banana Systems. Field Crops Res. 2010, 117, 146–153. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Rodenburg, J.; Dieng, I.; Vandamme, E.; Sillo, F.S.; Johnson, J.-M.; Rajaona, A.; Ramarolahy, J.A.; Gasore, R.; Abera, B.B.; et al. Quantifying Rice Yield Gaps and Their Causes in Eastern and Southern Africa. J. Agron. Crop Sci. 2020, 206, 478–490. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; John Wiley and Sons, Inc: Hoboken, NJ, USA, 2015; ISBN 978-1-118-67682-0. [Google Scholar]
- Mathers, N.J.; Nash, D.M.; Gangaiya, P. Nitrogen and Phosphorus Exports from High Rainfall Zone Cropping in Australia: Issues and Opportunities for Research. J. Environ. Qual. 2007, 36, 1551–1562. [Google Scholar] [CrossRef]
- Dick, J.; Skiba, U.; Wilson, J. The Effect of Rainfall on NO and N2O Emissions from Ugandan Agroforest Soils. Phyton 2001, 41, 73–80. [Google Scholar]
- Becker, M.; Asch, F.; Maskey, S.L.; Pande, K.R.; Shah, S.C.; Shrestha, S. Effects of Transition Season Management on Soil N Dynamics and System N Balances in Rice–Wheat Rotations of Nepal. Field Crops Res. 2007, 103, 98–108. [Google Scholar] [CrossRef]
- Jarvis, P.; Rey, A.; Petsikos, C.; Wingate, L.; Rayment, M.; Pereira, J.; Banza, J.; David, J.; Miglietta, F.; Borghetti, M.; et al. Drying and Wetting of Mediterranean Soils Stimulates Decomposition and Carbon Dioxide Emission: The “Birch Effect”. Tree Physiol. 2007, 27, 929–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, H.F. Nitrification in Soils after Different Periods of Dryness. Plant Soil 1960, 12, 16. [Google Scholar] [CrossRef]
- Birch, H.F. The Effect of Soil Drying on Humus Decomposition and Nitrogen Availability. Plant Soil 1958, 10, 9–31. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Srinivasan, M.S.; Dell, C.J.; Schmidt, J.P.; Sharpley, A.N.; Bryant, R.B. Role of Rainfall Intensity and Hydrology in Nutrient Transport via Surface Runoff. J. Environ. Qual. 2006, 35, 1248–1259. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Chaubey, I. Surface and Subsurface Transport of Nitrate Loss from the Selected Bioenergy Crop Fields: Systematic Review, Analysis and Future Directions. Agriculture 2017, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Nash, D.; Halliwell, D.; Cox, J. Hydrological Mobilization of Pollutants at the Field/Slope Scale. In Agriculture, Hydrology and Water Quality; Haygarth, P.M., Jarvis, S.C., Eds.; CABI: Wallingford, UK, 2002; pp. 243–264. ISBN 978-0-85199-545-8. [Google Scholar]
- Rusjan, S.; Brilly, M.; Mikoš, M. Flushing of Nitrate from a Forested Watershed: An Insight into Hydrological Nitrate Mobilization Mechanisms through Seasonal High-Frequency Stream Nitrate Dynamics. J. Hydrol. 2008, 354, 187–202. [Google Scholar] [CrossRef]
- Weiler, M.; McDonnell, J.J. Testing Nutrient Flushing Hypotheses at the Hillslope Scale: A Virtual Experiment Approach. J. Hydrol. 2006, 319, 339–356. [Google Scholar] [CrossRef]
- McHale, M.R.; McDonnell, J.J.; Mitchell, M.J.; Cirmo, C.P. A Field-Based Study of Soil Water and Groundwater Nitrate Release in an Adirondack Forested Watershed. Water Resour. Res. 2002, 38, 2.1–2.16. [Google Scholar] [CrossRef] [Green Version]
- Cirmo, C.P.; McDonnell, J.J. Linking the Hydrologic and Biogeochemical Controls of Nitrogen Transport in Near-Stream Zones of Temperate-Forested Catchments: A Review. J. Hydrol. 1997, 199, 88–120. [Google Scholar] [CrossRef]
- Warren, G.P.; Atwal, S.S.; Irungu, J.W. Soil Nitrate Variations under Grass, Sorghum and Bare Fallow in Semi-Arid Kenya. Ex. Agric. 1997, 33, 321–333. [Google Scholar] [CrossRef]
- Yang, Y.; Wendroth, O.; Walton, R.J. Field-Scale Bromide Leaching as Affected by Land Use and Rain Characteristics. Soil Sci. Soc. Am. J. 2013, 77, 1157–1167. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Giambelluca, T.W.; Tran, L.T.; Vana, T.T.; Nullet, M.A.; Fox, J.; Vien, T.D.; Pinthong, J.; Maxwell, J.F.; Evett, S. Hydrological Consequences of Landscape Fragmentation in Mountainous Northern Vietnam: Evidence of Accelerated Overland Flow Generation. J. Hydrol. 2004, 287, 124–146. [Google Scholar] [CrossRef]
- Ribolzi, O.; Lacombe, G.; Pierret, A.; Robain, H.; Sounyafong, P.; de Rouw, A.; Soulileuth, B.; Mouche, E.; Huon, S.; Silvera, N.; et al. Interacting Land Use and Soil Surface Dynamics Control Groundwater Outflow in a Montane Catchment of the Lower Mekong Basin. Agric. Ecosyst. Environ. 2018, 268, 90–102. [Google Scholar] [CrossRef]
- Edwards, W.M.; Shipitalo, M.J.; Traina, S.J.; Edwards, C.A.; Owens, L.B. Role of Lumbricus Terrestris (L.) Burrows on Quality of Infiltrating Water. Soil Biol. Biochem. 1992, 24, 1555–1561. [Google Scholar] [CrossRef]
- Gabiri, G. Multi-Scale Modeling of Water Resources in a Tropical Inland Valley and a Tropical Floodplain Catchment in East Africa; Rheinische Friedrich Wilhelms Universität Bonn, Institute of Geography: Bonn, Germany, 2018. [Google Scholar]
- Miyamoto, K.; Maruyama, A.; Haneishi, Y.; Matsumoto, S.; Asea, G.; Okello, S.; Takagaki, M.; Kikuchi, M. NERICA Cultivation and Its Yield Determinants: The Case of Upland Rice Farmers in Namulonge, Central Uganda. J. Agric. Sci. 2012, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Nsubuga, F.N.W.; Namutebi, E.N.; Nsubuga-Ssenfuma, M. Water Resources of Uganda: An Assessment and Review. J. Water Resour. Prot. 2014, 6, 1297–1315. [Google Scholar] [CrossRef] [Green Version]
- Nsubuga, F.W.; Olwoch, J.M.; de Rautenbach, C.J.W. Climatic Trends at Namulonge in Uganda: 1947–2009. J. Geogr. Geol. 2011, 3, 119. [Google Scholar] [CrossRef]
- GTK Consortium. Geological Map of Uganda 1:100,000. Sheet 61, Bombo, 2012. Available online: https://shop.geospatial.com/product/4CKQ8D5G052KM1JQB3MY26V011/61-BOMBO-Uganda-1-to-100000-Scale-Geological-Maps (accessed on 5 November 2022).
- Westerhof, A.B.; Härmä, P.; Isabirye, E.; Katto, E.; Koistinen, T.; Kuosmanen, E.; Lehto, T.; Lehtonen, M.I.; Mäkitie, H.; Manninen, T.; et al. Geology and Geodynamic Development of Uganda with Explanation of the 1:1,000,000-Scale Geological Map; Special Paper; Geological Survey of Finland: Espoo, Finland, 2014; ISBN 978-952-217-294-5. [Google Scholar]
- Taylor, R.G.; Howard, K.W.F. Groundwater Recharge in the Victoria Nile Basin of East Africa: Support for the Soil Moisture Balance Approach Using Stable Isotope Tracers and Flow Modelling. J. Hydrol. 1996, 180, 31–53. [Google Scholar] [CrossRef]
- Uganda Ministry of Water and Environment. Unpublished Data.
- Taylor, R.G.; Howard, K.W.F. Post-Palaeozoic Evolution of Weathered Landsurfaces in Uganda by Tectonically Controlled Deep Weathering and Stripping. Geomorphology 1998, 25, 173–192. [Google Scholar] [CrossRef]
- Denny, P. Eastern Africa. In Wetlands of the World, Volume 1: Inventory, Ecology and Management; Whigham, D.F., Dykyjová, D., Hejný, S., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp. 32–46. [Google Scholar]
- van Breugel, P.; Kindt, R.; Lillesø, J.P.G.; Bingham, M.; Demissew, S.; Dudley, C.; Friis, I.; Gachathi, F.; Kalema, J.; Mbago, F.; et al. Potential Natural Vegetation Map of East Africa (Burundi, Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia); 2015. Available online: https://vegetationmap4africa.org/About.html (accessed on 11 December 2022).
- Blume, T.; van Meerveld, H.J. From Hillslope to Stream: Methods to Investigate Subsurface Connectivity. WIREs Water 2015, 2, 177–198. [Google Scholar] [CrossRef] [Green Version]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Berktold, A. Geoelektrik. In Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten. Band 3: Geophysik; Knödel, K., Krummel, H., Lange, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3, pp. 71–387. [Google Scholar]
- Loke, M.H. Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method. Geotomo software sdn bhd: Gelogur, Malaysia, 2018. [Google Scholar]
- Delta-T Devices Ltd PR2 User Manual Version 5.0. Available online: https://www.delta-t.co.uk/wp-content/uploads/2017/02/PR2_user_manual_version_5.0.pdf (accessed on 5 November 2022).
- Rawls, W.J.; Brakensiek, D.L. Prediction of Soil Water Properties for Hydrologic Modeling. In Proceedings of the American Society of Civil Engineers Watershed Management in the Eighties Symposium; ASCE: New York, NY, USA, 1985; pp. 293–299. [Google Scholar]
- Flint, A.L.; Childs, S. Physical Properties of Rock Fragments and Their Effect on Available Water in Skeletal Soils. In Erosion and Productivity of Soils Containing Rock Fragments; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1984; pp. 91–103. ISBN 978-0-89118-908-4. [Google Scholar]
- Eijkelkamp Rhizon Soil Moisture Samplers Manual. Available online: https://www.royaleijkelkamp.com/media/bbopr10b/m-1921e-rhizons.pdf (accessed on 5 November 2022).
- Eijkelkamp Nitracheck Reflectometer Manual. Available online: https://www.royaleijkelkamp.com/media/zyfoulx4/manual-18-40-nitrachek-reflectometer.pdf (accessed on 5 November 2022).
- Skogley, E.O. The Universal Bioavailability Environment/Soil Test Unibest. Commun. Soil Sci. Plant Anal. 1992, 23, 2225–2246. [Google Scholar] [CrossRef]
- Dobermann, A.; Pampolino, M.F.; Adviento, M.A. Resin Capsules for Onsite Assessment of Soil Nutrient Supply in Lowland Rice Fields. Soil Sci. Soc. Am. J. 1997, 61, 1202–1213. [Google Scholar] [CrossRef]
- Skogley, E.O.; Dobermann, A. Synthetic Ion-Exchange Resins: Soil and Environmental Studies. J. Environ. Qual. 1996, 25, 13–24. [Google Scholar] [CrossRef]
- Li, Z.M.; Skogley, E.O.; Ferguson, A.H. Resin Adsorption for Describing Bromide Transport in Soil under Continuous or Intermittent Unsaturated Water Flow. J. Environ. Qual. 1993, 22, 715–722. [Google Scholar] [CrossRef]
- Pampolino, M.F.; Urushiyama, T.; Hatano, R. Detection of Nitrate Leaching through Bypass Flow Using Pan Lysimeter, Suction Cup, and Resin Capsule. Soil Sci. Plant Nutr. 2000, 46, 703–711. [Google Scholar] [CrossRef]
- Schepp, C. Linking Slopes to the Wetland: Hillslope Hydrology and Associated Nitrate Transport in a Tropical Valley Bottom Wetland; Rheinische Friedrich Wilhelms Universität Bonn, Institute of Geography: Bonn, Germany, 2022. [Google Scholar]
- Meerveld, H.J.T.; McDonnell, J.J. Threshold Relations in Subsurface Stormflow: 2. The Fill and Spill Hypothesis. Water Resour. Res. 2006, 42, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Heilig, A.; Steenhuis, T.S.; Walter, M.T.; Herbert, S.J. Funneled Flow Mechanisms in Layered Soil: Field Investigations. J. Hydrol. 2003, 279, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.T.; Kim, J.-S.; Steenhuis, T.S.; Parlange, J.-Y.; Heilig, A.; Braddock, R.D.; Selker, J.S.; Boll, J. Funneled Flow Mechanisms in a Sloping Layered Soil: Laboratory Investigation. Water Resour. Res. 2000, 36, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Palacky, G.J. Resistivity Characteristics of Geological Targets. In Electromagnetic Methods in Applied Geophysics; Nabighian, M.N., Ed.; Society of exploration geophysics: Tulsa, OK, USA, 1987; pp. 131–311. [Google Scholar]
- Beauvais, A.; Ritz, M.; Parisot, J.-C.; Dukhan, M.; Bantsimba, C. Analysis of Poorly Stratified Lateritic Terrains Overlying a Granitic Bedrock in West Africa, Using 2-D Electrical Resistivity Tomography. Earth Planet. Sci. Lett. 1999, 173, 413–424. [Google Scholar] [CrossRef]
- Barongo, J.O.; Palacky, G.J. Investigations of Electrical Properties of Weathered Layers in the Yala Area, Western Kenya, Using Resistivity Soundings. Geophysics 1991, 56, 133–138. [Google Scholar] [CrossRef]
- Kižlo, M.; Kanbergs, A. The Causes of the Parameters Changes of Soil Resistivity. Power Electr. Eng. 2009, 25, 43–46. [Google Scholar] [CrossRef]
- McNeill, J.D. Electrical Conductivity of Soils and Rocks. Technical Note T-5; Geonics Ltd.: Mississauga, ON, Canada, 1980. [Google Scholar]
- Anudu, G.K.; Essien, B.I.; Obrike, S.E. Hydrogeophysical Investigation and Estimation of Groundwater Potentials of the Lower Palaeozoic to Precambrian Crystalline Basement Rocks in Keffi Area, North-Central Nigeria, Using Resistivity Methods. Arab J. Geosci. 2014, 7, 311–322. [Google Scholar] [CrossRef]
- McDonnell, J.J.; Owens, I.F.; Stewart, M.K. A Case Study of Shallow Flow Paths in a Steep Zero-Order Basin. JAWRA J. Am. Water Resour. Assoc. 1991, 27, 679–685. [Google Scholar] [CrossRef]
- Grotelüschen, K. Evaluating Rice Performance in Contrasting East African Wetlands Using an Experimental and Modelling Approach; Rheinische Friedrich Wilhelms Universität Bonn: Bonn, Germany, 2021. [Google Scholar]
- Bognonkpe, J.P.I.; Becker, M. Native Soil N Dynamics and Use Efficiency by Lowland Rice as a Function of Slope Management. In Proceedings of the International Agricultural Research: A contribution to crisis prevention. Proceedings of the Deutscher Tropentag 2000; Müllerbader Press: Hohenheim, Germany, 2000; pp. 197–199. [Google Scholar]
- Jarvis, N.J. A Review of Non-Equilibrium Water Flow and Solute Transport in Soil Macropores: Principles, Controlling Factors and Consequences for Water Quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Dividson, E.A.; Stark, J.M.; Firestone, M.K. Microbial Production and Consumpution of Nitrate in an Annual Grassland. Ecology 1990, 71, 1968–1975. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen Transformations. In Soil Microbiology, Ecology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 421–446. ISBN 978-0-12-415955-6. [Google Scholar]
- Szott, L.T.; Palm, C.A.; Buresh, R.J. Ecosystem Fertility and Fallow Function in the Humid and Subhumid Tropics. Agrofor. Syst. 1999, 47, 163–196. [Google Scholar] [CrossRef]
- Zech, W.; Senesi, N.; Guggenberger, G.; Kaiser, K.; Lehmann, J.; Miano, T.N.; Miltner, A.; Schroth, G. Factors Controlling Humification and Mineralization of Soil Organic Matter in the Tropics. Geoderma 1997, 79, 117–161. [Google Scholar] [CrossRef]
- Van Soest, M. The Political Ecology of Malaria-Emerging Dynamics of Wetland Agriculture at the Urban Fringe in Central Uganda; Universtiät zu Köln: Cologne, Germany, 2018. [Google Scholar]
- Angermann, L.; Jackisch, C.; Allroggen, N.; Sprenger, M.; Zehe, E.; Tronicke, J.; Weiler, M.; Blume, T. Form and Function in Hillslope Hydrology: Characterization of Subsurface Flow Based on Response Observations. Hydrol. Earth Syst. Sci. 2017, 21, 3727–3748. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.; Germann, P. Macropores and Water Flow in Soils Revisited. Water Resour. Res. 2013, 49, 3071–3092. [Google Scholar] [CrossRef]
Position | Parameter | Sample Point 1 | Sample Point 2 | Sample Point 3 |
---|---|---|---|---|
Subsoil | Kfs (mean of 3) | 29 mm/h | 35 mm/h | 18 mm/h |
CV | 69% | 38% | 13% | |
Bulk density | 1.56 g/cm3 | 1.52 g/cm3 | 1.54 g/cm3 | |
texture | Clay Loam | Loam | Clay Loam | |
Upper saprolite | Kfs (mean of 2) | 31 mm/h | 70 mm/h | 113 mm/h |
CV | - | 87% | 14% | |
texture | Loam | Loam | Sandy Loam |
Rainy Season | Rainfall Total [mm] | Rainfall Pattern at the Start of the Season | Rainfall Pattern during the Main Rainy Season | Soil Moisture |
---|---|---|---|---|
2016.1 | 256 | Small rainfall events of low intensities | Constant, low to intermediate intensities | Constantly high |
2016.2 | 214 | Single rainfall events of intermediate intensities | Sporadic, low intensities | Repeated wetting and drying |
2017.1 | 388 | Efficient rainfall events of high intensities | Constant, intermediate intensity | Slow increase at the beginning followed by high values during the main rainy season |
2017.2 | 387 | Small rainfall events of low intensities | Bi-modal with single events of high intensity and high rainfall amounts | Bi-modal, very high during the second wet period |
P10 (Crop Production) | P11 (Semi-Natural Vegetation) | |||
---|---|---|---|---|
Before Event | After Event | Before Event | After Event | |
Interflow [L/d] | 375 | 490 (+31%) | 210 | 245 (+17%) |
NO3-N concentration in interflow [mg/L] | 2.8 | 4.3 (+54%) | 1.4 | 1.1 (−21%) |
Surface runoff [L/m2] | 16 | 15 | ||
Runoff coefficient [%] | 23 | 1 |
Rainy Season | P10 (Crop Production) | P11 (Semi-Natural Vegetation) | |||
---|---|---|---|---|---|
Rainfall [mm] | Interflow Input to the Wetland Fringe [L] | N Input to the Wetland Fringe [kg NO3-N/ha] | Interflow Input to the Wetland Fringe [L] | N Input to the Wetland Fringe [kg NO3-N/ha] | |
2016.1 | 353 | - | - | - | - |
2016.2 | 214 | 57,446 | 17.8 | 19,782 | 4.5 |
2017.1 | 447 | 56,848 | 19.4 | 32,089 | 7.8 |
2017.2 | 395 | 29,387 | 14.3 | 8103 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schepp, C.; Diekkrüger, B.; Becker, M. Hillslope Hydrology in a Deeply Weathered Saprolite and Associated Nitrate Transport to a Valley Bottom Wetland in Central Uganda. Hydrology 2022, 9, 229. https://doi.org/10.3390/hydrology9120229
Schepp C, Diekkrüger B, Becker M. Hillslope Hydrology in a Deeply Weathered Saprolite and Associated Nitrate Transport to a Valley Bottom Wetland in Central Uganda. Hydrology. 2022; 9(12):229. https://doi.org/10.3390/hydrology9120229
Chicago/Turabian StyleSchepp, Claudia, Bernd Diekkrüger, and Mathias Becker. 2022. "Hillslope Hydrology in a Deeply Weathered Saprolite and Associated Nitrate Transport to a Valley Bottom Wetland in Central Uganda" Hydrology 9, no. 12: 229. https://doi.org/10.3390/hydrology9120229
APA StyleSchepp, C., Diekkrüger, B., & Becker, M. (2022). Hillslope Hydrology in a Deeply Weathered Saprolite and Associated Nitrate Transport to a Valley Bottom Wetland in Central Uganda. Hydrology, 9(12), 229. https://doi.org/10.3390/hydrology9120229