RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. PET Global Mapping
3.2. Validation
4. Discussion
- (1)
- In the applications of physically based hydrological models which use PET as an input in catchment modelling. This acquires higher usefulness as we are moving forward toward global scale hydrological models. It is already highlighted by several researchers that the use of accurate PET estimates is of great importance for the reproduction of physically based hydrological responses [20] and its use in calibrating complex physically based hydrological models [21,22].
- (2)
- In the crop-water demand assessment. The integration of the monthly PET and the cropping pattern quantifies the monthly water needs according to vegetation. Accurate PET estimates with fewer demands of meteorological data, combined with modern techniques such as the use of a drone for micro-farming data gathering [23] greatly support the food–water nexus.
- (3)
- (4)
- In building and evaluating environmental resilience indexes for developing and defining new multi-dimensional approaches. Such approaches would ensure an accurate decision-making basis for sustainable ecosystem management [26].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dingman, S.L. Physical Hydrology; MacMillan Publishing Company: New York, NY, USA, 1994. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Ghilain, N.; Gellens-Meulenberghs, F. Assessing the impact of land cover map resolution and geolocation accuracy on evapotranspiration simulations by a land surface model. Remote Sens. Lett. 2014, 5, 491–499. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.J.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M.; Anderson, S. Remote sensing techniques for predicting evapo-transpiration from mixed vegetated surfaces. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 3897–3925. [Google Scholar]
- Bhattarai, N.; Dougherty, M.; Marzen, L.J.; Kalin, L. Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States. Remote Sens. Lett. 2012, 3, 511–519. [Google Scholar] [CrossRef]
- Choudhury, B.J. Global pattern of potential evaporation calculated from the Penman-Monteith equation using satel-lite and assimilated data. Remote Sens. Environ. 1997, 61, 64–81. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V. Precipitation and Potential Evapotranspiration Temporal Variability and Their Relationship in Two Forest Ecosystems in Greece. Hydrology 2021, 8, 160. [Google Scholar] [CrossRef]
- Tegos, A.; Efstratiadis, A.; Koutsoyiannis, D. A Parametric Model for Potential Evapotranspiration Estimation Based on a Simplified Formulation of the Penman-Monteith Equation. Evapotranspiration Overv. 2013, 143–165. [Google Scholar] [CrossRef] [Green Version]
- Tegos, A.; Malamos, N.; Koutsoyiannis, D. A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman–Monteith formula. J. Hydrol. 2015, 524, 708–717. [Google Scholar] [CrossRef]
- Tegos, A.; Efstratiadis, A.; Malamos, N.; Mamassis, N.; Koutsoyiannis, D. Evaluation of a Parametric Approach for Estimating Potential Evapotranspiration Across Different Climates. Agric. Agric. Sci. Procedia 2015, 4, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Tegos, A.; Malamos, N.; Efstratiadis, A.; Tsoukalas, I.; Karanasios, A.; Koutsoyiannis, D. Parametric Modelling of Potential Evapotranspiration: A Global Survey. Water 2017, 9, 795. [Google Scholar] [CrossRef] [Green Version]
- Tegos, A.; Mamassis, N.; Koutsoyiannis, D. Estimation of potential evapotranspiration with minimal data dependence. In EGU General Assembly Conference Abstracts; European Geosciences Union: Vienna, Austria, 2009; Volume 11. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Allwine, K.J. Extraterrestrial solar radiation on inclined surfaces. Environ. Softw. 1986, 1, 164–169. [Google Scholar] [CrossRef]
- Hooker, J.; Duveiller, G.; Cescatti, A. A global dataset of air temperature derived from satellite remote sensing and weather stations. Sci. Data 2018, 5, 180246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Yuanyuan, W.; Jun, Z.; Yanqiang, W. Spatiotemporal variation characteristics of surface evapotranspiration in Shanxi Province based on MOD16. Prog. Geogr. 2020, 39, 255–264. [Google Scholar]
- dos Santos, A.A.; Moretti de Souza, J.L.; Rosa, S.L.K. Evapotranspiration with the Moretti-Jerszurki-Silva model for the Brazilian subtropical climate. Hydrol. Sci. J. 2021, 66, 2267–2279. [Google Scholar] [CrossRef]
- Seiller, G.; Anctil, F. How do potential evapotranspiration formulas influence hydrological projections? Hydrol. Sci. J. 2016, 61, 2249–2266. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.A.; Droogers, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- López López, P.; Sutanudjaja, E.H.; Schellekens, J.; Sterk, G.; Bierkens, M.F. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrol. Earth Syst. Sci. 2017, 21, 3125–3144. [Google Scholar] [CrossRef] [Green Version]
- Alexandris, S.; Psomiadis, E.; Proutsos, N.; Philippopoulos, P.; Charalampopoulos, I.; Kakaletris, G.; Papoutsi, E.-M.; Vassilakis, S.; Paraskevopoulos, A. Integrating Drone Technology into an Innovative Agrometeorological Methodology for the Precise and Real-Time Estimation of Crop Water Requirements. Hydrology 2021, 8, 131. [Google Scholar] [CrossRef]
- van der Schrier, G.; Jones, P.D.; Briffa, K.R. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Zheng, Z.; Duan, Y. Sensitivity of potential evapotranspiration estimation to the Thornthwaite and Penman–Monteith methods in the study of global drylands. Adv. Atmos. Sci. 2017, 34, 1381–1394. [Google Scholar] [CrossRef]
- Fan, X.; Hao, X.; Hao, H.; Zhang, J.; Li, Y. Comprehensive Assessment Indicator of Ecosystem Resilience in Central Asia. Water 2021, 13, 124. [Google Scholar] [CrossRef]
Station | Country | Period | CE |
---|---|---|---|
Kostakioi | Greece | 04/2008–07/2013 | 89 |
Mace Head | Ireland | 10/2010–11/2016 | 90.9 |
Zaragoza | Spain | 01/2003–11/2009 | 92.8 |
Alicante | Spain | 01/2003–10/2009 | 92.4 |
Munchen | Germany | 01/2003–06/2013 | 90.0 |
Karshue | Germany | 01/2003–08/2009 | 89.2 |
Hamburg | Germany | 01/2003–06/2013 | 93.7 |
Frankfurt | Germany | 01/2003–06/2013 | 96.7 |
Dusseldorf | Germany | 01/2003–06/2013 | 94.7 |
Dresden | Germany | 01/2003–06/2013 | 92.9 |
Bremen | Germany | 01/2003–06/2013 | 94.9 |
Angermunde | Germany | 01/2003–06/2013 | 95.2 |
Aachen | Germany | 01/2003–11/2005 | 91.5 |
Tulelake | USA | 01/2003–11/2005 | 79.2 |
Meloland | USA | 01/2003–06/2013 | 89.0 |
Manteca | USA | 01/2003–06/2013 | 93.1 |
Temecula | USA | 01/2003–06/2013 | 84.5 |
Buntigville | USA | 01/2003–06/2013 | 89.6 |
Mc Arthur | USA | 01/2003–06/2013 | 89.5 |
Davis | USA | 01/2003–06/2013 | 93.1 |
Tunnack Firestation | Australia | 01/2009–12/2014 | 90.5 |
Adelaide airport | Australia | 01/2009–12/2014 | 83.2 |
Sydney Airport | Australia | 01/2009–12/2014 | 43.2 |
Alice Springs | Australia | 01/2009–12/2014 | 84.1 |
Albany airport | Australia | 01/2009–12/2014 | 90.6 |
Shanxi | China | 01/2003–12/2014 | 22.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tegos, A.; Malamos, N.; Koutsoyiannis, D. RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling. Hydrology 2022, 9, 32. https://doi.org/10.3390/hydrology9020032
Tegos A, Malamos N, Koutsoyiannis D. RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling. Hydrology. 2022; 9(2):32. https://doi.org/10.3390/hydrology9020032
Chicago/Turabian StyleTegos, Aristoteles, Nikolaos Malamos, and Demetris Koutsoyiannis. 2022. "RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling" Hydrology 9, no. 2: 32. https://doi.org/10.3390/hydrology9020032
APA StyleTegos, A., Malamos, N., & Koutsoyiannis, D. (2022). RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling. Hydrology, 9(2), 32. https://doi.org/10.3390/hydrology9020032