Effects of Grazing on Water Erosion, Compaction and Infiltration on Grasslands
Abstract
:1. Introduction
2. First Attempts to Describe the Situation and Explaining the Problem
3. Recent Review Papers on the Subject
4. Effects of Grazing on Water Erosion and Infiltration in Various Countries
5. Erosion Modelling
6. Effects of Grazing on Soil Compaction and Infiltration
7. Negative Impacts of Grazing on the Soil—Regardless of Ancient, Indigenous Knowledge
8. Possible Future Methods concerning the Evaluation of Grazing Effects
9. Conclusions
- have managers who actively acknowledge, support and engage with the rights and interests of their neighbours and surrounding communities; and
- apply management practices that protect other valuable habitats such as forests and streams.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutie, J.M.; Reynolds, S.G.; Batello, C. (Eds.) Grasslands of the World; Plant Production and Protection Series; Food and Agriculture Organisation (FAO): Rome, Italy, 2005; p. 34. [Google Scholar]
- Available online: https://ourworldindata.org/global-land-for-agriculture (accessed on 3 January 2022).
- Available online: https://www.fao.org/3/a0701e/a0701e.pdf (accessed on 3 January 2022).
- Mwendera, E.J.; Mohamed Saleem, M.A.; Dibabe, A. The effect of livestock grazing on surface runoff and soil erosion from sloping pasture lands in the Ethiopian highlands. Aust. J. Exp. Agric. 1997, 37, 420–430. [Google Scholar] [CrossRef]
- Zheng, M.; Song, J.; Ru, J.; Zhou, Z.; Zhong, M.; Jiang, L.; Hui, D.; Wan, S. Effects of grazing, wind erosion, and dust deposition on plant community composition and structure in a temperate steppe. Ecosystems 2021, 24, 403–420. [Google Scholar] [CrossRef]
- Msadek, J.; Tlili, A.; Moumni, M.; Louhaichi, M.; Tarhouni, V. Community diversity, functional traits and adaptation of Stipa tenacissima L. under different grazing regimes in a North African arid montane rangeland. Afr. J. Range Forage Sci. 2021, 38, 122–129. [Google Scholar] [CrossRef]
- Aide, M.; Braden, I.; Murray, S.; Schabbing, C.; Scott, S.; Siemers, S.; Svenson, S.; Weathers, J. Optimizing Beef Cow-Calf Grazing across Missouri with an Emphasis on Protecting Ecosystem Services. Land 2021, 10, 1076. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Ghahfarokhi, M.S.; Koupaei, S.S. Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecol. Indic. 2020, 110, 105946. [Google Scholar] [CrossRef]
- Wu, X.; Dang, X.; Meng, Z.; Fu, D.; Cong, W.; Zhao, F.; Guo, J. Mechanisms of grazing management impact on preferential water flow and infiltration patterns in a semi-arid grassland in northern China. Sci. Total Environ. 2021, 813, 152082. [Google Scholar] [CrossRef]
- Limpert, K.E.; Carnell, P.E.; Macreadie, P.I. Managing agricultural grazing to enhance the carbon sequestration capacity of freshwater wetlands. Wetl. Ecol. Manag. 2021, 29, 231–244. [Google Scholar] [CrossRef]
- Bock, C.E.; Bock, J.H.; Kenney, W.R.; Hawthorne, V.M. Responses of birds, rodents, and vegetation to livestock exclosure in a semidesert grassland site. J. Range Manag. 1984, 37, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; United Nations Food and Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de Recuperação Automática—SIDRA. 2013. Available online: http://www.sidra.ibge.gov.br/bda/pecua (accessed on 3 January 2022).
- Galdino, S.; Sano, E.E.; Andrade, R.G.; Grego, C.R.; Nogueira, S.F.; Bragantini, C.; Flosi, A.H.G. Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degrad. Dev. 2016, 27, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, J.B.S.; Felício, P.E. Production systems—An example from Brazil. Meat Sci. 2010, 84, 238–243. [Google Scholar] [CrossRef]
- Kamaljit, K. Multiple land use in tropical savannas: Concepts and methods for valuation. Agric. J. 2006, 1, 90–95. [Google Scholar]
- Field, J.P.; Breshears, D.D.; Whicker, J.J.; Zou, C.B. Interactive effects of grazing and burning on wind- and water-driven sediment fluxes: Rangeland management implications. Ecol. Appl. 2011, 21, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Havstad, K.M.; Peters, D.P.C.; Skaggs, R.; Brown, J.; Bestelmeyer, B.; Fredrickson, E.; Herrick, J.; Wright, J. Ecological services to and from rangelands of the United States. Ecol. Econ. 2007, 64, 261–268. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Ward, T.J.; Anderson, J. Nutrient losses in runoff from grassland and shrubland habitats in southern New Mexico: II. Field plots. Biogeochemistry 2000, 49, 69–86. [Google Scholar] [CrossRef]
- Schuman, G.E.; Reeder, J.D.; Manley, J.T.; Hart, R.H.; Manley, W.A. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol. Appl. 1999, 9, 65–71. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K. Potential soil carbon sequestration in overgrazed grassland ecosystems. Glob. Biogeo. Cycl. 2002, 16, 90-1–90-9. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.A.; Parton, W.; Derner, J.D.; Gilmanov, T.G.; Smith, D.P. Importance of early season conditions and grazing on carbon dioxide fluxes in Colorado shortgrass steppe. Rangel. Ecol. Manag. 2016, 69, 342–350. [Google Scholar] [CrossRef]
- Yahdjian, L.; Sala, O.E.; Havstad, K.M. Rangeland ecosystem services: Shifting focus from supply to reconciling supply and demand. Front. Ecol. Environ. 2015, 13, 44–51. [Google Scholar] [CrossRef]
- Bremer, L.L.; Nathan, N.; Trauernicht, C.; Pascua, P.; Krueger, N.; Jokiel, J.; Barton, J.; Daily, G.C. Maintaining the many societal benefits of rangelands: The case of Hawaii. Land 2021, 10, 764. [Google Scholar] [CrossRef]
- Dominati, E.; Mackay, A.; Green, S.; Patterson, M. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecol. Econ. 2014, 100, 119–129. [Google Scholar] [CrossRef]
- Google Scholar. Available online: https://scholar.google.com/ (accessed on 29 January 2022).
- Reynolds, R.V.R. Grazing and Floods: A Study of Conditions in the Manti National Forest, Utah; USDA Forest Service, Bulletin 91; Government Printing Office: Washington, DC, USA, 1911; p. 16. [Google Scholar]
- Sampson, A.W.; Weyl, L.H. Range Preservation and Its Relation to Erosion Control on Western Grazing Lands; US Department of Agriculture: Washington, DC, USA, 1918. [Google Scholar]
- Korstian, C.F. Grazing Practice on the National Forests and Its Effect on Natural Conditions. Sci. Mon. 1921, 13, 275–281. Available online: http://www.jstor.org/stable/6353 (accessed on 3 January 2022).
- Chapline, W.R. Erosion on range land. J. Am. Soc. Agron. 1929, 21, 423–429. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R. Managing rangeland soil resources: The Universal Soil Loss Equation. Rangelands 1985, 7, 118–122. [Google Scholar]
- Greenwood, K.L.; McKenzie, B.M. Grazing effects on soil physical properties and the consequences for pastures: A review. Aust. J. Exp. Agric. 2001, 41, 1231–1250. [Google Scholar] [CrossRef]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing—A review. Soil Res. 2008, 46, 237–256. [Google Scholar] [CrossRef]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Chang. Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Chadwick, D.R.; Jones, D.L.; Evans, C.D.; Jones, M.B.; Rees, R.M.; Smith, P. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst Environ. 2018, 253, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Aiken, G.E. Invited Review: Grazing management options in meeting objectives of grazing experiments. Prof. Anim. Scien. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Pierson, F.B.; Williams, C.J. Ecohydrologic Impacts of Rangeland Fire on Runoff and Erosion: A Literature Synthesis; U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016; 110p. [Google Scholar]
- Weltz, M.A.; Hernandez, M.; Nearing, M.A.; Spaeth, K.E.; Armendariz, G.; Pierson, F.B.; Williams, C.J.; Al-Hamdan, O.Z.; Nouwakpo, S.K.; McGwire, K.; et al. Rangeland Hydrology and Soil Erosion Processes; Handbook No. 646; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2017; 108p. [Google Scholar]
- Byrnes, R.C.; Eastburn, D.J.; Tate, K.W.; Roche, L.M. A Global Meta-Analysis of Grazing Impacts on Soil Health Indicators. J. Env. Qual. 2018, 47, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 2020, 15, e0236638. [Google Scholar] [CrossRef]
- Available online: https://internationalgrasslands.org/ (accessed on 8 January 2022).
- Available online: https://rangelandcongress.org/ (accessed on 8 January 2022).
- Croft, A.R.; Woodward, L.; Anderson, D.A. Measurement of accelerated erosion on range-watershed land. J. For. 1943, 41, 112–116. [Google Scholar] [CrossRef]
- Busby, F.E.; Gifford, G.F. Effects of livestock grazing on infiltration and erosion rates measured on chained and unchained pinyon juniper sites in southeastern Utah. J. Range Manag. 1981, 34, 400–405. [Google Scholar] [CrossRef] [Green Version]
- Bari, F.; Wood, M.K.; Murray, A.L. Livestock grazing impacts on infiltration rates in a temperate range of Pakistan. J. Range Manag. 1993, 46, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Bari, F.; Wood, M.K.; Murray, A. Impacts on interrill erosion in Pakistan. J. Range Manag. 1995, 48, 251–257. [Google Scholar] [CrossRef]
- Proffitt, A.P.B.; Bendotti, S.; McGarry, D. A comparison between continuous and controlled grazing on a red duplex soil. I. Effects on soil physical characteristics. Soil Till. Res. 1995, 35, 199–210. [Google Scholar] [CrossRef]
- Shinjo, H.; Fujita, H.; Gintzbuger, G.; Kosaki, T. Impact of grazing and tillage on water erosion in northeastern Syria. Soil Sci. Plant Nutr. 2000, 46, 151–162. [Google Scholar] [CrossRef]
- Elliott, A.H.; Tian, Y.Q.; Rutherford, J.C.; Carlson, W.T. Effect of cattle treading on interrill erosion from hill pasture: Modelling concepts and analysis of rainfall simulator data. Aust. J. Soil Res. 2002, 40, 963–976. [Google Scholar] [CrossRef]
- Peth, S.; Horn, R. Consequences of grazing on soil physical and mechanical properties in forest and tundra environments. In Reindeer Management in Northernmost Europe: Linking Practical and Scientific Knowledge in Social-Ecological Systems; Ecological Studies; Forbers, B.C., Bölter, M., Müller-Wille, L., Hukkinen, J., Müller, F., Gunslay, N., Konstantinov, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 184, pp. 217–243, 397. [Google Scholar]
- Dec, D.; Dörner, J.; Balocchi, O.; López, I. Temporal dynamics of hydraulic and mechanical properties of an Andosol under grazing. Soil Till. Res. 2012, 125, 44–51. [Google Scholar] [CrossRef]
- De Andrade Bonetti, J.; Anghinoni, I.; Ivonir Gubiani, P.; Cecagno, D.; de Moraes, M.T. Impact of a long-term crop-livestock system on the physical and hydraulic properties of an Oxisol. Soil Till. Res. 2019, 186, 280–291. [Google Scholar] [CrossRef]
- Sone, J.S.; Oliveira, P.T.S.; Euclides, V.P.B.; Montagner, D.B.; de Araujo, A.R.; Zamboni, P.A.O.; Vieira, N.O.M.; Carvalho, G.A.; Sobrinho, T.A. Effects of Nitrogen fertilisation and stocking rates on soil erosion and water infiltration in a Brazilian Cerrado farm. Agric. Ecosyst. Environ. 2020, 304, 107159. [Google Scholar] [CrossRef]
- Bijan, A.; Afzali, S.F. Simulating soil organic carbon dynamics as affected by different water erosion scenarios and grazing management in semi-arid rangelands of Bajgah using the Century model. Electr. J. Soil Manag. Sust. Prod. 2020, 9, 69–87. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Agriculture Handbook No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agricultural Handbook No. 703; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997; ISBN 0-16-048938-5. [Google Scholar]
- Laflen, J.M.; Elliot, W.J.; Flanagan, D.C.; Meyer, C.R.; Nearing, M.A. WEPP-Predicting water erosion using a process-based model. J. Soil Water Cons. 1997, 52, 96–102. [Google Scholar]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Proc. Landf. 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Hancock, G.R.; Gibson, A.; Wells, T. Hillslope erosion in a grassland environment: Calibration and evaluation of the SIBERIA landscape evolution model. Earth Surf. Process. Landf. 2021, 46, 728–743. [Google Scholar] [CrossRef]
- Donovan, M.; Monaghan, R. Impacts of grazing on ground cover, soil physical properties and soil loss via surface erosion: A novel geospatial modelling approach. J. Environ. Manag. 2021, 287, 112206. [Google Scholar] [CrossRef]
- Özcan, A.U.; Uzun, O.; Başaran, M.; Erpul, G.; Akşit, S.; Palancıoğlu, H.M. Soil erosion risk assessment for volcano cone of Alidaği Mountain by using USLE/RUSLE, GIS and geostatistics. Fresenius Environ. Bull. 2015, 24, 2090–2100. [Google Scholar]
- Simanton, J.R.; Osborn, H.B.; Renard, K.G. Application of the USLE to southwestern rangelands. Hydr. Water Res. Ariz. Southwest 1980, 10, 213–220. [Google Scholar]
- Simanton, J.R.; Weltz, M.A.; Larsen, H.D. Rangeland experiments to parameterize the water erosion prediction project model: Vegetation canopy cover effects. J. Range Manag. 1991, 44, 276–282. [Google Scholar] [CrossRef]
- Weltz, M.A.; Kidwell, M.R.; Fox, H.D. Invited Synthesis Paper: Influence of abiotic and biotic factors in measuring and modeling soil erosion on rangelands: State of knowledge. J. Range Manag. 1998, 51, 482–495. [Google Scholar] [CrossRef]
- Pilon, C.; Moore, P.A., Jr.; Pote, D.H.; Pennington, J.H.; Martin, J.W.; Brauer, D.K.; Raper, R.L.; Dabney, S.M.; Lee, J. Long-term effects of grazing management and buffer strips on soil erosion from pastures. J. Environ. Qual. 2017, 46, 364–372. [Google Scholar] [CrossRef]
- Diodato, N. Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrol. Earth Syst. Sci. 2004, 8, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Podmaniczky, L.; Balázs, K.; Belényesi, M.; Centeri, C.; Kristóf, D.; Kohlheb, N. Modelling soil quality changes in Europe. An impact assessment of land use change on soil quality in Europe. Ecol. Ind. 2011, 11, 4–15. [Google Scholar] [CrossRef]
- Willatt, S.T.; Pullar, D.M. Changes in soil physical properties under grazed pastures. Aust. J. Soil Res. 1984, 22, 343–348. [Google Scholar] [CrossRef]
- Tate, K.W.; Dudley, D.M.; Mcdougald, N.K.; George, M.R. Effect of canopy and grazing on soil bulk density. J. Range Manag. 2004, 57, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Neff, J.C.; Reynolds, R.L.; Belnap, J.; Lamothe, P. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol. Appl. 2005, 15, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Magid, A.H.; Schuman, G.E.; Hart, R.H. Soil bulk density and water infiltration as affected by grazing systems. J. Range Manag. 1987, 40, 307–309. [Google Scholar] [CrossRef]
- Mulholland, B.; Fullen, M.A. Cattle trampling and soil compaction on loamy sands. Soil Use Manag. 1991, 7, 189–193. [Google Scholar] [CrossRef]
- Tuffour, H.O.; Bonsu, M. Assessment of soil degradation due to compaction resulting from cattle grazing using infiltration parameters. Int. J. Sci. Res. Agric. Sci. 2015, 2, 76–88. [Google Scholar] [CrossRef]
- Pearson, G.A.; Jung, G.A.; Fowler, R.E.; Mitchell, D.M. Effects of grazing on infiltration rates in waste water spray fields. Soil Sci. Soc. Am. J. 1975, 39, 954–957. [Google Scholar] [CrossRef]
- Savadogo, P.; Sawadogo, L.; Tiveau, D. Effects of grazing intensity and prescribed fire on soil physical and hydrological properties and pasture yield in the savanna woodlands of Burkina Faso. Agric. Ecosyst. Environ. 2007, 118, 80–92. [Google Scholar] [CrossRef]
- Onyegbule, U.O.; Donatus, A.E.O.; Akagha, U.N. Infiltration characteristics of soils in Owerri, Imo State, Southeastern Nigeria under four selected land uses. Asian Soil Res. J. 2018, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Murphy, W.M.; Mena Barreto, A.D.; Silman, J.P.; Dindal, D.L. Cattle and sheep grazing effects on soil organisms, fertility and compaction in a smooth-stalked meadowgrass-dominant white clover sward. Grass For. Sci. 1995, 50, 191–194. [Google Scholar] [CrossRef]
- Jordon, M.W. Does mixed vs. separate sheep and cattle grazing reduce soil compaction? Soil Use Manag. 2020, 37, 822–831. [Google Scholar] [CrossRef]
- Lanteri, D.G.; Huete, A.; Jin, K.H.; Didan, K. Estimation of the fraction of canopy cover from multispectral data to be used in a water soil erosion prediction model. Gayana 2004, 68 (Suppl. S1), 239–245. [Google Scholar] [CrossRef]
- Sepehry, A.; Mottaghi, M.R. Using vegetation indices for estimation of canopy cover per-centage of rangeland vegetation (in protected area of Jahan-Nama, Gorgan). Iran. J. Nat. Res. 2002, 55, 259–271. [Google Scholar]
- Dymond, J.R.; Stephens, P.R.; Newsome, P.F.; Wilde, R.H. Percentage vegetation cover of a degrading rangeland from spot. Int. J. Remote Sens. 1992, 13, 1999–2007. [Google Scholar] [CrossRef]
- Geerken, R.; Batikha, N.; Celis, D.; Depauw, E. Differentiation of rangeland vegetation and assessment of its status: Field investigations and MODIS and SPOT VEGETATION data analyses. Int. J. Remote Sens. 2005, 26, 4499–4526. [Google Scholar] [CrossRef]
- Roesch, A.; Weisskopf, P.; Oberholzer, H.; Valsangiacomo, A.; Nemecek, T. An approach for describing the ef-fects of grazing on soil quality in life-cycle assessment. Sustainability 2019, 11, 4870. [Google Scholar] [CrossRef] [Green Version]
- Malatinszky, Á. Stakeholder perceptions of climate extremes’ effects on management of protected grasslands in a Central European area. Weather Clim. Soc. 2016, 8, 209–217. [Google Scholar] [CrossRef]
- Donkor, N.T.; Gedir, J.V.; Hudson, R.J.; Bork, E.W.; Chanasyk, D.S.; Naeth, M.A. Impacts of grazing systems on soil compaction and pasture production in Alberta. Can. J. Soil Sci. 2002, 82, 1–8. [Google Scholar] [CrossRef] [Green Version]
Country | Model Used | Aim | Main Conclusions | Reference |
---|---|---|---|---|
Australia | RUSLE | Examine the capability of the SIBERIA landscape evolution model to quantify short-term erosion and deposition on a well-managed cattle grazing landscape | Both soil erosion and landscape evolution predictive tools need robust calibration and validation using multiple datasets | [59] |
Brazil | RUSLE | Evaluate soil erosion by water on the pasture of Goiás State and the Federal District. | Soil erosion modeling is an important tool for land use planning and supporting public policies for planning sustainable use of natural resources | [14] |
Iran | GLEAMS, WEPP, ANSWERS | Improve the performance of the soil carbon related Century model by soil erosion modelling under semi-arid rangelands. | The GLEAMS model output helped the Century model to predict the SOC stock the most precisely. | [54] |
New Zealand | RUSLE | Fulfill the gap if missing information on grazing in soil erosion models | Reduced treading and low-density grazing exceed reactive practices seeking to trap sediments lost from grazed lands. | [60] |
Turkey | USLE/RUSLE | Erosion estimation on a volcanic cone | There is irreversible soil loss in the area | [61] |
USA | USLE | Application of USLE on rangeland watersheds | The USLE is easy to use and its factors can be easily adjusted to local conditions. | [62] |
USA | WEPP | Parametrization of WEPP on rangelands | Canopy cover has little direct effect on runoff, infiltration and erosion rate. Protection from raindrop impact is not large in rangeland runoff and erosion responses. | [63] |
USA | USLE RUSLE WEPP | A synthesis paper about the state of knowledge on the influence of factors measuring and modeling soil erosion on rangelands | More data needed for proper modelling; threshold must be identified to stop erosion. | [64] |
USA | RUSLE | Analyzing Long-term effects of grazing management and buffer strips on soil erosion from pastures | RUSLE predict soil losses well; it overpredicts continuous grazing effects | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centeri, C. Effects of Grazing on Water Erosion, Compaction and Infiltration on Grasslands. Hydrology 2022, 9, 34. https://doi.org/10.3390/hydrology9020034
Centeri C. Effects of Grazing on Water Erosion, Compaction and Infiltration on Grasslands. Hydrology. 2022; 9(2):34. https://doi.org/10.3390/hydrology9020034
Chicago/Turabian StyleCenteri, Csaba. 2022. "Effects of Grazing on Water Erosion, Compaction and Infiltration on Grasslands" Hydrology 9, no. 2: 34. https://doi.org/10.3390/hydrology9020034
APA StyleCenteri, C. (2022). Effects of Grazing on Water Erosion, Compaction and Infiltration on Grasslands. Hydrology, 9(2), 34. https://doi.org/10.3390/hydrology9020034